Messstellen in Fließgewässern für den Nitratbericht für die Jahre 2008, 2012 & 2016 sowie für Phosohor für das Jahr 2016 in Deutschland - Umsetzung der EU-Nitratrichtlinie (91/676/EWG) in Deutschland.
Probleme vor allem durch Landwirtschaft, Fischerei und Meeresmüll Viele der in Nord- und Ostsee lebenden Fisch-, Vogel- und Säugetierarten und ihre Lebensräume sind zu hohen Belastungen ausgesetzt. Das zeigen die aktuellen Berichte zum Zustand der deutschen Ostsee- und Nordseegewässer, die die Bundesregierung und die Küstenbundesländer für die europäische Meeresstrategie-Rahmenrichtlinie (MSRL) erstellt haben. Zu den größten Problemen zählen die Eutrophierung (Überversorgung mit Nährstoffen), die Fischerei und die Vermüllung der Meere, vor allem mit Kunststoffen. Nicht-einheimische Arten werden weiterhin in Nord- und Ostsee eingeschleppt und gefährden heimische Ökosysteme. Maria Krautzberger, Präsidentin des Umweltbundesamts ( UBA ): „Die Daten zeigen: Die bisherigen Bemühungen zum Schutz der Meere reichen nicht aus. Die Befunde werden in das nächste nationale Maßnahmenprogramm zum Schutz der Meere ab 2022 einfließen. Dabei wird es nicht nur darum gehen, neue Maßnahmen zu ergreifen, sondern auch bereits vereinbarte Maßnahmen schneller und wirksamer umzusetzen. Die Belastung der Meeresökosysteme durch Nährstoffeinträge aus der Landwirtschaft und durch die Auswirkungen der Fischerei, zum Beispiel durch Grundschleppnetze auf den Meeresboden, sollten dabei Themen sein. Bei der Bekämpfung von Meeresmüll steht die Vermeidung von Kunststoffmüll an erster Stelle.“ 55 Prozent der deutschen Nordseegewässer sind dem Bericht zufolge von Eutrophierung betroffen. Die Belastung mit Nährstoffen wie Stickstoff oder Phosphor stammt vor allem aus der Landwirtschaft. Eutrophierung kann zu trübem Wasser, giftigen Algenblüten, Sauerstoffmangel und Verlust der Artenvielfalt führen. Insgesamt sind nur sechs Prozent der Nordseegewässer diesbezüglich in gutem Zustand. Noch besorgniserregender sieht es an der deutschen Ostsee aus: hier sind alle untersuchten Gewässer eutrophiert, keines ist in gutem Zustand. Auch Meeresmüll ist nach wie vor ein großes Problem. Etwa 90 Prozent des Mülls am Meeresboden und am Strand in der südlichen Nordsee besteht aus Kunststoffen. In den deutschen Ostseegewässern beträgt der Kunststoffanteil des Mülls am Meeresboden 40 Prozent und an den Stränden 70 Prozent. Maria Krautzberger: „Das von der EU geplante Verbot bestimmter Einwegartikel auf Kunststoffbasis, wie Trinkhalme oder Wattestäbchen, ist ein Schritt in die richtige Richtung, um Kunststoffmüll und den Eintrag ins Meer zu verringern. Auch Recycling muss gestärkt werden, zum Beispiel mit hohen und verpflichtenden Recyclingquoten für die Hersteller.“ Einige der im letzten Jahrhundert eingeschleppten Arten, wie die Pazifische Auster oder der Japanische Beerentang im Wattenmeer verändern die Ökosysteme sichtbar. In der Ostsee wurden zwischen 2011 und 2016 elf neue nicht-einheimische Arten nachgewiesen, in der Nordsee waren es 22 Neufunde. Sie werden vor allem durch die Schifffahrt und marine Aquakultur unbeabsichtigt verbreitet. Das 2017 in Kraft getretene internationale Übereinkommen zum Management des Ballastwassers von Seeschiffen kann zu einer Verringerung des Eintrags nicht-einheimischer Arten führen. Die untersuchten Lebensräume am Meeresboden sind ebenfalls in keinem guten Zustand. Zu den negativen Einflüssen zählen vor allem Einträge von Nähr- und Schadstoffen und großflächige Beeinträchtigungen durch die grundberührende Fischerei vor allem in der Nordsee. Rohstoffförderung und Infrastrukturmaßnahmen wie der Bau von Windenergieanlagen und die Verlegung von Kabeln und Pipelines beeinträchtigen nicht nur den Meeresboden. Sie erzeugen auch Lärm, was negativ auf die Meerestiere wirkt. Diese schädlichen Einflüsse könnten maßgeblich verringert werden, indem Regenerationsflächen geschaffen und maritime Aktivitäten noch stärker am Schutz und am Erhalt der Meeresökosysteme ausgerichtet werden. Maria Krautzberger: „Es braucht politische Maßnahmen auf internationaler Ebene, um die Meere besser zu schützen. Aber natürlich kann auch jeder selbst etwas beitragen: Zum Beispiel können wir darauf achten, wie viel Kunststoffe wir verbrauchen und ob es Alternativen gibt; oder unsere Abfälle sauber trennen, damit sie recycelt werden können und nicht in den Meeren landen.“ EU-Meeresstrategie-Rahmenrichtlinie (MSRL) Die MSRL (2008/56/EU) gibt seit 2008 den Rahmen für einen ganzheitlichen Meeresschutz in der EU vor. Das Ziel gemäß MSRL ist es, den „guten Umweltzustand“ der Meere bis 2020 zu erreichen. Die Richtlinie verpflichtet die Mitgliedstaaten, die Belastung und den Zustand von Arten und Lebensräumen der Meeresgewässer anhand von elf Zielbeschreibungen (Deskriptoren), darunter die Belastung mit Nähr- und Schadstoffen, Müll, Unterwasserlärm, physische und hydromorphologische Beeinträchtigungen und biologische Störungen zu überwachen. Zur Umsetzung der Richtlinie hat Deutschland 2016 ein erstes Maßnahmenprogramm zum Schutz der Meeresgewässer verabschiedet. Die aktuellen Befunde liefern die Grundlage für die 2021/2022 anstehende Überprüfung und Anpassung der Maßnahmen.
Since 2016, there are new legal requirements for the assessment for nutrients and substances of the waters in Germany. New assessment procedures for hydromorphology were developed. These assessment instruments are described in the brochure "Waters in Germany: Status and Assessment". The results of the assessment clarify the still open problems in water protection. The long time series of data for nitrate and phosphorus document the development of the nutrient load of groundwater, rivers, lakes and the North Sea and Baltic Sea. Until now, there are only a few data available for exposure to marine litter and underwater noise in the sea. Veröffentlicht in Broschüren.
Lake Tegel and Schlachtensee in Berlin show a uniquely pronounced trophic recovery in response to an abrupt and drastic (40- to 100-fold) reduction of their external phosphorus (P) load through P-stripping at their main inflow which exchanges the lake water volume about 5 times per year for Lake Tegel and about 1.5 times for Schlachtensee. Veröffentlicht in Texte | 45/2011.
Ökobetriebe sind meist weniger umweltschädlich als konventionelle Betriebe Ökologisch produzierte Milch von Kühen, die auf der Weide stehen, ist umweltfreundlicher als Milch aus konventionellen Betrieben mit reiner Stallhaltung. Grund dafür ist vor allem der Anbau des Futters. Das ist das Ergebnis einer Studie im Auftrag des Umweltbundesamtes (UBA), die die Umweltwirkungen verschiedener Milchproduktionssysteme in Deutschland analysiert und deren Umweltschadenskosten berechnet hat. Diese lagen zwischen 21 und 34 Cent pro Kilogramm Milch. Ökobetriebe mit Weidehaltung verursachten dabei mit bis zu 27 Cent die geringsten, konventionelle Betriebe mit reiner Stallhaltung mit bis zu 34 Cent pro Kilogramm Milch die höchsten Umweltschadenskosten. Die Studie „Sichtbarmachung versteckter Umweltkosten der Landwirtschaft am Beispiel von Milchproduktionssystemen“ untersuchte die einzelnen Teilprozesse der Milchproduktion für vier verschiedene typische Produktionsregionen in Deutschland. Dabei hat sie zwischen konventioneller und ökologischer Produktion sowie Produktion mit und ohne Weidegang unterschieden und für diese Betriebssysteme Umweltschadenskosten errechnet. Die Ergebnisse: Die Studie zeigt, wie bedeutsam die Futterproduktion für die Umweltwirkungen ist: Bei der konventionellen Milchherstellung ist die Bereitstellung des Futters verantwortlich für 18 bis 34 Prozent der Treibhausgasemissionen der Milch und damit der Haupttreiber für die Klimawirkung . Bei der ökologischen Produktion sind es nur 6 bis 20 Prozent, also ein bis zwei Drittel weniger. Bei den direkten Verdauungsemissionen der Rinder schneidet die ökologisch produzierte Milch hingegen schlechter ab. Der Grund: Die einzelne Kuh gibt weniger Milch als die vergleichbare Kuh in konventioneller Haltung. Dadurch ist der Anteil der Verdauungsemissionen pro Kilogramm Milch höher. Umweltschadenskosten sind Kosten, die der Allgemeinheit zur Last fallen. Dies sind etwa Kosten, die für das Gesundheitssystem als Folge von emissionsbedingten Krankheiten entstehen oder Kosten für die Wiederherstellung von beschädigten Ökosystemen. Die Klimaschadenskosten mit durchschnittlich 18 Cent machen dabei den größten Anteil der Umweltschadenskosten aus. Die Schadenskosten dürften in der Realität noch höher ausfallen, denn noch ist es nicht möglich, für alle Umweltschäden auch Kosten zu berechnen, z. B. für Biodiversitätsverluste. In der Studie wurden die Umweltwirkungen von Treibhausgasemissionen, Wasserverbrauch, Belastungen des Wassers und Bodens durch Nitrate oder Phosphor ( Eutrophierung , Versauerung ), Belastung von Menschen und Umwelt durch Chemikalien (Toxizität) und betriebsinterner Energieeinsatz betrachtet. Betriebe mit Weidegang schneiden im Vergleich zu den Betrieben mit reiner Stallhaltung in allen Kategorien besser ab. Beim Vergleich der ökologischen und konventionellen Betriebe haben die ökologischen Betriebe in allen Kategorien, außer bei Landnutzung und Versauerung als Folge von Gülleausbringung, einen Umweltvorteil. Grund für diese Ausnahme sind die geringeren Erträge des Ökolandbaus und der damit einhergehende größere Flächenbedarf für die Produktion des Futters. Die Studie wurde im Auftrag des Umweltbundesamtes vom Öko-Institut zusammen mit INFRAS und KTBL durchgeführt.
Die Karten zeigen die Entwicklung der Nitratbelastung der Fließgewässer. Die Auswertungen sind Bestandteil der Nitratberichte 2008, 2012 und 2016 zur EU-Nitratrichtlinie (91/676/EWG). Im Bericht 2016 ist erstmals auch die Entwicklung der Belastung mit Phosphor enthalten. Neben der Kennzeichnung des Trends und der Güteklasse können auch die Angaben pro Messstelle abgefragt werden.
Kalksandstein-Herstellung: Verarbeitung der Rohstoffe zu gebrauchsfertigen Kalksandsteinen. Dazu werden die in Silos vorgehaltenen Rohstoffe (vorwiegend Kalk und Sand) in einem Verhältnis Kalk:Sand 1:12 intensiv miteinander gemischt und in die Reaktionsbehälter geleitet. Im Reaktionsbehälter löscht der Branntkalk nach Wasserzugabe zu Kalkhydrat ab. Wenn nötig wird das Mischgut im Nachmischer auf Preßfeuchte gebracht. In den Pressen werden die Steinrohlinge geformt. Im Anschluß werden die Rohlinge unter Sattdamdfdruck ca. 4 bis 8 Stunden bei Temperaturen zwischen 160 und 220°C im Autoklaven gehärtet. Dabei wird die Kieselsäure auf der Oberfläche der Steine angelöst und bildet dann mit dem Kalkhydrat eine kristalline Bindemittelphase, die auf die Sandkörner aufwächst und sie fest miteinander verzahnt. Nach einer Abkühlung sind die Kalksandsteine gebrauchsfertig (vgl. #2). Die in dieser Bilanzierung verwendeten Daten spiegeln die Situation in der Bundesrepublik in den Jahren 1993 und 1994 wider. Der Datensatz ist nahezu vollständig und umfaßt alle in dieser Studie betrachteten Parameter. Er entstammt einer mit dem Umweltbundesamt (UBA) und dem Normenausschuß für Grundlagen im Umweltschutz (NAGUS) abgestimmten Ökobilanz des Bundesverbandes der Kalksandsteinindustrie e.V.. 1993 wurden in 151 Produktionsstätten 4,8 Mrd. Vol-NF Kalksandsteine und im Jahr 1994 in 158 Produktionsstätten 5,95 Mrd. NF Kalksandsteine hergestellt (Eden 1996). Dies entspricht 1993 einer Produktionsmasse von 14,41 Mio. t und 1994 von 17,87 Mio. t Kalksandstein . Dabei liegen der endgültigen Bilanzierung die Produktionsdaten von 74 von derzeit 162 existierenden Kalksandstein-Werken zugrunde. Aus den Daten der 74 Werke wurden, gewichtet nach der jeweiligen Produktionsmenge, in #1 Mittelwerte berechnet. Die Daten können als zuverlässig und statistisch abgesichert angesehen werden. Allerdings muß darauf hingewiesen werden, daß in Einzelfällen große Abweichungen von den verwendeten Mittelwerten auftreten können (s.u.). Genese der Kennziffern Massenbilanz: Hauptbestandteile des Kalksandsteins sind erdfeuchter Sand und Branntalk. Hinzu kommen eine Reihe von Zuschlagsstoffen wie Steinmehl (in GEMIS wurde hierfür Kalksteinmehl angesetzt). Der quantifizierte Roh- und Hilfsstoffbedarf zur Herstellung einer Tonne Kalksandsteins ist der folgenden Tabelle zu entnehmen. Tab.: Roh- und Hilfsstoffbedarf zur Herstellung einer Tonne Kalksandstein (#1) Rohstoffe Masse in kg/t Kalksandstein Quarzsand (erdfeucht) 948 Branntkalk 86 Zuschlagsstoffe (Steinmehl) 33 Summe 1067 Die in dieser Studie verwendeten Daten stimmen in der Größenordnung gut mit denen in #3 überein. Da deren Quelle jedoch nicht vollständig nachvollziehbar ist, werden sie hier nicht weiter verwendet. Energiebedarf: Der Gesamtenergiebedarf der Herstellung des Kalksandsteins resultiert aus dem Strombedarf für die Förderbänder, die Mischaggregate, das Pressen und die Stapelanlage und dem thermischen Energiebedarf zur Dampferzeugung für die Härtung der Rohlinge, der den größten Teil des Energiebedarfs ausmacht. Innerhalb des Kalksandsteinwerkes besteht ein Strombedarf von ca. 35 MJ/t Kalksandstein. Der thermische Energiebedarf zum Härten beträgt ca. 370 MJ/t Produkt. Dieser wird durch Heizöl EL, Erdgas und Heizöl S gedeckt. Die Anteile der einzelnen Energieträger haben sich in den letzten Jahren stark verschoben. Dies wird in der folgenden Tabelle dargestellt. In dieser Studie werden die Anteile für das Jahr 1994 festgeschrieben. Tab.: Prozentualer Anteil des Einsatzes verschiedener Energieträger zur Dampferzeugung bei der Kalksandsteinherstellung 1992-94 (#2). Einsatz in % 1992 1993 1994 Heizöl S 16 11 4 Heizöl EL 54 54 56 Erdgas 30 35 40 Nach dem vorgestellten Aufteilungsschlüssel für 1994 ergibt sich folgender Primärenergiebedarf in den Kalkwerken zur Herstellung einer Tonne Kalksandstein: Tab.: Vergleich des durchschnittlichen Energieeinsatzes bei der Herstellung einer Tonne Kalksandsteins aufgeschlüsselt nach dem Einsatz fossiler Energieträger nach der Statistik und der Erhebung des Kalksandstein-Verbandes (#2). Energieträger Energieeinsatz nach Statistik in MJ/t KS Energieeinsatz nach Erhebung in MJ/t KS Heizöl EL(incl. Diesel) 206,64(16) 186(16) Erdgas 147,6 122 Heizöl S 14,76 61 Strom 35 35 Summe 404 404 Wie aus der Tabelle hervorgeht, spiegelt die Erhebung des Kalksandstein-Verbandes nicht den letzten Stand bei der Verschiebung der Nutzung emissionsärmerer Energieträger wider. Die unterschiedlichen Ergebnisse verdeutlichen aber auch, daß die Entwicklung bei der Verschiebung der Nutzung der Energieträger noch nicht abgeschlossen ist. Aus diesem Grunde werden im Sinne einer Fortschreibung in dieser Studie die Werte basierend auf der Aufteilung von 1994 für weitere Berechnungen verwendet. Bei den einzelnen Kalksandstein-Werken kann es hinsichtlich des Energiebedarfs zu nennenswerten Abweichungen vom Durchschnitt kommen. Die zehn am wenigsten Energie verbrauchenden Werke der Untersuchung kommen mit weniger als 65 % des durchschnittlichen Energiebedarfs aus. Dabei handelt es sich meist um neuere Werke, die über eine größere Härtekesselkapazität verfügen und Dampfsteuerungs- und Wärmetauschanlagen betreiben. Weiterhin nutzen sie die Wärmeenergie des anfallenden Härtekondensats (#1). Demgegenüber verbrauchen die zehn am energieintensivsten arbeitenden Werke gemittelt 134 % des durchschnittlichen Energieverbrauchs. Der Spitzenwert liegt bei 972 MJ/t Kalksandstein (#1). Prozeßbedingte Luftemissionen: Prozeßbedingte Luftemissionen neben den Emissionen der Energieerzeugung zur Dampferzeugung treten in dem bilanzierten Rahmen nicht auf. Heizöl EL, Heizöl S und Gas werden in industriellen Kesseln verbrannt. Diesel wird in Motoren verbrannt. Für den Strombedarf wird der Strom-Mix für ein lokales Niederspannungsnetz verrechnet (#1). Wasserinanspruchnahme: Wasser wird zur Aufbereitung der Rohstoffe sowohl im Mischer als auch - je nach Bedarf - im Nachmischer zugegeben. Durchschnittlich werden 0,225 m³/t Kalksandstein benötigt. Das Wasser wird zu zwei Dritteln aus eigenen Brunnen gefördert, zu 10% aus Oberflächengewässern und zu 25% aus der öffentlichen Trinkwasserversorgung (#1). Abwasserinhaltsstoffe: Von den durchschnittlichen 0,083 m³ Abwasser pro t Kalksandstein werden nach #1 mehr als die Hälfte versickert. Ca. ein Drittel wird indirekt über das kommunale Kanalnetz eingeleitet, während weitere 10 % direkt in Oberflächengewässer eingeleitet werden. Das Wasser ist nach #1 durchschnittlich mit einem CSB von 9,4 g/t Kalksandstein belastet. Für den BSB5 wird die Hälfte des CSB - also 4,7 g/t - angesetzt. Mit einer AOX-Belastung ist nicht zu rechnen. Ebenso wird die zusätzliche Stickstoff- und Phosphorbelastung gleich null gesetzt. Reststoffe: Die folgende Tabelle zeigt die pro Tonne Kalksandstein anfallenden Abfälle: Tab.: Abfälle bezogen auf eine Tonne produzierten Kalksandstein (#1). Abfallart Menge in kg/t KS Ölfilter 0,002 feste Betriebsmittel (verunreinigt) 0,008 Altöle 0,059 Ölabscheiderinhalte 0,0003 Ölbinder 0,037 Gewerblicher Restmüll 0,156 Summe 0,2623 Pro Tonne Kalksandstein fallen also ca. 0,26 kg Reststoffe an. Verschleiß der Preß- und Formwerkzeuge sowie Verpackungsmaterialien wurden nicht mitbilanziert. Produktionsabfälle in Form von Kalksandstein können im vollen Umfang in den Prozeß zurückgeführt werden. Kalksandsteine können nach dem Gebrauch auch einem stofflichen Recycling zugeführt werden. Der recycelte Kalksandstein hat eine etwas gröbere Struktur, so daß man streng genommen von einem Downcycling sprechen müßte. Der Einsatzzweck ist jedoch nur als Sichtmauerstein eingeschränkt (#3). Der Recyclingpfad wird aufgrund mangelnder Daten in dieser Studie nicht berücksichtigt. Auslastung: 5000h/a Brenn-/Einsatzstoff: Baustoffe gesicherte Leistung: 100% Jahr: 2000 Lebensdauer: 20a Leistung: 1t/h Nutzungsgrad: 105% Produkt: Baustoffe
Die Helsinki Kommission (Helcom) hat zusammen mit ihren Partnern ein neues Projekt zur Reduzierung der Ostseeeutrophierung durch Phosphat aus kommunalen Abwässern gestartet. Das PURE-Projekt (Project on Urban Reduction of Eutrophication) ist Teil des Ostseeaktionsplans der Helcom zur Reduzierung der Ostseeverschmutzung und zur Wiederherstellung eines guten Umweltstatus der Meeresumwelt bis 2021. Im Rahmen von PURE soll durch kosteneffektive Technik Phosphat aus den Kommunalen Abwassereinleitungen entfernen. Es ist auf 42 Monate angelegt und soll helfen, bei ausgewählten Kläranlagen (insbesondere in Riga, Jurmala und Brest) die Phosphatkonzentration auf 0,5 Milligramm pro Liter reduzieren. Insgesamt soll durch diese Initiative eine verminderte Phosphateinleitung von 300-500 Tonnen in die Ostsee erreicht werden. Die Projektkosten in Höhe von 3,2 Millionen Euro werden durch das Baltic Sea Region Programme (BSRP) 2007-2013 sowie aus dem Europäischen Regionalentwicklungsfonds finanziert.
Die Karten enthalten Informationen über Ursachen für die Nichterreichung des guten Zustands WRRL-relevanter Oberflächenwasserkörper (Fließgewässer mit Einzugsgebiet > 10 km², Standgewässer > 50 ha) im Freistaat Thüringen. Entsprechend den ermittelten Ursachen wurden Maßnahmen abgeleitet, die geeignet sind, die entsprechenden Defizite zu beheben. Für die Umsetzung von Maßnahmen, welche die Defizite in der Gewässerstruktur und Durchgängigkeit beseitigen sollen, wurden im ersten Bewirtschaftungszyklus (2009 bis 2015) Schwerpunktgewässer festgelegt. Informationen über die Ursachen für die Nichterreichung des guten Zustands der Oberflächenwasserkörper bzw. Aussagen zu den daraus abgeleiteten Maßnahmen sind in folgenden Karten dargestellt: - OWK - organische Belastung durch Abwasser - OWK - Phosphorbelastung durch Abwasser - OWK - Fischfauna - OWK - Nitratbelastung - OWK - Phosphorbelastung durch Bodenerosion - OWK - Schwerpunktgewässer Struktur/Durchgängigkeit Die Daten dienen der allgemeinen Information der Öffentlichkeit über die Ursachen für die Nichterreichung des guten Zustands bzw. über die geplanten Maßnahmen in den WRRL-relevanten Oberflächenwasserkörpern in Thüringen.
Umsetzung der EG-Nitratrichtlinie in Deutschland
Origin | Count |
---|---|
Bund | 132 |
Land | 16 |
Type | Count |
---|---|
Ereignis | 2 |
Förderprogramm | 113 |
Text | 21 |
unbekannt | 9 |
License | Count |
---|---|
closed | 21 |
open | 116 |
unknown | 8 |
Language | Count |
---|---|
Deutsch | 139 |
Englisch | 19 |
Resource type | Count |
---|---|
Archiv | 1 |
Datei | 5 |
Dokument | 12 |
Keine | 104 |
Webdienst | 1 |
Webseite | 34 |
Topic | Count |
---|---|
Boden | 145 |
Lebewesen & Lebensräume | 145 |
Luft | 145 |
Mensch & Umwelt | 145 |
Wasser | 145 |
Weitere | 141 |