API src

Found 221 results.

Related terms

Vermessung des Brom- und Iodgehalts in der unteren und mittleren Stratosphäre

Das Projekt "Vermessung des Brom- und Iodgehalts in der unteren und mittleren Stratosphäre" wird vom Umweltbundesamt gefördert und von Deutsche Forschungsgemeinschaft durchgeführt. In unserem Vorhaben soll der Gehalt von Brom (Bry) und Iod (Iy) in der unteren und mittleren Stratosphäre bestimmt werden. Brom-Verbindungen sind für ca. 30% des Ozonverlusts in der Stratosphäre verantwortlich und damit ist eine regelmäßige Vermessung des stratosphärischen Bry angezeigt. Direkte Messungen in der mittlerenStratosphäre wurden aber seit 2011 nicht mehr durchgeführt. Zudem finden wir bei unseren jüngeren, flugzeuggetragenen Messungen von Bry (an Bord der NASA Global Hawk und des HALO Forschungsflugzeugs) in der tropsichen Tropopausenregion (TTL) und unteren Stratosphäre (UT/LS) etwa 2-3 ppt mehr Bry als aus lang- (Halone), mittel- (CH3Br) und kurzlebigen Bromverbindungen (VSLS) sowie deren Abbauprodukten zu erwarten ist. Die Gründe hierfür sind derzeit unklar. Unser Ziel ist es, die Messzeitreihe von Bry in der unteren und mittleren Stratosphäre wiederaufzunehmen und die entsprechenden Trends zu evaluieren. Insbesondere wollen wir untersuchen, ob die erhöhten Konzentrationen von Bry in der TTL mit Bry in der Stratosphäre kompatibel sind und was die Gründe für mögliche Differenzen sind. In Bezug of Iy weisen unsere früherenBeobachtungen auf Konzentrationen unterhalb der Nachweisgrenze hin, aber auch diese Untersuchungen liegen mehr als eine Dekade zurück. Neuere Arbeiten schlagen vor, dass die Bildung von höheren Iodoxiden zu einer Revision der bisher angenommenen Photochemie von Iod in der Stratosphäre führt, so dass ein erneuertes Interesse anstratosphärischem Iod besteht. Mit begrenztem zusätzlichem Aufwand wollen wir hier auch den Iy Gehalt (oder die entsprechenden Höchstgrenzen) in der Stratosphäre vermessen. Die Messungen sollen von einem Höhenforschungsballon (Steighöhe 30-38 km) aus mittels etablierter spektroskopischer Methoden in Sonnen-Okkultationsgeometrie durchgeführt werden. Es sind zwei Messflüge für Sommer 2021 von Kiruna, Schweden, und für Sommer 2022 von Timmins, Canada, aus geplant. Die Flüge und Kampagnen selbst werden durch die EU Infrastruktur HEMERA gefördert.

Atomarer Sauerstoff in der Mesosphäre und unteren Thermosphäre der Erde

Das Projekt "Atomarer Sauerstoff in der Mesosphäre und unteren Thermosphäre der Erde" wird vom Umweltbundesamt gefördert und von Deutsche Forschungsgemeinschaft durchgeführt. Atomarer Sauerstoff (O) ist ein wichtiger Bestandteil der Erdatmosphäre. Er erstreckt sich von der Mesosphäre bis zur unteren Thermosphäre (Engl.: Mesosphere and Lower Thermosphere: MLT), d. h. von etwa 80 km bis über 500 km Höhe. O wird durch Photolyse von molekularem Sauerstoff durch UV-Strahlung erzeugt. Er ist die am häufigsten vorkommende Spezies in der MLT und eine wichtige Komponente in Bezug auf dessen Photochemie. Außerdem ist O wichtig für den Energiehaushalt der MLT, da CO2-Moleküle durch Stöße mit O angeregt werden und die angeregten CO2-Moleküle im Infraroten strahlen und die MLT kühlen. Dies bedeutet, dass sich der globale Klimawandel auch auf die MLT auswirkt, denn die Erhöhung der CO2-Konzentration in der MLT führt zu einer effizienteren Kühlung und damit zu deren Schrumpfen. Die O Konzentration wird außerdem durch dynamische Bewegungen, vertikalen Transport, Gezeiten und Winde beeinflusst. Daher ist eine genaue Kenntnis der globalen Verteilung von O und seines Konzentrationsprofils sowie der täglichen und jährlichen Schwankungen unerlässlich, um die Photochemie, den Energiehaushalt und die Dynamik der MLT zu verstehen. Das Ziel dieses Projekts ist es, Säulendichten und Konzentrationsprofile von O in der MLT durch Analyse der Feinstrukturübergänge bei 4,74 THz und 2,06 THz zu bestimmen. Die zu analysierenden Daten wurden mit dem Heterodynspektrometer GREAT/upGREAT (German REceiver for Astronomy at Terahertz frequencies) an Bord von SOFIA, dem Stratospheric Observatory for Infrared Astronomy, gemessen. Dies ist eine direkte Beobachtungsmethode, die genauere Ergebnisse liefern kann als existierende indirekte satellitengestützte Methoden, die photochemische Modelle benötigen, um O Konzentrationsprofile abzuleiten. Mit GREAT/upGREAT wurden seit Mai 2014 ca. 500.000 Spektren gemessen, die vier verschiedene Weltregionen abdecken, nämlich Nordamerika, Neuseeland, Europa und Tahiti/Pazifik. Zeitliche Variationen sowie der Einfluss von Sonnenzyklen, Winden und Schwerewellen werden ebenfalls im Rahmen des Projekts untersucht. Die Ergebnisse werden mit Satellitendaten, die für Höhen von 80 bis 100 km verfügbar sind, und mit Vorhersagen eines semi-empirischen Modells verglichen. Es sei darauf hingewiesen, dass diese Daten die ersten spektral aufgelösten direkte Messungen von O in der MLT sind. Dies ist eine vielversprechende Alternative zur Bestimmung der Konzentration von O im Vergleich mit indirekten satellitengestützten Methoden, die auf photochemischen Modellen beruhen.

Chemie-Labothek in den Bergischen Science Labs

Das Projekt "Chemie-Labothek in den Bergischen Science Labs" wird vom Umweltbundesamt gefördert und von Universität Wuppertal, Fachgruppe Chemie und Biologie, Arbeitsgruppe Chemische Mikrobiologie durchgeführt. Schülerinnen und Schüler kommen in Begleitung von Lehrkräften zu halbtägigen Veranstaltungen an die Uni und führen unter Leitung einer wissenschaftlichen Mitarbeiterin und Betreuung durch Studierende an den Unterricht anknüpfende Experimente aus der chemiedidaktischen Forschung in Wuppertal durch. Sie werten sie mithilfe der Betreuer aus und präsentieren sie dem Kurs. Die Inhalte werden jeweils im Voraus zwischen Mitarbeitern der Chemiedidaktik und den Lehrkräften so abgestimmt, dass sie an die Kursthemen der Sekundarstufe II anknüpfen (Beispiele: Elektrochemie, Farbstoffe, Kunststoffe, chemisches Gleich­gewicht, Ozonproblematik) und an highlights aus Wissenschaft und Technik heranführen. Im Rahmen dieser Veranstaltungen werden den Schüler/-innen Informationen zur Berufsorientierung gegeben. Die Veranstaltungen dienen aus Sicht der Studierenden der fachdidaktischen Kompetenzerweiterung und aus Sicht der Chemiedidaktik der empirischen Erforschung alternativer Methoden (Stichwort: Microteaching) und innovativer Inhalte (Stichworte: Nachhaltigkeit, Photochemie).

Mobilisierung von Eisen in Vulkanasche während des Transports in Eruptionssäulen

Das Projekt "Mobilisierung von Eisen in Vulkanasche während des Transports in Eruptionssäulen" wird vom Umweltbundesamt gefördert und von Karlsruher Institut für Technologie (KIT), Institut für Meteorologie und Klimaforschung, Department Troposphärenforschung durchgeführt. Vulkanische Asche wurde vor kurzem als eines potenziellen Düngemittel für Ozeanoberfläche identifiziert worden. Jedoch werden die Prozesse, die Umwandlung von unlöslichen zu löslichen Eisen ermöglichen Fe-Verbindungen in der Asche wenig verstanden bisher. Diese Studie untersucht die vulkanische Wolke Kontrollen auf Asche Eisenlöslichkeit. Ich kombiniere Vulkanausbruch Spalte Modellierung mit hohen, mittleren und niedrigen Temperaturen chemische Reaktionen in Eruption Wolken, um besser einschränken Vulkanasche Eisen Mobilisierung unter Berücksichtigung der Wechselwirkung verschiedener Arten in einem Fest-Flüssig-Gas-System. Zuerst benutze ich ATHAM die Plum Dynamik und Mikrophysik lösen. Zweitens, entwickle ich eine Chemie und Thermodynamik Code, der die Umgebungsbedingungen (in-plume Temperatur, Druck, Feuchtigkeit usw.) bekommt von den ATHAM Ausgänge und simuliert die gas-ash/aerosol Interaktionen mit speziellem Fokus auf Eisen-Chemie. Dieses Modell basiert auf einer Reihe von gekoppelten Massenbilanzgleichungen für verschiedene Arten der Eruptionssäule. Begriffe, die in diesen Gleichungen basieren auf physikalisch-chemischen Wechselwirkungen von gasförmigen, flüssigen und festen Arten parametriert. Einige der wichtigsten Prozesse in dieser Studie nicht berücksichtigt sind: Gas-Scavenging durch Asche, Wasser und Eis, Auflösung von Asche in der flüssigen Phase und Eisen wässrigen Chemie. Eine Reihe von Laborexperimenten auf Asche wird auch als die Ergebnisse der Modellierung gegen echte Ascheproben und Beobachtung zu bewerten. Schließlich schlage ich die günstige vulkanischen Einstellung und in-plume Prozesse für Asche Eisen Mobilisierung.

Messungen mit mini-DOAS Instrument während der HALO Phase II Missionen WISE, CAFE, EmerGe, and CoMet und Auswertung, Interpretation und Publikation der während früheren HALO Missionen gewonnenen Meßdaten

Das Projekt "Messungen mit mini-DOAS Instrument während der HALO Phase II Missionen WISE, CAFE, EmerGe, and CoMet und Auswertung, Interpretation und Publikation der während früheren HALO Missionen gewonnenen Meßdaten" wird vom Umweltbundesamt gefördert und von Universität Heidelberg, Institut für Umweltphysik durchgeführt. Mit dem vorliegenden Antrag sollen 2 Hauptziele verfolgt werden. Einerseits wird die Teilnahme des mini-DOAS Instruments an den, für die Mitte 2016 bis Mitte 2019 geplanten HALO Missionen WISE, CAFE, EmerGe, and CoMet beantragt, und andererseits sollen die mit dem Instrument bei früheren Missionen (TACTS/ESMVal, NarVal, Cirrus, Acridicon und OMO) gemessenen Daten und jener aus in Zukunft stattfindenden HALO Missionen bzgl. dreier wissenschaftlicher Hauptziele im Detail ausgewertet, interpretiert und publiziert werden. Die 3 wissenschaftlichen Hauptziele sind: 1. die Untersuchung der Quellen und Senken und die Photochemie der NOx und NOy Verbindungen in der Troposphäre und unteren Stratosphäre (UTLS) für unterschiedliche photochemische Regime (u.a. Reinluft und durch diverse NOx Quellen verschmutzte Luft), wobei hier das mini-DOAS Instrument mit den Messungen von NO2, (und evt. HONO) zusammen mit den Messungen anderer Instrumenten (z.B. AENEAS, AIMS, ..) zum Gesamtbudget von NOy beiträgt, 2. die Bedeutung der volatiler organischer Verbindungen für die atmosphärische Oxidationskapazität in reiner und verschmutzter Luft durch Messungen von CH2O (und C2H2O2) mit dem mini-DOAS Instrument, die die Schließung des Oxidationsmechanismus VOC größer als oder gleich CH2O größer als oder gleich CO erlauben. 3. Messungen zum Budget und zur Photochemie von Brom in der UTLS, wobei hier das Instrument besonders mit seinen Messungen von BrO zum anorganischen Brombudget beiträgt, das zusammen mit den Messungen der organischen Bromverbindungen (der Universität Frankfurt) das Gesamtbudget an Brom schließt. Alle diese Untersuchungen sollen auch zur Überprüfung der Vorhersagen globaler Chemietransportmodelle (CTMs) (EMAC, CLAMS, TOMCAT/SLIMCAT, ...) dienen.

Photosensibilisierung: Ein neuer Pfad zur SOA Bildung und Änderung der Eigenschaften von troposphärischen Partikeln

Das Projekt "Photosensibilisierung: Ein neuer Pfad zur SOA Bildung und Änderung der Eigenschaften von troposphärischen Partikeln" wird vom Umweltbundesamt gefördert und von Leibniz-Institut für Troposphärenforschung e.V. durchgeführt. Troposphärische Aerosolpartikel sind oft in einer sehr simplen Art und Weise, als nicht-flüchtig und chemisch-inert, in Modellen beschrieben. Diese Annahmen werden durch die aktuelle Forschung in Frage gestellt, wonach die flüchtigen organischen Verbindungen (VOC) und sekundäre organische Aerosole (SOA) ein System bilden, das sich in der Atmosphäre durch chemische und dynamische Prozessierung entwickelt. Ein aktuelles Schlüsselproblem in der Atmosphärenchemie sind organische Partikel, welche in Modellen auf der Grundlage verfügbarer Parametrisierungen von Laborversuchen implementiert sind, die die SOA Bildung stark unterschätzen und nicht ausreichendend das Partikelwachstum vorhersagen. Differenzen zwischen den gemessenen und modellierten SOA-Konzentrationen deuten darauf hin, dass andere wesentliche SOA Quellen noch nicht identifiziert und charakterisiert sind. Zur Erklärung und Schließung dieser Lücke wurden Studien durchgeführt. So wurde gezeigt, dass das gasförmige Glyoxal deutlich zur SOA Masse durch Mehrphasenchemie beitragen kann. Solche Senken in der kondensierten Phase sind in der Lage, einen wichtigen Teil der fehlenden SOA Masse in Modellen, die oft als aqSOA bezeichnet wird, zu erklären. Jedoch implizieren Beobachtungen, dass es immer noch große Unsicherheiten in der SOA Bildung gibt. Herkömmliche aqSOA Quellen können offenbar nicht vollständig das fehlende SOA erklären. Weiterhin wurde gezeigt das, Multiphasenprozesse lichtabsorbierende partikuläre Verbindungen herstellen können. Die Bildung von solchen lichtabsorbierenden Spezies können neue photochemische Prozesse in Aerosolen und/oder in Gas/Partikel-Grenzflächen bewirken. Eine signifikante Menge an Literatur über photoinduzierten Ladungs- oder Energietransfer in organischen Molekülen existiert für andere Bereiche der Wissenschaft. Solche organischen Moleküle können Aromaten, substituierte Carbonyle und/oder stickstoffhaltige Verbindungen sein, welche allgegenwärtig in troposphärischen Aerosolen sind. Während die Wasserphotochemie aufgezeigt hat, dass viele dieser Prozesse, den Abbau von gelösten organischen Stoffen beschleunigen, ist nur wenig über solche Prozesse in/auf Aerosolpartikeln bekannt.Daher soll in PHOTOSOA, die Photosensibilisierung in der Troposphäre studiert werden, da diese eine wichtige Rolle bei der SOA-Bildung und Alterung spielen kann. Solche Photosensibilisierungen können neue chemische Pfade eröffnen, die bisher unberücksichtigt sind, obwohl sie die atmosphärische chemische Zusammensetzung beeinflussen können und so dazu beitragen die aktuellen SOA Unterschätzung abzubauen. Dieses Projekt zielt auf die Verringerung solcher Unsicherheiten, durch die Kombination von Laboruntersuchungen fokussiert auf die Chemie von Triplett-Zuständen von relevanten Photosensibilisatoren in verschiedenen Phasen und ihre Rolle bei der SOA-Bildung, ab. Die Grundlagenforschung zu diesen Prozessen ist erforderlich, um ihre troposphärische Bedeutung abschätzen zu können.

Photochemie von wichtigen reaktiven Stickstoffverbindungen in der Mesosphäre/unteren Thermosphäre und Stratosphäre

Das Projekt "Photochemie von wichtigen reaktiven Stickstoffverbindungen in der Mesosphäre/unteren Thermosphäre und Stratosphäre" wird vom Umweltbundesamt gefördert und von Deutsche Forschungsgemeinschaft durchgeführt. Starkes Nachtleuchten tritt in der oberen Mesosphäre und der unteren Thermosphäre (MUT) der oberen Erdatmosphäre auf und enthält eine Emissionsschicht, die von angeregtem Stickstoffdioxid (NO2) hervorgerufen wird. Anregungsmechanismen, die zum angeregten Stickstoffdioxid in der MUT und Stratosphäre beitragen, stehen im Mittelpunkt dieses Projekts, da sie nicht gut verstanden sind. Stickstoffdioxid ist auch in der Stratosphäre wichtig, da es zum Ozonabbau beiträgt. Die Photochemie von reaktiven Stickstoffverbindungen (N, NO, NO2) wird in der MUT und der Stratosphäre auf der Grundlage der jetzt verfügbaren globalen Emissionsmessungen analysiert. Für diese Aufgabe wird das MAC-Modell (Multiple Airglow Chemie) erweitert, um Reaktionen mit reaktiven Sauerstoff- und Wasserstoffverbindungen (O(3P), O(1D), O3 und H, OH, HO2) zu berücksichtigen. Berechnungen mittels der aktuellen MAC Version ermöglichen die Berücksichtigung von reaktiven Sauerstoff- und Wasserstoff-verbindungen. Diese Berechnungen wurden auf der Grundlage von in situ Raketenmessungen in der MUT validiert. In Anbetracht früherer Studien zur Untersuchung der Stickstoffdioxid-emissionen wird die Berechnung der Konzentrationen der wichtigsten Repräsentanten von reaktiven Sauerstoff-, Wasserstoff- und Stickstoffverbindungen in der Stratosphäre unter Verwendung der erweiterten Version des MAC-Modells auf der Grundlage neuer Messungen durchgeführt. Reaktionen, die in der erweiterten Version des MAC-Modells berücksichtigt werden, können in ein photochemisches Modul eines GCM (general circulation model) übernommen werden.

Photochemie organischer Komplexe von Übergangsmetallionen (TMI) in troposphärischen Aerosolen und Wolken

Das Projekt "Photochemie organischer Komplexe von Übergangsmetallionen (TMI) in troposphärischen Aerosolen und Wolken" wird vom Umweltbundesamt gefördert und von Deutsche Forschungsgemeinschaft durchgeführt. Seit 1992 und dem ersten Erdgipfel haben verschiedene Länder erkannt, dass durch menschliche Aktivitäten das Klima stark beeinflusst wird, und sie planten, dieses Problem im Rahmen einer internationalen Konvention anzugehen. So brachten COPs (Conference of parties) viele Länder unter der Schirmherrschaft der Vereinten Nationen zusammen, um sich gegenseitig zu verpflichten, dieses Problem zu lösen. Bevor jedoch sinnvolle Maßnahmen ergriffen werden können, ist es wichtig, dass sich Wissenschaftler auf der ganzen Welt zusammentun, um für die Politik nützlichen Daten bereitzustellen. In diesem Zusammenhang wird das REACTE-Projekt vorgeschlagen, an dem international anerkannte französische und deutsche Forscher in jeweils sehr komplementären wissenschaftlichen Bereichen tätig sind.Die Atmosphäre ist ein komplexes und hoch reaktives System, in dem viele bio-physikochemische Prozesse ablaufen. Deshalb ist es von entscheidender Bedeutung, dieses System gut zu verstehen und zu wissen, wie es sich als Reaktion auf die verschiedenen Belastungen entwickelt, denen es ausgesetzt ist. Einer der wichtigsten Punkte ist daher die Kenntnis der Reaktionsfähigkeit eines solchen Systems in Abhängigkeit von den vorhandenen Spezies. Redoxreaktionen gehören zu den wichtigsten Transformationspfaden, die berücksichtigt werden müssen, um die Entwicklung der Atmosphäre besser zu verstehen. Das REACTE-Projekt konzentriert sich auf die (Photo-) Chemie von Übergangsmetallen (TMIs), die eine Hauptquelle für hochreaktive Spezies in Aerosolen und der wässrigen Phase troposphärischer Wolken darstellt. Tatsächlich gibt es derzeit nur sehr wenige Daten über die genaue Rolle und Reaktivität dieser Metalle, die derzeit fast ausschließlich in freier Form betrachtet werden, während bekannt ist, dass sie in natürlicher Umgebung als Komplexe vorliegen. Das REACTE-Projekt konzentriert sich auf die Beantwortung folgender Fragen: i) Wie beeinflusst die Komplexierung von TMIs deren Photoreaktivität, deren Redoxreaktionen und/oder die "Fenton"-Typ-Reaktionen mit H2O2? ii) Welche reaktiven Spezies werden mit diesen Reaktionen assoziiert, H2O2, HyOx Radikale und ihre jeweiligen Bildungsausbeuten? Welchen Einfluss haben sie auf die Oxidationskapazität der Atmosphäre und damit auf die chemische Zusammensetzung im Allgemeinen? Diese Ergebnisse werden in einen Modellmechanismus zu Prozessierung von chemischen Radikalreaktionen in wässriger Phase (CAPRAM) implementiert werden, um den Einfluss auf die Transformation organischer Stoffe, die HOx-Bilanz und den Oxidationszustand von TMIs in atmosphärischen Tröpfchen oder Aerosolen vorherzusagen. Das REACTE-Projekt verbindet komplementäre wissenschaftliche Kompetenzen, und ermöglicht damit die TMIs-Komplexchemie besser zu verstehen, sowie ihren Einfluss auf die Atmosphärenchemie zu erfassen. Es wird Daten liefern, um die Auswirkungen auf das Klima bzw. auf die Luftverschmutzung zu verstehen und abzuschätzen, welche derzeit stark unterschätzt werden.

Oxidativer Stress in Pflanzen: Die Bedeutung eines neu entdeckten Enzyms, der Alkylhydroperoxid Reduktase

Das Projekt "Oxidativer Stress in Pflanzen: Die Bedeutung eines neu entdeckten Enzyms, der Alkylhydroperoxid Reduktase" wird vom Umweltbundesamt gefördert und von Universität Bielefeld, Lehrstuhl für Stoffwechselphysiologie und Biochemie der Pflanzen durchgeführt. Die zunaechst aus Saeugetieren und Pilzen beschriebene Alkylhydroperoxid Reduktase ist in photoautotrophen Organismen in Chloroplasten lokalisiert. Sie dient dort offenbar der Entgiftung von Alkylhydroperoxiden, die als Nebenprodukte der Lipidsynthese und als Folge der Photochemie entstehen und ueber groessere Distanzen hinweg oxidativen Schaden bewirken koennen. Gegenstand dieses Vorhabens ist die Analyse der biochemischen und genetischen Regulation der Alkylhydroperoxid Reduktase. Inzwischen liegen transgene Suppressionsmutanten von Arabidopsis thaliana und der Blaualge Synechocystis vor, die eine erhoehte Stress-, vor allem Lichtempfindlichkeit aufzeigen.

Photoabbau von (heterocyclischen) Wirkstoffen - Uebertragung von Konzepten der Grundlagenforschung auf praxisorientierte Untersuchungen in waessrigen Systemen. Ein empirischer Beitrag zur Entwicklung neuer relevanter analytischer Verfahren

Das Projekt "Photoabbau von (heterocyclischen) Wirkstoffen - Uebertragung von Konzepten der Grundlagenforschung auf praxisorientierte Untersuchungen in waessrigen Systemen. Ein empirischer Beitrag zur Entwicklung neuer relevanter analytischer Verfahren" wird vom Umweltbundesamt gefördert und von Universität Bonn, Kekule-Institut für Organische Chemie und Biochemie durchgeführt. Im Rahmen dieses Projektes soll untersucht werden, inwieweit Photoabbaureaktionen in organischen Loesungsmitteln und in Standardphotoreaktoren auf waessrige, hochverduennte Loesungen (10 hoch -4 bis -5 Mol/l) uebertragbar sind, z.B. ob analoge oder andere Abbauprozesse ablaufen bzw. ob gleiche oder andere Abbauprodukte anfallen. Mit Hilfe von Hochleistungs-Analytik sollen direkte Nachweisverfahren von Photoabbauprodukten in waessriger Loesung als neues analytisches Verfahren entwickelt werden.

1 2 3 4 521 22 23