Wertstoffe aus Klärschlamm: Umsetzung der Klärschlammverordnung Nach Einführung der Klärschlammverordnung im Jahr 2017 stellten sich zum Phosphatrecycling einige Fragen, etwa zum Potenzial rückgewinnbarer Nährstoffe aus Klärschlamm, die die neuen Vorschriften nicht ausreichend regelten. Eine Studie des UBA beantwortet diese Fragen und gibt Hinweise zu analytischen Methoden und Untersuchungsintervallen für die Klärschlammuntersuchung. Nährstoffpotenziale kommunaler Klärschlämme Als ein Ziel der Studie „ExtraWERT“ sollten die Potenziale an Wertstoffen ermittelt werden, welche durch die neue Rechtslage – insbesondere im Zuge der Umsetzung der Klärschlammverordnung (AbfKlärV) von 2017 – erfasst werden. Auch nicht genutzte Potenziale waren aufzuzeigen. Grundsätzlich sollen alle in Abwässern enthaltenen Nährstoffe umfassend zurückgewonnen werden, um so wertvolle Rohstoffe für die Düngerproduktion zu gewinnen. Dazu wurden die Abwasser- bzw. Klärschlammströme aus kommunalen, industriellen und gemischten Abwassereinleitungen betrachtet, relevante Stoffströme quantitativ erfasst und Wertstoffe, deren Rückholung sinnvoll sein könnte, identifiziert. Insbesondere Phosphor (P) wurde genauer untersucht, um Rückgewinnungsmöglichkeiten und -potenziale zu erfassen. Berechnungen für das Jahr 2016 ergaben, dass in kommunalen Klärschlämmen rund 54.000 Tonnen Phosphor enthalten sind. Die Umsetzung der Vorgaben der Klärschlammverordnung von 2017 wird zu einer deutlichen Steigerung der Phosphorrückgewinnung aus Klärschlamm im Vergleich zur derzeitigen bodenbezogenen Verwertung führen: Erwartet werden 65 Prozent Phosphor-Recycling im Jahr 2029, ausgehend von nur 20 Prozent im Jahr 2016. Daraus könnten 38 Prozent des in Deutschland für Mineraldünger benötigten Phosphors gedeckt werden. Die Anteile anderer Nährstoffe in kommunalen Klärschlämmen sind vergleichsweise gering und liegen im niedrigen einstelligen Prozentbereich. Verluste, die durch die neuen gesetzlichen Regelungen, vor allem durch die steigende thermische Behandlung entstehen, sind als eher gering einzustufen. Wertstoffe in industriellen Abwässern Die Wertstoffpotenziale im Abwasser der Industriebranchen sind aufgrund der unzureichenden Datenlage kaum belastbar zu quantifizieren. Potenziale in Abwässern der Lebensmittelindustrie sind erkennbar, aber aufgrund der Heterogenität innerhalb der Branche schwer konkret zu beziffern. Die Studie kam zu dem Ergebnis, dass bestehende Potenziale in industriellen Abwässern durchaus besser genutzt werden könnten. Gesetzliche Regelungen können in der AbfKlärV nur für solche Abwässer getroffen werden, die zusammen mit kommunalem Abwasser behandelt werden. Der Absatz industrieller Klärschlämme direkt in der Landwirtschaft (vorwiegend über die Bioabfallverordnung) wird, vor allem wegen der Verschärfung des Düngerechts, merklich schwieriger. In Einzelfällen werden bereits Nährstoffe gezielt rückgewonnen (insbesondere mittels Struvitfällung), welche dann als Dünger eingesetzt werden können. Fragen aus dem Vollzug der Klärschlammverordnung Von der Phosphor-Rückgewinnungspflicht ausgenommen sind Abwasserbehandlungsanlagen, deren Klärschlamm weniger als 20 Gramm Phosphor pro Kilogramm Trockenmasse (TM) enthält. Dies sicher festzustellen wird insbesondere durch zum Teil erhebliche Schwankungen im Jahresverlauf erschwert. In dieser Studie sollten vor allem solche Schlämme analysiert werden, die um die für die Phosphor-Rückgewinnung ausschlaggebende Grenze von 20 Gramm pro Kilogramm liegen. Die Untersuchungen an neun kommunalen Klärschlämmen zeigen, dass die Phosphor-Schwankungen im Jahresverlauf nicht zu unterschätzen sind (Schwankungsbreite 4 bis 13 Prozent). Einige Schlämme weisen Messwerte auf, die deutlich oberhalb und unterhalb der Rückgewinnungsgrenze liegen. Klärschlämme, vor allem solche im Grenzbereich 18 bis 22 Gramm Phosphor pro Kilogramm Trockenmasse, sollten daher in vorgegebenen zeitlichen Abständen beprobt werden, um eine Unterschreitung der 20 Gramm pro Kilogramm verlässlich feststellen zu können (z. B. monatlich mit Überschreitungsmöglichkeit in 3 von 12 Fällen). Auch die Zuverlässigkeit der verschiedenen gemäß AbfKlärV zulässigen Analysemethoden zur Untersuchung des Phosphor-Gehalts im Klärschlamm und der dazugehörigen Aufschlussverfahren wurden im Vorhaben untersucht. Die Bundesanstalt für Materialforschung und -prüfung (BAM) organisierte zudem einen Ringversuch, in dem die Methoden zusätzlich von akkreditierten Laboren angewandt wurden, um Messunterschiede verschiedener Laboratorien darzustellen. Die Verfahren zur Phosphor-Bestimmung wurden an 15 Klärschlämmen durchgeführt. Die Untersuchungen liefern signifikant unterschiedliche Ergebnisse, die jedoch keine Methode als klar unzulänglich identifizieren lassen. Photometrie und ICP-MS ergeben grundsätzlich niedrigere Messergebnisse als ICP-OES, und Rückflussaufschlüsse niedrigere Ergebnisse als Mikrowellenaufschlüsse. Im Ringversuch mit insgesamt 28 Laboren an einem Klärschlamm bestätigte sich dieser Befund. Signifikant niedrigere Messwerte wurden hier lediglich für die Kombination Photometrie/Rückfluss im Vergleich zur ICP-OES und ICP-MS nach Mikrowellenaufschluss festgestellt. Die Photometrie ist in der Praxis kaum noch relevant. Aus den Untersuchungsergebnissen heraus kann zur Phosphor-Analytik in Klärschlamm der Königswasseraufschluss in der Mikrowelle in Kombination mit der Phosphor-Bestimmung an der ICP-OES empfohlen werden.
Zur Umsetzung der WRRL wurde für die Bewertung der Qualitätskomponente Phytoplankton in den Küstengewässern der Ostsee keine separate Vorschrift für Probennahme und -auswertung erstellt. Stattdessen werden bereits existierende DIN-Normen und Handlungsanweisungen verwendet. Diese gelten zwar grundsätzlich für alle Küstengewässer der Ostsee, in den Bundesländern unterscheidet sich aber deren Anwendung bzw. Umsetzung. Aufgrund der hohen saisonalen Variabilität in Artenzusammensetzung und Biomasse ist für das Phytoplankton eine ein- oder zweimalige Beprobung im Jahr nicht ausreichend, um eine gesicherte Bewertung vornehmen zu können. Deshalb sollten innerhalb der Vegetationsperiode häufigere Probenahmen je Standort stattfinden. Als Vegetationsperiode sind für die Küstengewässer Mecklenburg-Vorpommerns die Monate Mai bis September definiert, in der die relevanten Stationen bezüglich der für die Bewertung notwendigen Messgrößen monatlich beprobt werden, so dass fünf Datenpunkte für die spätere Bewertung vorhanden sind. Die Chlorophyll-a-Konzentrationen werden über diesen Zeitraum hinaus je nach Station monatlich bzw. insgesamt zehnmal pro Jahr bestimmt. Die Untersuchungen der Phytoplanktongemeinschaften erfolgt außerhalb der Vegetationsperiode zusätzlich einmal im zeitigen Frühjahr (ab März) und noch einmal im Herbst. Ein Teil der Wasserkörper wird für das Phytoplankton jährlich beprobt, der andere Teil im Zweijahresrhythmus. Für die Ostseeküste Schleswig-Holsteins wurde die Vegetationsperiode zwischen März/April und September festgelegt. Bis zu acht Stationen werden für die Typen B3 und B4 zehn- bis zwölfmal pro Jahr beprobt. Die Anzahl der Stationen liegt nicht gleichmäßig fest, da regelmäßig Anpassungen des Überwachungsprogramms durchgeführt werden. Die regelmäßig zu beprobenden Standorte in den Küstengewässern werden von den zuständigen Landesbehörden festgelegt. Die Positionen sind dabei so gewählt, dass sie repräsentativ die unterschiedlichen Wasserkörpertypen abdecken. Für die Küstengewässer Mecklenburg-Vorpommerns sind insgesamt 21 Wasserkörper ausgewiesen. Die Beprobungen für das Phytoplankton werden je nach Lage der Stationen mit Schiffen, mit gecharterten Helikoptern oder an einer Mole von Land aus durchgeführt. In der Regel werden physikochemische Begleitparameter (Temperatur, Salinität, pH-Wert etc.) ebenfalls erfasst sowie Proben für die chemische Analytik (Nährstoffe) genommen. Für die Probenahme vor Ort ist folgende Ausrüstung notwendig: Kühltasche/-box mit Kühlelementen Eimer mit Seil oder (Integral)Wasserschöpfer Messbecher/Messzylinder (1 l) Trichter 100-ml-Klarglasflaschen mit Schraubverschluss und Dichtung Lugol’sche Lösung Pipette Spritzflasche mit Aqua dest. Fließpapier (Küchenrolle) oder Handtuch Probenkanister (5 l) Protokollbuch oder Formular Die Entnahme der Proben für die qualitative und quantitative Analyse des Phytoplanktons sollte bei geschichteten Wasserkörpern grundsätzlich integrierend über die euphotische (lichtdurchflutete) Zone erfolgen. Dazu sind Integralschöpfer geeignet, die kontinuierlich über die beprobte Tiefe Wasser entnehmen und so eine Mischprobe erzeugen. Eine solche Probe kann auch gewonnen werden, in dem aus verschiedenen Tiefen einzeln entnommene Wasservolumina gleicher Größe anschließend vereinigt werden. In nicht geschichteten Wasserkörpern genügt eine einmalige oberflächennahe Beprobung im Bereich bis zu 1 m Tiefe mit einem einfachen Wasserschöpfer oder Eimer. Für die späteren mikroskopischen Analysen im Labor wird aus der gut durchmischten Probe eine Unterprobe in eine 100-ml-Klarglasflasche gefüllt. Zur Fixierung der Organismen erfolgt die Zugabe von Lugol’scher Lösung (ca. 1 ml pro 100 ml Probe). Anschließend lagern die Flaschen gekühlt und dunkel bis zur Auswertung. Für die Gewinnung der Proben zur späteren Bestimmung des Chlorophyll-a-Gehaltes wird die gleiche Integral- bzw. oberflächennah genommene PSchöpfprobe wie zum Abfüllen der Flaschen für die qualitative und quantitative Analyse des Phytoplanktons genutzt. Für die Probenahme vor Ort ist folgende Ausrüstung notwendig: Kühltasche/-box mit Kühlelementen Eimer mit Seil oder (Integral)Wasserschöpfer Messbecher/Messzylinder (1 l) Glasfaserfilter GF/F Filtrationseinrichtung Vakuumpumpe (wenn Stromanschluss vorhanden) oder Handpumpe Pinzette Petrischalen oder Zentrifugenröhrchen Alufolie Spritzflasche mit Aqua dest. Fließpapier (Küchenrolle) oder Handtuch Probenkanister (5 l) Protokollbuch oder Formular Ein definiertes Volumen der gut durchmischten Unterprobe wird mit geringem Unterdruck über GF/F-Glasfaserfilter gesaugt, so dass sich die im Wasser enthaltenen Partikel (darunter auch das Phytoplankton) auf dem Filter zu einem gut gefärbten sichtbaren Belag anreichern. Diese Filter werden in ein adäquates Gefäß (Petrischale oder Zentrifugenröhrchen) gegeben, das zum Schutz vor einfallendem Licht mit Alufolie umhüllt und tiefgefroren wird. Die so behandelten Proben lagern dann bis zur späteren Messung im Labor. Die Quantifizierung der unterschiedlichen Algentaxa hinsichtlich ihrer Abundanz (Anzahl von Individuen pro Volumeneinheit) erfolgt mit Hilfe der Inversmikroskopie-Technik (Abbildung 1). Für die Analytik werden die folgenden Materialien benötigt: Inversmikroskop (umgekehrtes Mikroskop) mit Okularzählstreifen und -mikrometerskala Sedimentationskammern unterschiedlichen Volumens Zählsoftware oder Zählprotokoll Je nach erwarteter Dichte des Phytoplanktons (einen Hinweis darauf gibt die Chlorophyll-a-Konzentration) wird eine gut durchmischte Probe direkt aus den Probenflaschen in eine 3-, 5-, 10-, 25-, 50- bzw. 100-ml-Sedimentationskammer angesetzt, je nach Größe mindestens 8 bis 48 Stunden zur Sedimentation waagerecht abgestellt und anschließend mit Hilfe eines umgekehrten Mikroskops ausgewertet. Dabei wird die gesamte Kammerfläche (oder definierte Teilabschnitte bei unterschiedlichen Vergrößerungen) systematisch abgefahren, die gefundenen Phytoplanktonorganismen bestimmt und in ihrer Anzahl erfasst. Die Analyse erfolgt nach der Vorschrift von HELCOM (2015) , bei der für alle dominanten Taxa mindestens je 50 und insgesamt über 500 Einheiten erfasst werden sollen. Die Angabe der Abundanz für jedes Taxon erfolgte schließlich in Zellen bzw. Zähleinheiten (z. B. Fadenstücke definierter Länge, Kolonien etc.) pro Liter. Durch Aufsummieren erhält man die Gesamtabundanz pro Probe. Die Abschätzung des Biovolumens erfolgt gemäß DIN EN 16695 (2015-12) und der im gesamten HELCOM-Raum genutzten Taxaliste der Phytoplankton Expertengruppe (PEG) in der jeweils aktuellsten Fassung. Durch die Norm ist jeder Gattung bzw. abweichenden Art ein idealisierter geometrischer Körper zugeordnet. Entweder werden die für die Berechnung des entsprechenden Biovolumens notwendigen Dimensionen bei einer repräsentativen Anzahl von Zellen jeder Art, Gattung oder Gruppe unter dem Mikroskop mittels eines kalibrierten Okularmikrometers vermessen (für notwendige aber im mikroskopischen Bild nicht messbare Dimensionen sind in der Norm bzw. der PEG-Liste für die relevanten Taxa entsprechende Faktoren angegeben), oder jedes Taxon wird in einer adäquaten Anzahl von Größenklassen erfasst (HELCOM Taxaliste PEG), denen entsprechend der zugeordneten Geometrie ein Standardvolumen zugewiesen ist. In beiden Fällen kann in Kombination mit der ermittelten Abundanz das Volumen jedes Taxons in der Probe berechnet werden. Die Angabe erfolgt in µm³ pro Liter. Durch Aufsummieren erhält man das Gesamtbiovolumen pro Probe, das in mm³ pro Liter ausgewiesen wird. Die Ermittlung des Biovolumens erfolgt im gleichen Durchgang wie die Quantifizierung unter dem Inversmikroskop. Die Bestimmung der Chlorophyll-a- und Phaeopigment-Mengen erfolgt grundsätzlich durch Extraktion mit einem Lösungsmittel und anschließende photometrische Bestimmung der Konzentration. Einzelne Schritte in dieser Prozesskette werden von den verantwortlichen Laboratorien jedoch unterschiedlich gehandhabt ( HELCOM 2015 , DIN 38412-16:1985-12, BLMP 2009b, BLMP 2009c, Lorenzen 1967, Jeffrey & Humphrey 1975)). Es sind folgende Materialien notwendig: Ethanol oder Aceton Aqua dest. Wasserbad Homogenisator Zentrifuge oder Filtrationseinrichtung Photometer und zugehörige Küvetten Pinzette Spatel Salzsäure Pipette Protokollbuch oder Formular Die Extraktion des Chlorophyll‑a aus den nach der Probenahme eingefrorenen und später homogenisierten Filtern erfolgt mit 70 °C heißem Ethanol oder mit Aceton. Nach einer bestimmten Extraktionszeit und der Entfernung der Filterreste durch Zentrifugation oder Filtration wird die Extinktion des Überstandes photometrisch bei der für das benutzte Extraktionsmittel spezifischen Wellenlänge des Absorptionsmaximums des Chlorophyll-a gemessen (665 nm für Ethanol, 663 nm für Aceton). Dabei wird das Chlorophyll-a als wichtigstes Photosynthesepigment zunächst als Gesamt-Chlorophyll-a inklusive der Abbauprodukte, der Phaeopigmente, bestimmt. Durch Messung bei 750 nm und Subtraktion dieses Messwertes vom Wert des Absorptionsmaximums wird eine Trübungskorrektur durchgeführt. Es erfolgt anschließend eine erneute Bestimmung der Extinktion nach Ansäuern des Extraktes mit Salzsäure, wodurch das Chlorophyll vollständig in Phaeopigmente überführt wird. Auch für diesen Schritt erfolgt eine Trübungskorrektur. Aus den Extinktionswerten der beiden Messungen (vor und nach der Ansäuerung), dem benutzten Extraktionsvolumen, dem ursprünglich filtrierten Probenvolumen und der Küvettenlänge lassen sich nun die Konzentrationen des aktiven Chlorophyll-a und der Phaeopigmente rechnerisch ermitteln und in µg pro Liter angeben.
Zur Umsetzung der WRRL wurde für die Erhebung der Qualitätskomponente Phytoplankton in den Küstengewässern der Nordsee keine separate Vorschrift für Probennahme und -auswertung erstellt. Stattdessen werden bereits existierende DIN-Normen und Handlungsanweisungen verwendet. Diese gelten zwar grundsätzlich für alle Küstengewässer der Nordsee, in den einzelnen Bundesländern unterscheidet sich aber deren Anwendung bzw. Umsetzung. Aufgrund der hohen saisonalen Variabilität in Artenzusammensetzung und Biomasse ist für das Phytoplankton eine ein- oder zweimalige Beprobung im Jahr nicht ausreichend, um eine gesicherte Bewertung vornehmen zu können. Deshalb sind innerhalb der Vegetationsperiode häufigere Probenahmen je Standort durchzuführen. Als Vegetationsperiode sind für die niedersächsischen Küstengewässer die Monate März bis September definiert, in der die relevanten Stationen wöchentlich, 14-tägig jedoch mindestens einmal monatlich beprobt werden, so dass wenigstens sieben Datenpunkte für die spätere Bewertung vorhanden sind. Einen Überblick über das Phytoplankton-Monitoring in den Küstengewässern Niedersachsens (Stand 2013) gibt Abbildung 1. Für die Nordseeküste Schleswig-Holsteins wurde die Vegetationsperiode ebenfalls zwischen März/April und September festgelegt. Bis zu acht Stationen werden für die Typen N1 und N2 je neun- bis zehnmal pro Jahr beprobt. Die Anzahl der Stationen liegt nicht gleichmäßig fest, da regelmäßig Anpassungen des Überwachungsprogramms durchgeführt werden. Die regelmäßig zu beprobenden Standorte in den Küstengewässern werden von den zuständigen Landesbehörden festgelegt. Die Positionen sind dabei so gewählt, dass sie repräsentativ die unterschiedlichen Wasserkörpertypen abdecken. Abbildung 1 zeigt das Überwachungsnetz des NLWKN für Niedersachsen. Abb. 1: Phytoplankton-Überwachung in den Übergangs- und Küstengewässern Niedersachsens (Quelle: NLWKN 2013). Die Beprobungen für das Phytoplankton werden je nach Position der Stationen mit Schiffen, mit gecharterten Helikoptern oder von Land aus durchgeführt. In der Regel werden physikochemische Begleitparameter (Temperatur, Salinität, pH-Wert etc.) ebenfalls erfasst sowie Proben für die chemische Analytik (Nährstoffe) genommen. Für die Probenahme vor Ort ist folgende Ausrüstung notwendig: Kühltasche/-box mit Kühlelementen Eimer mit Seil oder (Integral)Wasserschöpfer Messbecher/Messzylinder (1 l) Trichter 100-ml-Klarglasflaschen mit Schraubverschluss und Dichtung Lugol’sche Lösung Pipette Spritzflasche mit Aqua dest. Fließpapier (Küchenrolle) oder Handtuch Probenkanister (5 l) Protokollbuch oder Formular Die Entnahme der Proben für die qualitative und quantitative Analyse des Phytoplanktons sollte bei geschichteten Wasserkörpern grundsätzlich integrierend über die euphotische (lichtdurchflutete) Zone erfolgen. Dazu sind Integralschöpfer geeignet, die kontinuierlich über die beprobte Tiefe Wasser entnehmen und so eine Mischprobe erzeugen. Eine solche Probe kann auch gewonnen werden, in dem aus verschiedenen Tiefen einzeln entnommene Wasservolumina gleicher Größe anschließend vereinigt werden. In nicht geschichteten Wasserkörpern, was in den Küstengewässern der Nordsee die Regel darstellt, genügt eine einmalige oberflächennahe Beprobung im Bereich bis zu 1 m Tiefe mit einem einfachen Wasserschöpfer oder Eimer. Für die späteren mikroskopischen Analysen im Labor wird aus der gut durchmischten Probe eine Unterprobe in eine 100-ml-Klarglasflasche gefüllt. Zur Fixierung der Organismen erfolgt die Zugabe von Lugol’scher Lösung (ca. 1 ml pro 100 ml Probe). Anschließend lagern die Flaschen gekühlt und dunkel bis zur Auswertung. Für die Gewinnung der Proben zur späteren Bestimmung des Chlorophyll-a-Gehaltes wird die gleiche Integral- bzw. oberflächennah genommene Schöpfprobe wie zum Abfüllen der Flaschen für die qualitative und quantitative Analyse des Phytoplanktons genutzt. Für die Probenahme vor Ort ist folgende Ausrüstung notwendig: Kühltasche/-box mit Kühlelementen Eimer mit Seil oder (Integral)Wasserschöpfer Messbecher/Messzylinder (1 l) Glasfaserfilter GF/F Filtrationseinrichtung Vakuumpumpe (wenn Stromanschluss vorhanden) oder Handpumpe Pinzette Petrischalen oder Zentrifugenröhrchen Alufolie Spritzflasche mit Aqua dest. Fließpapier (Küchenrolle) oder Handtuch Probenkanister (5 l) Protokollbuch oder Formular Ein definiertes Volumen der gut durchmischten Unterprobe wird mit geringem Unterdruck über GF/F-Glasfaserfilter gesaugt, so dass sich die im Wasser enthaltenen Partikel (darunter auch das Phytoplankton) auf dem Filter zu einem gut gefärbten sichtbaren Belag, dem „Filterkuchen“, anreichern. Diese Filter werden mit dem Filterkuchen in ein adäquates Gefäß (Petrischale oder Zentrifugenröhrchen) gegeben, das zum Schutz vor einfallendem Licht mit Alufolie umhüllt und tiefgefroren wird. Die so behandelten Proben lagern dann bis zur späteren Messung im Labor. Die Quantifizierung der unterschiedlichen Algentaxa hinsichtlich ihrer Abundanz (Anzahl von Individuen pro Volumeneinheit) erfolgt mit Hilfe der Inversmikroskopie-Technik. Für die Analytik werden die folgenden Materialien benötigt: Inversmikroskop (umgekehrtes Mikroskop) mit Okularzählstreifen und -mikrometerskala Sedimentationskammern unterschiedlichen Volumens Zählsoftware oder Zählprotokoll Je nach erwarteter Dichte des Phytoplanktons (einen Hinweis darauf gibt die Chlorophyll-a-Konzentration) wird eine gut durchmischte Probe direkt aus den Probenflaschen in eine 3-, 5-, 10-, 25-, 50- bzw. 100-ml-Sedimentationskammer (Abbildung 1) angesetzt, je nach Größe mindestens 8 bis 48 Stunden zur Sedimentation waagerecht abgestellt und anschließend mit Hilfe eines umgekehrten Mikroskops (Abbildung 2) ausgewertet. Dabei wird die gesamte Kammerfläche (oder definierte Teilabschnitte bei unterschiedlichen Vergrößerungen) systematisch abgefahren, die gefundenen Phytoplanktonorganismen bestimmt und in ihrer Anzahl erfasst. Die Angabe der Abundanz für jedes Taxon erfolgte schließlich in Zellen bzw. Zähleinheiten (z. B. Fadenstücke definierter Länge, Kolonien etc.) pro Liter. Durch Aufsummieren erhält man die Gesamtabundanz pro Probe. Die Abschätzung des Biovolumens erfolgt gemäß DIN EN 16695 (2015-12). Durch diese Norm ist jeder Gattung bzw. abweichenden Art ein idealisierter geometrischer Körper zugeordnet. Entweder werden die für die Berechnung des entsprechenden Biovolumens notwendigen Dimensionen bei einer repräsentativen Anzahl von Zellen jeder Art, Gattung oder Gruppe unter dem Mikroskop mittels eines kalibrierten Okularmikrometers vermessen (für notwendige aber im mikroskopischen Bild nicht messbare Dimensionen sind in der Norm für die relevanten Taxa entsprechende Faktoren angegeben), oder jedes Taxon wird in einer adäquaten Anzahl von Größenklassen erfasst, denen entsprechend der zugeordneten Geometrie ein Standardvolumen zugewiesen ist. In beiden Fällen kann in Kombination mit der ermittelten Abundanz das Volumen jedes Taxons in der Probe berechnet werden. Die Angabe erfolgt in µm³ pro Liter. Durch Aufsummieren erhält man das Gesamtbiovolumen pro Probe, das in mm³ pro Liter ausgewiesen wird. Die Ermittlung des Biovolumens erfolgt im gleichen Durchgang wie die Quantifizierung unter dem Inversmikroskop. Die Bestimmung der Chlorophyll-a- und Phaeopigment-Mengen erfolgt grundsätzlich durch Extraktion mit einem Lösungsmittel und anschließende photometrische Bestimmung der Konzentration. Einzelne Schritte in dieser Prozesskette werden von den verantwortlichen Laboratorien jedoch unterschiedlich gehandhabt (DIN 38412-16:1985-12, BLMP 2009b, BLMP 2009c, Lorenzen 1967, Jeffrey & Humphrey 1975). Es sind folgende Materialien notwendig: Ethanol oder Aceton Aqua dest. Wasserbad Homogenisator Zentrifuge oder Filtrationseinrichtung Photometer und zugehörige Küvetten Pinzette Spatel Salzsäure Pipette Protokollbuch oder Formular Die Extraktion des Chlorophyll‑a aus den nach der Probenahme eingefrorenen und später homogenisierten Filtern erfolgt mit 70 °C heißem Ethanol oder mit Aceton. Nach einer bestimmten Extraktionszeit und der Entfernung der Filterreste durch Zentrifugation oder Filtration wird die Extinktion des Überstandes photometrisch bei der für das benutzte Extraktionsmittel spezifischen Wellenlänge des Absorptionsmaximums des Chlorophyll-a gemessen (665 nm für Ethanol, 663 nm für Aceton). Dabei wird das Chlorophyll-a als wichtigstes Photosynthesepigment zunächst als Gesamt-Chlorophyll-a inklusive der Abbauprodukte, der Phaeopigmente, bestimmt. Durch Messung bei 750 nm und Subtraktion dieses Messwertes vom Wert des Absorptionsmaximums wird eine Trübungskorrektur durchgeführt. Es erfolgt anschließend eine erneute Bestimmung der Extinktion nach Ansäuern des Extraktes mit Salzsäure, wodurch das Chlorophyll vollständig in Phaeopigmente überführt wird. Auch für diesen Schritt erfolgt eine Trübungskorrektur. Aus den Extinktionswerten der beiden Messungen (vor und nach der Ansäuerung), dem benutzten Extraktionsvolumen, dem ursprünglich filtrierten Probenvolumen und der Küvettenlänge lassen sich nun die Konzentrationen des aktiven Chlorophyll-a und der Phaeopigmente rechnerisch ermitteln und in µg pro Liter angeben.
Die MAX PRÜSS entspricht dem Stand der Technik bezüglich Probenahme und Labor und erfüllt alle gültigen Vorschriften aus schiffbaulicher Sicht. Das Schiff ist 33,0 m lang und 7,6 m breit. An Laborfläche stehen auf dem Schiff 27 m 2 zur Verfügung, der Multifunktionsraum ist 19 m 2 groß, die vier Kabinen haben jeweils eine Größe von 6 m 2 und die Küche ist 9 m 2 groß. Darüber hinaus verfügt das Schiff über eine Messe sowie 2 separate Bäder mit Dusche und WC für die Besatzung und das Probenahmepersonal. Der Bug der MAX PRÜSS ist als überragendes Deck ("Flugzeugträgerdeck") ausgestaltet, um ausreichend Arbeitsfläche zu bieten. Das Schiff ist so ausgelegt, dass es die Zonen 2, 3, Rhein und 4 gemäß Rheinschifffahrtsuntersuchungsordnung (RheinSchUO) und Binnenschifffahrtsuntersuchungsordnung (BinSchUO) befahren kann. Der Multifunktionsraum bietet der Besatzung und den Besuchern Gelegenheit zum Informationsaustausch und das Gästebuch vermittelt eine Übersicht darüber, welche Besucher sich bereits einen unmittelbaren Eindruck von der Gewässerüberwachung an Bord verschafft haben. Max Prüss im Einsatz auf dem Rhein, Foto: LANUV/Fachbereich 63 Steuerpult der Max Prüss, Foto: LANUV/Fachbereich 63 Laborseitig verfügt das Schiff über Geräte für die Probenahme von Wasser, Schwebstoffen und Sediment sowie eine moderne Messstrecke mit Sensoren zur kontinuierlichen Bestimmung verschiedener Messgrössen. Ebenso befindet sich an Bord ein Photometer zur Bestimmung von Nährstoffen, ein Mikroskop mit Videokamera für biologische Untersuchungen und ein Leuchtbakterientest zur ersten Abschätzung evtl. vorhandener toxischer Wasserinhaltsstoffe. Somit kann die MAX PRÜSS bei Schadensfällen auf dem RHein zur wasserseitigen Probenahme eingesetzt werden und ist Teil der staatlichen Gewässerüberwachung in Nordrhein-Westfalen. Sie sorgt auf den Bundeswasserstrassen bereits durch ihre Präsenz dafür, dass die Gewässerbenutzer sich regelgerecht verhalten. Generalplan Technische Daten Eigentümer: Landesamt für Natur, Umwelt und Verbraucherschutz NRW Heimathafen: Essen Bauwerft: Deutsche Binnenwerften GmbH, Werft Genthin; Bau NR. 152 Kiellegung: September 1998 Stapellauf: 07.04.1999 Ablieferung: 07.05.1999 Hauptabmessungen: Länge über Alles: 33,00 Meter Breite über Alles: 7,57 Meter Seitenhöhe: 2,10 Meter Tiefgang: 1,10 Meter Maschinenanlage: Antriebsleistung: 2 x 250 kW (340 PS) Antrieb: konventionell 2 Schiffs-Diesel-Motoren; Typ D 2866 LXE 43 Zylinderzahl: 6 Drehzahl: 1800 U pm Kühlung: Wasserkühlung Anlassung: elektrisch; 24 V, 2-polig 2 Schiffs-Wendeuntersetzungsgetriebe Typ: WAF 143L Untersetzung: 3,522 2 Propeller Durchmesser: 1000 mm Geschwindigkeit: 20 km/h
Das Projekt "Versuche zur gaschromatographischen Bestimmung von Selen in Brauchwasser" wird vom Umweltbundesamt gefördert und von Staatliche Milchwirtschaftliche Lehr- und Forschungsanstalt, Dr. Oskar Farny Institut durchgeführt. Die Trinkwasserverordnung vom 31.1.1975 limitiert den Selengehalt im Brauchwasser von Lebensmittelbetrieben. Die in der Verordnung vorgeschriebene photometrische Bestimmung ist aufwendig und wenig empfindlich. Gestuetzt auf neue Literaturangaben soll deshalb versucht werden, Selenspuren im Brauchwasser nach Ueberfuehrung in ECD-aktive Piazselenole gaschromatographisch zu bestimmen.
Das Projekt "Entwicklung und Erprobung eines Relaxed Eddy Accumulation (REA)-Systems zur Bestimmung vertikaler Flüsse von salpetriger Säure (HONO)" wird vom Umweltbundesamt gefördert und von Universität Wuppertal, Fachgruppe Chemie und Biologie, Arbeitsgruppe Physikalische und Theoretische Chemie durchgeführt. Während der letzten Jahre wurde Salpetrige Säure (HONO) als eine Hauptquelle von OH-Radikalen in der unteren Atmosphäre erkannt. Da das OH Radikal für den Abbau der meisten Schadstoffe und die Bildung von Photooxidantien, wie z.B. Ozone, verantwortlich ist, sind die Identifizierung und die Quantifizierung von atmosphärischen HONO-Quellen von großer Bedeutung. Basierend auf Laborstudien wurden hauptsächlich bodennahe HONO-Quellen vorgeschlagen, um die unerwartet hohen HONO-Tageskonzentrationen in der unteren Atmosphäre zu erklären. Daraus resultierende vertikale Flussmessungen von HONO über atmosphärischen Oberflächen werden jedoch nur selten durchgeführt. Zudem wird hierbei auf Grund fehlender schneller und empfindlicher HONO-Messgeräte meist nur die aerodynamische Gradientenmethode eingesetzt, die mit großen Unsicherheiten behaftet ist. Daher soll im Rahmen des hier beantragten Projektes ein REA (Relaxed Eddy Accumulation) System, zur Quantifizierung vertikaler Flüsse salpetriger Säure (HONO) entwickelt und erprobt werden. Es soll ein Zweikanal-Messgerät aufgebaut werden, das auf dem LOPAP (Long Path Absorption Photometer)-Messprinzip basiert und das mit einem mikrometeorologischen Einlasssystem gekoppelt wird. Hierbei werden zwei schnelle Magnetventile mit Hilfe eines Ultraschallanemometers gesteuert und somit die beiden Kanäle für jeweils auf- und absteigende Luftmassen beprobt. Zusätzlich werden in einem dritten Kanal chemische Interferenzen bestimmt und zur Korrektur der Messsignale verwendet. Parallel zum Aufbau der Hardware soll für die Steuerung der Ventile und die Datenerfassung der meteorologischen Daten eine passende Software entwickelt werden. Das Gerät wird zunächst an der BUW auf seine technische Funktionalität getestet und optimiert. Zum Ende des Projektes sollen dann mit Hilfe des Messgerätes und begleitenden anderen Spurengasmessungen Tagesquellen von HONO über einem landwirtschaftlich genutzten Feld in Grignon (Frankreich) identifiziert und quantifiziert werden. Die gewonnenen Daten sollen mit Ergebnissen aus HONO-Gradientenmessungen verglichen werden, die im Rahmen eines früheren DFG-Projekts des Antragstellers am selben Messort gewonnen wurden.
Das Projekt "Känozoische Vereisungen und Meeresspiegelschwankungen der Bellinghausen See (ODP Leg 178)" wird vom Umweltbundesamt gefördert und von Christian-Albrechts-Universität zu Kiel, Sektion Geowissenschaften, Institut für Geowissenschaften durchgeführt. Hemipelagische Sedimentrücken am west- und ostantarktischen Kontinentalrand, die bei den ODP-Fahrtabschnitten 178 und 188 beprobt wurden bzw. werden, enthalten eine kontinuierliche Schichtenabfolge seit dem Paläogen. Im Rahmen eines Auswerte- projekts sollen mittels eines 'Multiproxy'-Parameteransatzes offene Fragen zur känozoischen Vereisungsgeschichte der West- und Ostantarktis beantwortet werden: (1) Mit Hilfe einer zeitlich hochaufgelösten Dokumentation der Korngrößenvariationen und der mineralogischen Zusammensetzung der Ton- und Grobfraktionen sollen Transportmechanismen und -pfade rekonstruiert werden, die Aufschluss über Volumenänderungen der antarktischen Eisschilde geben werden. (2) Anhand von spektrophotometrischen Daten soll überprüft werden, ob Turbiditsequenzen in antarktischen Kontinentalrandsedimenten synchron auftreten und durch Eisschildfluktuationen bzw. durch Meeresspiegelschwankungen gesteuert werden. (3) Mittels der Bilanzierung von Paläoproduktivitätsindikatoren sollen Eisrandlagen sowie die klimagekoppelte Tiefen- und Bodenwasserzirkulation im Südpolarmeer rekonstruiert werde. (4) Die Ergebnisse fließen ein in die Entwicklung eines Modells, das die känozoische Vereisungsgeschichte von West- und Ostantarktis in ihren wesentlichen Zügen beschreibt
Das Projekt "Die Beziehung zwischen Temperatur und Wasserstress und den unterschiedlichen Phloembeladungstypen" wird vom Umweltbundesamt gefördert und von Universität Gießen, Fachbereich 08 Biologie, Chemie und Geowissenschaften, Institut für Allgemeine Botanik und Pflanzenphysiologie, Bereich Allgemeine Botanik (Botanik I) durchgeführt. Untersucht wird in diesem Projekt, der Zusammenhang zwischen Phloembeladungstyp und klimatischen Bedingungen wie Temperatur und der Phloembeladung in immergruenen Dikotyledonen aus der temperierten Zone. Techniken: Transmission electron microscopy, scanning electron microscopy, HPLC, Spektrophotometrie, 14C-Scintillations Photometrie, Densitometrie, Phophoimaging, Picolitre Cell content analysis, infrared spectrophotometry.
Das Projekt "Hydrochemische Freiwasseruntersuchungen im Bodensee-Obersee" wird vom Umweltbundesamt gefördert und von Landesanstalt für Umwelt Baden-Württemberg, Institut für Seenforschung durchgeführt. Laufende Ueberwachung ausgesuchter chemischer Parameter. Analytische Bestimmung sichtiger im Seewasser geloester anorganischer Salze, insbesondere Pflanzennaehrstoffe. Titrimetrische und photometrische Verfahren, sowie AAS-Bestimmungen. Die in den letzten dreissig Jahren beobachtete Phosphatzunahme hat zu einer deutlichen Eutrophierung des Bodensees gefuehrt. Zur Eindaemmung dieses Effektes laufen umfangfreiche Sanierungsprogramme, deren Wirksamkeit durch begleitende wissenschaftliche Untersuchungsprogramme kontrolliert werden muss. Das Untersuchungsprogramm und die Ergebnisauswertung wird gemeinsam von den drei Bodenseeanliegerstaaten Bundesrepublik Deutschland, Schweiz und Oesterreich durchgefuehrt. Die zustaendige Koordinierungsstelle ist die Internationale Gewaesserschutzkommission fuer den Bodensee.
Das Projekt "Chemische Zusammensetzung, Umwandlung und Wolkenaktivierungseigenschaften von Submikrometer-Aerosolpartikeln in Abluftfahnen großer Ballungszentren" wird vom Umweltbundesamt gefördert und von Johannes Gutenberg-Universität Mainz, Institut für Physik der Atmosphäre durchgeführt. Bevölkerungsreiche Ballungszentren stellen konzentrierte Quellen für anthropogene Emissionen dar. Das Ziel der HALO-Mission EMeRGe ist die Untersuchung der Transportwege und der Umwandlungsprozesse der gas- und partikelförmigen Emissionen in den Abluftfahnen solcher Ballungszentren in der freien und oberen Troposphäre. Dieses Teilprojekt legt den Schwerpunkt auf die chemische Charakterisierung der Partikelphase mittels Aerosolmassenspektrometrie sowie auf die Untersuchung der Wolkenaktivierungseigenschaften der Partikel. Mit einem Compact Time-of-Flight Aerosol Mass Spectrometer (C-ToF-AMS) und einem Single Particle Soot Photometer (SP2) kann die chemische Zusammensetzung und die photochemische Prozessierung der Aerosolpartikel nahezu vollständig erfasst werden. Mikrophysikalische Partikeleigenschaften wie Größenverteilung und Anzahlkonzentrationen in verschiedenen Größenbereichen tragen zur Charakterisierung der Partikel bei. Die größenselektierten Messungen der Wolkenaktivierungseigenschaften der Partikel werden im Zusammenhang mit der beobachteten Änderung der chemischen Zusammensetzung (Oxidation) betrachtet, so dass der Einfluss der Emissionen auf die Wolkenbildung untersucht werden kann. Weiterhin wird untersucht, ob die Emissionen bis in die obere Troposphäre oder sogar in die Tropische Übergangschicht (Tropical Transition Layer, TTL) gelangen können, wodurch sie für den weiteren Transport in die untere Stratosphäre zur Verfügung stünden.
Origin | Count |
---|---|
Bund | 158 |
Land | 3 |
Type | Count |
---|---|
Förderprogramm | 155 |
Text | 3 |
unbekannt | 1 |
License | Count |
---|---|
geschlossen | 4 |
offen | 155 |
Language | Count |
---|---|
Deutsch | 153 |
Englisch | 11 |
Resource type | Count |
---|---|
Dokument | 2 |
Keine | 118 |
Webseite | 39 |
Topic | Count |
---|---|
Boden | 109 |
Lebewesen & Lebensräume | 115 |
Luft | 96 |
Mensch & Umwelt | 159 |
Wasser | 116 |
Weitere | 159 |