API src

Found 7 results.

Cellular and molecular studies on radiation quality: a comparison between genetically relevant radiation damage and cell inactivation

Das Projekt "Cellular and molecular studies on radiation quality: a comparison between genetically relevant radiation damage and cell inactivation" wird vom Umweltbundesamt gefördert und von Gesellschaft für Schwerionenforschung durchgeführt. Objective: The proposed experiments aim to gain more insight into the biological efficiency of lighter ions at different biological levels for the induction and repair of DNA strand breaks in both chromosomal and plasmid DNA. General Information: Description of research work. In the last ten years, heavy charged particles have been used in radiobiological experiments more extensively than before. This development has basically two reasons: the increasing use of these particles in radiotherapy and radioprotection problems of manned space flights. In radiotherapy, approximately ten thousand patients have been treated with charged particles (mostly protons) with extraordinary success. Because of the better dose distribution and the increased relative biological efficiency at the end of the particle range, a strong trend is visible toward a treatment with heavier ions (e.g. carbon or neon ions). In manned space flights outside the shielding of the magnetosphere of the earth which are proposed by NASA and ESA, the heavy component of cosmic radiation pose a major risk for the health of the astronauts. In the case of the solar flare, lethal doses of protons can be reached even in short excursions outside the space craft. For long term space flights the risk of cancer induction is also important because the highly energetic heavy ions cannot be shielded very efficiently by the spacecraft and the radiation risk accumulates with time (i.e. over the duration of the flight). In both cases, radiotherapy and radioprotection in space, more information is needed on the inactivation process caused by the particle radiation where the data for lighter ions are scarce. But almost no information exists on the genetic risk caused by heavy charged particles. In addition, no theoretical approach exists which allows calculation of the biological effects with sufficient accuracy. Also the molecular nature of the very slowly restoring breaks has not been explored. In order to gain more molecular information, DNA damage of genetically well known plasmid sequences inserted in mammalian cells should be studied in greater detail, and new methods in gene technology should be used to analyse induced DNA damage. In the proposed experiments both approaches will be started and used to analyze the complexity of particle induced DNA damage. In summary, the radiobiological effects of charged particles like protons or heavier ions are of great importance for the development of heavy particle radiotherapy as well as for the estimation of the radiation risk in manned space flights. Because a unique theory of the RBE does not exist up to now, the radiobiological effects of the particle radiation have to be measured in detail. ... Prime Contractor: Gesellschaft für Schwerionenforschung mbH; Darmstadt; Germany.

Photochemical activity and ultraviolet radiation modulation factors

Das Projekt "Photochemical activity and ultraviolet radiation modulation factors" wird vom Umweltbundesamt gefördert und von Technische Universität München, Forstwissenschaftliche Fakultät, Lehrstuhl für Bioklimatologie und Immissionsforschung durchgeführt. General Information: The proposed research aims in the first place at quantifying the hierarchy of UV-B modulating factors moving from stratospheric ozone to tropospheric ozone and other environmental factors such as aerosol, clouds and air quality. This project builds on recent results from EU campaigns which have shown that south-eastern Europe and particularly the Aegean sea, is experiencing enhanced background ozone up to the tropopause, with extreme gradients in the J(O1D) prevailing in the first 2 km above sea level in the region. Therefore the project in addition to quantifying with model results validated by calibrated observations the factors influencing UV transfer, it will next move on to unravel the mechanisms maintaining the high background ozone over South-eastern Europe and its interplay with UV transfer. 3-D model studies will be done in large regional and sub regional scales to understand the extend of enhanced background ozone and its sources. The tropospheric effect on UV transfer is not as large as the absorption in the stratosphere but can be important due to photon path enhancements in the presence of different types of aerosols. This synergistic effect of the aerosol burden will be separately studied, being at present an open question. The above objectives of the project will be achieved through extensive state-of-the-art campaign measurements and modelling studies. The sites selected (islands of Crete and Lampedousa)are both in central and eastern Mediterranean and provide unique environments to meet the objectives presented before. They are located in the sunniest part of Europe and are exposed to high background levels and to alternating types of aerosols (Sahara/maritime) for which the quantification of combined effects are targeted in the study. The campaign and modelling efforts include studies on the variability of aerosol in the region. The project is focusing mainly in two major objectives: (a) Quantification of UV modulating factors and validation of UV models with calibrated data sets from an extensive campaign in the Mediterranean and (b) Modelling and validation studies on the mechanisms maintaining the enhanced tropospheric ozone in the region of study and quantification of interrelationships with the UV radiation field. Prime Contractor: Aristotle University of Thessaloniki, Department of Physics, Laboratory of Atmospheric Physics; Thessalonki; Greece.

Biophysicical models for the effectiveness of different radiations

Das Projekt "Biophysicical models for the effectiveness of different radiations" wird vom Umweltbundesamt gefördert und von GSF-Forschungszentrum für Umwelt und Gesundheit, GmbH durchgeführt. Objective: This project involves experimental and theoretical research towards a better understanding of the biological radiation actions of different radiation fields, with particular emphasis on low doses and low dose rates. It aims at an improvement of our present knowledge on somatic and genetic radiation risks of man and to help develop radiation protection instrumentation to measure the characteristic properties with regard to these endpoints in mixed radiation fields. In addition, the combined action of radiation and chemicals (also of those prevalent in the environment) will be investigated on a mechanistic level. General Information: This goal shall be reached by the development of new models based on: the improvement of biophysical track structure calculations for relevant radiation fields (photons, neutrons, electrons, ions) in particular by introducing structured cell geometry, condensed state cross sections, time dependency, and chemical and biological reactions; various codes of other authors will be compared in critical bench mark calculations; the analysis of such physical to chemical to biological track structures will be improved using new cluster algorithms and by testing biophysical models which will be developed; selective radiation biological experiments with soft X-rays and UV-photons will be performed, as well as with alpha-particles and gamma-rays; the biological systems will include appropriate transformational and inactivation assays, etc. The usefulness of a better understanding of radiation effects on members of the public has often been described in the radiation protection literature. This understanding is necessary also to improve the protection of workers and the public in the ALARA-sense of the IRCP, where overestimations of radiation risks might lead, for example, to a not optimum allocation of large resources. Collaboration is foreseen with other projects working on the improvements of dosimeters and on biological radiation effects. Achievements: Objectives of the project include calculation of secondary electrons produced in a water molecule and in a water cluster by proton and electron impact to investigate the influence of physical state on double differential ionization cross sections, testing of the geometry routines simulating a lymphocyte and calculation of single strand breaks (SSB), double strand breaks (DSB) and fields of dicentric chromosomes using simple models of deoxyribonucleic acid (DNA) interaction. A set of calculations of the double and single differential cross sections for secondary electron emission as a function of angle and secondary electron energy have been completed for the case of proton impact on a water molecule and a cluster of water molecules using methods developed for electron impact. ... Prime Contractor: GSF-Forschungszentrum für Umwelt und Gesundheit GmbH; Oberschleissheim; Germany.

Photonen-Korrelationsspektroskopie als Methode zur Untersuchung von Fluid-Partikel-Systemen

Das Projekt "Photonen-Korrelationsspektroskopie als Methode zur Untersuchung von Fluid-Partikel-Systemen" wird vom Umweltbundesamt gefördert und von Universität Duisburg, Fachbereich 7 Maschinenbau, Fachgebiet Thermodynamik durchgeführt. Mit Hilfe der Photonen-Korrelationsspektroskopie (PCS) wurden Hydrosole und Aerosole mit kugelfoermigen Partikeln bekannter Groesse untersucht. Hierzu wurde ein Spektrometer mit Auswerteelektronik aufgebaut, das Messungen in einem bestimmten Temperatur- und Winkelbereich ermoeglicht. Im Rahmen des Forschungsprogramms werden zunaechst Streulichtmessungen an monodispersen, polydispersen und bimodalen Systemen im Ruhezustand durchgefuehrt. Hierzu werden verschiedene Auswertemethoden zur Anwendung kommen. In einer weiteren Versuchsreihe wird dann in stroemenden Fluiden die Groessenverteilung von suspendierten Partikeln mit der Photonen-Korrelationsspektroskopie untersucht. Hierbei soll geklaert werden, ob eine Analyse der Groessen bzw Groessenverteilungen von Partikeln moeglich ist.

Entwicklung und Bau eines Polymermembran-Brennstoffzellen-Stacks und eines Direktmethanol-Brennstoffzellen-Stacks unter Verwendung von neuartigen protonenleitenden Mitteltemperatur-Membranen

Das Projekt "Entwicklung und Bau eines Polymermembran-Brennstoffzellen-Stacks und eines Direktmethanol-Brennstoffzellen-Stacks unter Verwendung von neuartigen protonenleitenden Mitteltemperatur-Membranen" wird vom Umweltbundesamt gefördert und von Zentrum für BrennstoffzellenTechnik GmbH durchgeführt.

Theoretische Modellierung

Das Projekt "Theoretische Modellierung" wird vom Umweltbundesamt gefördert und von Technische Universität Berlin, Institut für Theoretische Physik durchgeführt. Innerhalb einer (quanten-)kinetischen Materialtheorie wird die Dynamik der optisch angeregten Ladungsträger in verschiedenen Quantentopfstrukturen modelliert. Diese liefert Auskunft über die Ladungsträgerdynamik (pump/probe-Spektren, Emission) und stationäre Materialeigenschaften (lineare Absorption). Die dabei mikroskopisch berechneten Streuraten werden in ein hydrodynamisches Transportmodell integriert, woraus die räumliche Dynamik in der gesamten Solarzellenstruktur bestimmt wird. Die experimentellen Ergebnisse zur Ladungsdynamik (HZB) ermöglichen in Kombination mit den theoretischen Ergebnissen ein Verständnis der mikroskopischen Vorgänge und dienen zusätzlich als Eingangsdaten für weitergehende Simulationen. Die Modellierung erlaubt letztlich eine Optimierung der Solarzellenstruktur, womit eine direkte Rückkopplung an die präparativen Teilprojekte besteht. Ausgehend von einer quantentheoretischen Formulierung der Elektron-Licht-, Elektron-Elektron-, Elektron-Phonon- und Elektron-Störstellen-Wechselwirkung werden die Dichtematrizen der elektronischen Größen für Transport und Optik nach Einteilchenwellenfunktionen (z.B. k. p-Theorie für Quantenfilme, Nanodrähte) entwickelt und die angeregten Wechselwirkungen innerhalb eines kinetischen bzw. quantenkinetischen Zugangs beschrieben. Die mikroskopisch berechneten Raten werden in ein hydrodynamisches Optik/Transport-Modell zur Simulation der gesamten Solarzellenstruktur eingebaut.

Teilvorhaben: Ultrasensitive Nachweismethoden für Radionuklide

Das Projekt "Teilvorhaben: Ultrasensitive Nachweismethoden für Radionuklide" wird vom Umweltbundesamt gefördert und von Technische Universität München, Physik Department, E12: Lehrstuhl für Kern- und Hadronenphysik durchgeführt. Beitrag der TU München im Verbundprojekt besteht aus zwei Teilen. 1) Zum einen sind am 14MV Münchener Tandembeschleuniger Entwicklungen zur Verbesserung der Nachweismethode für mittelschwere und schwere Radionuklide mittels Beschleunigermassenspektrometrie (AMS) geplant. Die daraus gewonnenen Erkenntnisse sollen für den ultrasensitiven Nachweis von transmutationsrelevanten Radionukliden nach Probenbestrahlungen mit Photonen oder Neutronen in Rossendorf eingesetzt werden. 2) Der zweite Teil betrifft die Entwicklung einer Compton-Kamera für den richtungsempfindlichen Nachweis von Gammastrahlung, was gemeinsam mit Köln durchgeführt wird. Die Kamera soll auf einer Kombination eines positionsauflösenden Siliziumstreifenzähler mit einem hochsegmentierten großvolumigen Germaniumdetektors mit einer digitalen Auslese basieren. Diese Comptonkamera bietet sowohl für den Online-Nachweis von Gammastrahlung in photonen- oder neutroneninduzierten Reaktionen als auch bei der Offline-Messung von geringen Aktivitäten relevanter Radionuklide im Untergrundlabor entscheidende Vorteile gegenüber herkömmlichen Detektorsystemen. Für die AMS Messungen (1) wir die am Münchener Tandembeschleuniger zur Verfügung stehende Anlage eingesetzt und es werden Untersuchungen zur Verwendung molekularer Ionen durchgeführt. Für die Entwicklung der Comptonkamera werden wir Simulationen der Signalpulsformen und schnelle Algorithmen zur Pulsformanalyse durchführen und den Siliziumdetektor mit Auslese aufbauen.

1