Das Projekt "The importance of peripheral oceanic processes in the Labrador Sea for the Atlantic meridional overturning circulation" wird vom Umweltbundesamt gefördert und von Helmholtz-Zentrum für Ozeanforschung Kiel (GEOMAR), Forschungsbereich 1: Ozeanzirkulation und Klimadynamik durchgeführt. The Labrador Sea is one of the few places in the world ocean, where deep water formation takes place. This water is exported from the Labrador Sea to become part of the southward branch of the meridional overturning circulation. Previous observational work has largely focused on the role of deep convection in the interior of the Labrador Sea. Recent evidence from observations and numerical ocean models specifically indicate that processes near the ocean boundaries might be most relevant for both Eulerian downwelling of waters in the Labrador Sea and the fast export of newly transformed waters. We propose to analyze mooring based observations at the western margin of the Labrador Sea together with high resolution numerical model simulations to understand the role both processes play for the meridional overturning circulation in the subpolar North Atlantic. Specifically, we want to test (i) if (and where) downwelling occurs along the margins of the Labrador Sea, (ii) how downwelling relates to the seasonal evolution of convection and eddy activity, (iii) how fast waters newly transformed near the western margin of the Labrador Sea are exported, and (iv) how the two processes (downwelling, fast export) affect the temporal variability of the Atlantic meridional overturning circulation.
Das Projekt "Flood risk in a changing climate (CEDIM)" wird vom Umweltbundesamt gefördert und von Karlsruher Institut für Technologie (KIT), Institut für Meteorologie und Klimaforschung, Department Troposphärenforschung durchgeführt. Aims: Floods in small and medium-sized river catchments have often been a focus of attention in the past. In contrast to large rivers like the Rhine, the Elbe or the Danube, discharge can increase very rapidly in such catchments; we are thus confronted with a high damage potential combined with almost no time for advance warning. Since the heavy precipitation events causing such floods are often spatially very limited, they are difficult to forecast; long-term provision is therefore an important task, which makes it necessary to identify vulnerable regions and to develop prevention measures. For that purpose, one needs to know how the frequency and the intensity of floods will develop in the future, especially in the near future, i.e. the next few decades. Besides providing such prognoses, an important goal of this project was also to quantify their uncertainty. Method: These questions were studied by a team of meteorologists and hydrologists from KIT and GFZ. They simulated the natural chain 'large-scale weather - regional precipitation - catchment discharge' by a model chain 'global climate model (GCM) - regional climate model (RCM) - hydrological model (HM)'. As a novel feature, we performed so-called ensemble simulations in order to estimate the range of possible results, i.e. the uncertainty: we used two GCMs with different realizations, two RCMs and three HMs. The ensemble method, which is quite standard in physics, engineering and recently also in weather forecasting has hitherto rarely been used in regional climate modeling due to the very high computational demands. In our study, the demand was even higher due to the high spatial resolution (7 km by 7 km) we used; presently, regional studies use considerably larger grid boxes of about 100 km2. However, our study shows that a high resolution is necessary for a realistic simulation of the small-scale rainfall patterns and intensities. This combination of high resolution and an ensemble using results from global, regional and hydrological models is unique. Results: By way of example, we considered the low-mountain range rivers Mulde and Ruhr and the more alpine Ammer river in this study, all of which had severe flood events in the past. Our study confirms that heavy precipitation events will occur more frequently in the future. Does this also entail an increased flood risk? Our results indicate that in any case, the risk will not decrease. However, each catchment reacts differently, and different models may produce different precipitation and runoff regimes, emphasizing the need of ensemble studies. A statistically significant increase of floods is expected for the river Ruhr in winter and in summer. For the river Mulde, we observe a slight increase of floods during summer and autumn, and for the river Ammer a slight decrease in summer and a slight increase in winter.
Das Projekt "Teilprojekt (06) M06: Techniken zur Kopplung von Atmosphäre und Ozean durch Wellen" wird vom Umweltbundesamt gefördert und von Helmholtz-Zentrum Geesthacht Zentrum für Material- und Küstenforschung GmbH, Institut für Küstenforschung durchgeführt. Es sollen Techniken entwickelt werden um die Kopplung zwischen Atmosphäre und Ozean durch die Formation und das Brechen von Oberflächenwellen im Ozean zu quantifizieren. Diese Techniken beinhalten eine numerische Implementierung von diffusen Grenzflächenmethoden für eine thermodynamisch konsistente und voll gekoppelte Simulationen der Grenzfläche zwischen Luft und Wasser, sowie Feldexperimente zur gleichzeitigen Messung von Luftstrom, der Ozeanwellenkopplung, und der turbulenten Energiedissipation im oberen Ozean.
Das Projekt "CO2 Mofetten - Überwachung natürlicher CO2 Emissionen unter Verwendung eines Netzwerks aus low-cost Sensoren" wird vom Umweltbundesamt gefördert und von Universität Tübingen, Mathematisch-Naturwissenschaftliche Fakultät, Zentrum für Angewandte Geowissenschaften (ZAG), Arbeitsgruppe für Umweltsphysik durchgeführt. Im beantragten Forschungsvorhaben wird der natürliche Austritt von Kohlenstoffdioxid (CO2) aus Mofetten im Eyachtal zwischen Horb und Rottenburg untersucht. CO2 kann sich in der bodennahen Atmosphäre ansammeln und in entsprechender Konzentration für Mensch und Tier gefährlich werden. Die im Eyachtal austretenden Mengen wurden bislang nicht zuverlässig quantifiziert. Darüber hinaus ist CO2 ein Treibhausgas und steht im Zusammenhang mit dem weltweiten Klimawandel. Ähnliche und auch größere Quellgebiete existieren an verschiedenen Orten der Welt. Der quantitative Einfluss dieser natürlichen geologischen Gasquellen auf den Gashaushalt der Erde ist unbekannt, da auch die Menge des ausströmenden CO2 nicht bekannt ist.Ziel des Vorhabens ist die Überwachung der natürlichen CO2 Austrittsquellen sowie der umgebenden Atmosphäre im Eyachtal. Die Messdaten dienen der Bilanzierung der Austrittsmengen sowie die Ermittlung der horizontalen und vertikalen Flüsse im Versuchsgebiet. Hierbei wird auch die zeitliche Veränderung dieser Austritte erfasst.Zu diesem Zweck soll ein mikro-meteorologisches Messsystem (Eddy-Covariance Station) in Kombination mit einem verteilten Netzwerk aus vielen kostengünstigen CO2 Sensoren installiert werden. Ein solches Netzwerk kann die inhomogene Verteilung der Austritte sowohl zeitlich als auch räumlich erfassen. Die Verwendung von kostengünstigen Sensoren erlaubt den Betrieb einer größeren Anzahl von Sensoren und damit verbunden eine größere räumliche Abdeckung.In den letzten Jahren hat die Arbeitsgruppe Umweltphysik der Universität Tübingen eine neue Methode entwickelt, CO2 mit günstigen Sensoren in Bodennähe zu messen. Ein Nachteil der kostengünstigen Sensoren liegt in der (im Vergleich zu hochwertigen Sensoren) geringeren absoluten Messgenauigkeit. Die EC Station dient daher als Referenz, um die erreichbare Genauigkeit und Langzeitstabilität des Sensornetzes zu bewerten, die günstigen Sensoren zu kalibrieren und den turbulenten Transport des CO2 zumindest an einer Stelle direkt zu messen. Für ein vollständiges Netzwerk müssen die CO2 Sensoren noch mit geeigneten Feuchte- und Temperatursensoren ergänzt werden. Die entsprechende Hardware muss beschafft und schrittweise aufgebaut werden.Im Projekt soll ein Netzwerk aus z.B. 64 Sensoren aufgebaut werden, das die räumliche und zeitliche Verteilung des CO2 im Untersuchungsgebiet experimentell bestimmt. Die Beschaffung der Geräte ist bereits von der Alfred-Teufel Stiftung finanziert. Die Messungen werden über eine Datenbank mit Internet Schnittstelle auch der wissenschaftlichen Öffentlichkeit zur Verfügung gestellt.Das Vorhaben gliedert sich in zwei Projektphasen von je drei Jahren Dauer, beantragt wird die erste Phase. In der 2. Phase ist die numerische Simulation der CO2 Ausbreitung und die Übertragung der Methode auf andere Regionen vorgesehen.
Das Projekt "Teilprojekt: Sauerstoffentzug im Pazifischen Ozean während des Pliozäns" wird vom Umweltbundesamt gefördert und von Universität Hamburg, Fachbereich Geowissenschaften, Institut für Geologie durchgeführt. Der Sauerstoffgehalt der Weltozeane ist notwendig zum Überleben der meisten Organismen und seine Abnahme hat damit einen enormen wirtschaftlichen Einfluss. Weil sich das globale Klima weiter ändert, werden nicht nur die Meere immer wärmer wodurch sie immer weniger Sauerstoff aufnehmen können, auch werden immer mehr Nährstoffe von den Kontinenten in den Meere gespült so dass viele Küstenregionen immer mehr Sauerstoff verlieren. Um den Einfluss des abnehmenden Sauerstoffgehalts auf marine Ökosysteme besser zu verstehen, brauchen wir Rekonstruktionen aus der Vergangenheit um zu verstehen was genau in der Zukunft passieren wird. Foraminiferen sind der ideale 'Proxy' um diese Änderungen zu rekonstruieren, weil sie nicht nur unter niedrigen Sauerstoffbedingungen überleben können sondern sogar auch weiter kalzifizieren, was notwendig ist um die Geochemie der Schalen zu nutzen. Während der Kalzifizierung werden z.B. redox-empfindliche Elemente wie Mangan in den Schalen eingebaut, was als Hinweis für frühere Sauerstoffbedingungen genutzt werden kann. Mit diesem Antrag plane ich, Mn/Ca in Foraminiferen zu nutzen, um zu zeigen wie der Pazifik im späten Pliozän den Großteil seinem Sauerstoffs verloren hat und damit seinen heutigen sauerstoffarmen Zustand erreichte. In diesem Projekt werde ich die nachfolgenden Hypothesen prüfen; zum ersten dass der Pazifik sein Sauerstoffgehalt innerhalb kürzester Zeit, nach dem Beginn der Nordhemisphären Vereisung (ca. 2.7 Ma), durch Wassermassenstratifizierung im Nordpazifik verloren hat; zweitens dass die Stratifizierung im Nordpazifik während des M2-Glazial (ca. 3.3 Ma) für die Abnahme des Sauerstoffgehalts des gesamten Pazifiks verantwortlich war; und drittens dass sich der Sauerstoffgehalt des Pazifik während der ersten Interglaziale (ca. 2.5 Ma) nach dem Beginn der Nordhemisphäre Vereisung zeitweise erholte.
Das Projekt "Einfluss von Schwerewellen auf Eiswolken in der Tropopausenregion (GW-ICE)" wird vom Umweltbundesamt gefördert und von Johann Wolfgang Goethe-Universität Frankfurt am Main, Institut für Atmosphäre und Umwelt durchgeführt. Schwerewellen stellen eine wichtige Komponente im Atmosphärensystem dar. Sie beeinflussen den vertikalen Impuls- und Energietransport und tragen damit entscheidend für verschiedene Zirkulationsmuster bei. Schwerewellen entstehen hauptsächlich in der Troposphäre und propagieren dann durch die Tropopausen Region in die höhere Atmosphäre. Dabei werden ihre Eigenschaften zum Teil verändert. Außerdem können sie durch die induzierten Vertikalgeschwindigkeiten einen großen Einfluss auf die Bildung und Entwicklung von Eiswolken in der Tropopausen Region haben. In diesem Projekt soll die Interaktion von Schwerewellen und Eiswolken in der Tropopausen Region untersucht werden. Dabei soll das in der ersten Phase von MS-GWaves entwickelte WKB-Modell durch Wolkenphysik erweitert werden und dann zur Untersuchung der Wechselwirkung Wellen-Eiswolken benutzt werden. Zusätzlich werden schwerewelleninduzierte Eiswolken mit Hilfe eines Large Eddy Simulation (LES) Modells untersucht. Mögliche Rückkopplungen der Eiswolken auf die Tropopausen Dynamik durch diabatische Effekte werden ebenfalls untersucht. Die Strahlungseffekt der simulierten Eiswolken (WKB Modell oder LES) wird mit Hilfe eines Strahlungstransportmodells abgeschätzt. Damit wird es möglich sein, den Einfluss der Schwerewellen auf Eiswolken und deren Strahlungsbilanz zu untersuchen, mögliche Wechselwirkungen mit der Tropopause abzuschätzen, und genauere Abschätzungen für die Energiebilanz der schwerewelleninduzierten Eiswolken anzugeben.
Das Projekt "Schwerpunktprogramm (SPP) 1889: Regional Sea Level Change and Society (SeaLevel)" wird vom Umweltbundesamt gefördert und von Universität Hamburg, Institut für marine Ökosystem- und Fischereiwissenschaften, Centrum für Erdsystemforschung und Nachhaltigkeit (CEN) durchgeführt.
Das Projekt "Lakes as components of the Tibetan Plateau climate system (LaTiCS): Internal mixing processes and lake-atmosphere interaction" wird vom Umweltbundesamt gefördert und von Forschungsverbund Berlin, Leibniz-Institut für Gewässerökologie und Binnenfischerei durchgeführt. Lakes of the Tibetan Plateau are the major components of the regional climate system. However, mechanisms of heat transport within the lakes and the lake-atmosphere interaction in the Tibetan Plateau remain largely unknown and limit the quantitative understanding of the contribution made by the Tibetan Plateau lake system into regional and global climate variability. The proposed project aims at (i) revealing specific features of the thermal and mixing regime of lakes on Tibetan Plateau at time scales from microturbulent to seasonal ones, and (ii) study the characteristics of energy and water cycle at the interface between atmosphere and lakes. By this, the project will provide unique information about the feedbacks and mechanisms between the thermal regime of lakes and climatic and hydrological factors in the Tibetan Plateau. The specific goals of the project are the following: (i) to understand the characteristics of the heat and mass exchange between lakes and the atmosphere, to qualify the influence factors; (ii) to estimate the thermal characteristics of lakes, their seasonal variability with respect to the heat and mass exchange at the lake-atmosphere interface; (iii) to improve and test the lake parameterization scheme applicable to conditions of the Tibetan Plateau area, and apply it into a regional atmospheric model; (iv) to investigate the feedbacks between Tibetan Plateau lakes and the atmosphere by means of coupled modeling. The outcomes of the project will provide a basis for further projections on the local water resources and regional climate conditions. To achieve the proposed goals the project will combine numerical models with field studies on the largest freshwater lake in the Yellow River source region of the Tibetan Plateau (Ngoring Lake) and the nearby salt lake (Hajiang Salt Pond). The project team joins together the leading group on lake physics from Germany with the meteorological research group from China intensively working on lakes as components of climatic system of the Tibetan Plateau, ensuring by this fundamental and interdisciplinary character of the proposed study.
Das Projekt "Teilprojekt 1 (TROPOS-CF): Aufbau der zentralen ACTRIS Kalibriereinrichtungen des TROPOS und Koordination des Verbundvorhabens" wird vom Umweltbundesamt gefördert und von Leibniz-Institut für Troposphärenforschung e.V. durchgeführt. ACTRIS-D ist der deutsche Beitrag zur pan-europäischen Forschungsinfrastruktur ACTRIS (Aerosol, Clouds and Trace Gases Research Infrastructure) und seit 2019 Teil der Nationalen Roadmap für Forschungsinfrastrukturen. Die Implementierung der nationalen Einrichtungen (National Facilities) und der deutschen Beiträge zu den zentralen europäischen Einrichtungen (Central Facilities) soll über einen Zeitraum von insgesamt acht Jahren erfolgen. Das Verbundvorhaben 'ACTRIS-D Central Facilities' sieht den Auf- und Ausbau der deutschen Topical Centre Units als Teil der Central Facilities mit der Funktion als Kalibrier- und Technologiezentren in ACTRIS vor. Der deutsche Beitrag zu den ACTRIS Central Facilities ist somit essentiell für den späteren Betrieb von ACTRIS. Ziel des Projekts ist es, am Ende der 5 Jahre Projektlaufzeit alle 12 deutschen Topical Centre Units betriebsfähig zu haben, d.h. dass sie die in ACTRIS geforderte Unterstützung beim Betrieb der National Facilities und die Services für andere Nutzer leisten können. Das Teilprojekt 'TROPOS-CF' umfasst alle Arbeiten, die von TROPOS im Rahmen des Verbundvorhabens 'ACTRIS-D Central Facilities' durchgeführt werden. Dazu gehören die Koordination des Verbundvorhabens und der deutschen Topical Centre Units, einschließlich der Einbindung dieser Units in die europäischen ACTRIS-Aktivitäten, sowie die Implementierung von drei Topical Centre Units, die von TROPOS in ACTRIS betrieben werden sollen. Diese drei Topical Centre Units sind das Weltkalibrierzentrum für physikalische Aerosoleigenschaften (World Calibration Centre for Aerosol Physics, WCCAP), das Kalibrierzentrum für organische Spurenstoffe und Aerosolbestandteile (Organic Tracers and Aerosol Constituents Calibration Centre, OGTAC-CC) und das Zentrum für Wolkenwasserchemie (Centre for Cloud Water Chemistry, CCWaC). Erstere sind Teil des in situ Aerosol Topical Centres (CAIS/ECAC), welches vom WCCAP geführt wird, letztere des in situ Wolken Topical Centres (CIS).
Das Projekt "Teilprojekt (16) L03: Diagnose und Parametrisierung von Wirbeln" wird vom Umweltbundesamt gefördert und von Universität Hamburg, Fachbereich Erdsystemwissenschaften, Institut für Meereskunde durchgeführt. Wir quantifizieren die Diffusivität von Wirbeln und untersuchen die Interaktion von Wirbeln mit der mittleren Strömung sowie submesoskaligen Prozessen in Schlüsselregionen des Ozeans mit Hilfe von Lagrange-Partikelstatistik in Ozeanmodellen und Beobachtungen. Die Datengrundlage liefert ein Drifterexperiment und in-situ Beobachtungen an der Benguela-Auftriebsfront. Zusätzlich entwickeln wir eine energetisch konsistente Parametrisierung von meso- und submesoskaligen Prozessen welche wir für den globalen Ozean testen werden, wobei der Fokus auf Skalen von 100 km - 1 km liegt.
Origin | Count |
---|---|
Bund | 343 |
Type | Count |
---|---|
Förderprogramm | 343 |
License | Count |
---|---|
offen | 343 |
Language | Count |
---|---|
Deutsch | 274 |
Englisch | 137 |
Resource type | Count |
---|---|
Keine | 201 |
Webseite | 142 |
Topic | Count |
---|---|
Boden | 244 |
Lebewesen & Lebensräume | 236 |
Luft | 242 |
Mensch & Umwelt | 343 |
Wasser | 222 |
Weitere | 336 |