Das Projekt "Culture experiments on the environmental controls of trace metal ratios (Mg/Ca, B/Ca, U/Ca) recorded in calcareous tests of bipolar deep-sea benthic foraminifera" wird vom Umweltbundesamt gefördert und von Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung durchgeführt. The Polar eans are our most important climate amplifiers: First, the production of polar deep waters drives the Global Thermohaline Conveyer Belt, and thus, climate. Second, the Antarctic deep water during glacial time was, disputably still is, the largest marine sink of atmospheric CO2. Employment of effective and fossilisable proxies on changes in the physical and geochemical properties is essential to assess glacial-interglacial variabilities, modern and future changes in bipolar deep-waters. In this respect, analyses on trace metal (Mg/Ca, U/Ca, B/Ca) ratios recorded in tests of foraminifers to estimate calcification temperatures, alkalinity, carbonate ion saturation, and pH are common methods. However, for the Arctic and Southern Ocean deep-sea benthic foraminifera calibration curves constrained by either core-top samples or culture experiments are lacking. Newly developed high-pressure aquaria have recently facilitated the first efficient cultivation (producing offspring) of our most trusted palaeodeep-water recorders Fontbotia wuellerstorfi and Uvigerina peregrina. In different experimental set-ups the same facilities will be used to cultivate these foraminifera and associated species at different temperatures and in waters with different carbonate chemistries to establish the first species-specific trace metal calibration curves for both Polar Oceans. Core top analyses on more than 150 core sites from both oceans will verify the experimental results.
Das Projekt "Teilprojekt B 04: Partikelaustausch an der Luft-Wasser-Grenzfläche" wird vom Umweltbundesamt gefördert und von Universität Bayreuth, Fakultät für Mathematik und Physik, Physikalisches Institut durchgeführt. Fällt ein Regentropfen auf eine Wasseroberfläche oder platzt dort eine Gasblase, so wird in einem komplizierten strömungsmechanischen Prozess eine Vielzahl kleinster Tröpfchen produziert und in die Luft geschleudert. Diese Tröpfchen können ursprünglich im Wasser vorhandene Mikroplastikpartikel in die Luft übertragen. Da sowohl Regen als auch platzende Gasblasen in natürlichen und technischen Systemen wie Ozeanen, Pfützen oder Kläranlagen extrem häufige Ereignisse sind, liegt hier ein potenziell hochrelevanter Migrationspfad von Mikroplastik aus der Hydro- in die Atmosphäre vor. Dieser Prozess soll im vorliegenden Projekt durch eine Kombination aus Modell-Experimenten und Computersimulationen im Detail untersucht und verstanden werden.
Das Projekt "Teilprojekt: Bestimmung von Wärmeänderungen im Ozean durch Kombination von Satellitengravimetrie, Argo und Radaraltimetrie - ROCSTAR" wird vom Umweltbundesamt gefördert und von Universität Bonn, Institut für Geodäsie und Geoinformation, Professur für Astronomische, Physikalische und Mathematische Geodäsie durchgeführt. Veränderungen der Ozeanwärme sind eng mit dem Wärmefluss an der Ozean-Atmosphärengrenze verbunden und spielen daher eine wic--htige Rolle bei der Regulierung des Erdklimas. Allerdings weisen in-situ-Messungen immer noch hohe Ungenauigkeiten auf und sind nur in wenigen Regionen in ausreichender Anzahl vorhanden. ROCSTAR wird neue Einsichten in das Energiebudget der Erde durch die verbesserten Schätzungen der ozeanischen Temperatur (T) und des Salzgehalts (S) liefern. Durch die Kombination der geodätischen Raumverfahren mit Argo-Profilen, werden gleichzeitig die Temperatur, der Salzgehalt und regional variierende Meeresspiegelbeiträge ermittelt. Die daraus resultierenden Schätzungen umfassen die gesamte Ozeansäule und die zugehörigen sterischen Änderungen werden sowohl mit dem beobachteten Meeresbodendruck als auch mit den Meeresspiegelanomalien konsistent sein. Vor diesem Hintergrund verfolgt das Projekt folgende Ziele:1. Erhöhung der Genauigkeit der in sich konsistenten T- und S-Felder und Bereitstellung von realistischen Fehlerschätzungen2. Ermittlung der T- und S-Schätzungen in Regionen mit wenigen Beobachtungen und in den Tiefen des Ozeans3. Quantifizierung der Rolle, welche die flachen und tiefen Schichten des Ozeans in der Energiebilanz der Erde und im Meeresspiegel-Budget spielen4. Identifizierung und Untersuchung von Ozeanwärmehotspots und deren Verbindung zum terrestrischen Wasserkreislauf im Südosten Asiens. ROCSTAR wird innerhalb des SPP1189-Schwerpunkts WPA (Ursprung der regionalen Meeresspiegeländerungen) angesiedelt sein. Das Projekt befasst sich mit globalen Beobachtungen, führt aber intensive Untersuchungen im indischen Ozean und Westpazifik durch, welche die Hauptquellen für Feuchtigkeit, Zyklon und Taifun Entwicklung in der südostasiatischen Region darstellen. Darüber hinaus wird ROCSTAR aktiv an den Öffentlichkeitsarbeiten des SPPs teilnehmen und ein konzeptionelles Brettspiel entwickeln, um Nicht-Wissenschaftlern das regionale Meeresspiegelbudget näher zu bringen.
Das Projekt "Teilprojekt: Modellierung saisonaler vertikaler Migrationen bei marinem Zooplankton" wird vom Umweltbundesamt gefördert und von Helmholtz-Zentrum für Ozeanforschung Kiel (GEOMAR) durchgeführt. Die saisonale vertikale Migration (SVM) beim marinem Zooplankton spiele potentiell eine Schlüsselrolle für die Primär- und Exportproduktion in höheren Breiten mit ausgeprägter Saisonalität. SVM ist ein wichtiger Teil des Verhaltens vieler mariner Zooplanktongemeinschaften in höheren Breiten, das ihnen ermöglicht, die bei der Frühjahrsblüte gebildete Biomass effizient zu nutzen. Geeignete Tage für den SVM Aufstieg im Frühjahr und den SVM Abstieg im Sommer sind wichtig, um die Verfügbarkeit von Futter zu maximieren und die Gefahr des Gefressenwerdens zu minimieren: wer zu früh oder zu spät aufsteigt, riskiert zu verhungern und wer zu spät absteigt wird leichter gefressen (Match-Mismatch-Hypothese). SVM tritt in niederen Breiten wenig bis gar nicht auf. Wegen dieser Komplikationen berücksichtigen die meisten biogeochemischen Modelle nur das Fraßverhalten, aber nicht die SVM des Zooplanktons. SVM wurde in Individuen-basierten Modellen (IBM) simuliert, um die saisonale Entwicklung und regionale Verteilung von Copepoden und deren Entwicklungsstadien zu untersuchen. IBM sind aber zu rechenintensiv für eine Anwendung in globalen 3D Modellen, insbesondere für Langzeitsimulationen. In vorangegangenen Projekten zu biogeochemischer Modellierung haben wir signifikante Diskrepanzen zwischen beobachteter und modellierter Sekundärproduktion beobachtet, die höchstwahrscheinlich auf das Fehlen von SVM im Modell zurückgehen. Hier wollen wir einfachere, trait- und optimalitäts-basierte SVM Modelle für globale Langzeitsimulationen entwickeln. Dabei können wir auf unsere bisher entwickelten Methoden zurückgreifen, um zu untersuchen, wie Traits, z.B. Tag des Aufstiegs oder Grad-Tage, das SVM Verhalten und seine Evolution steuern. Wir werden, zunächst in 1D und später auch in 3D biogeochemischen Modellen, trait-basierten SVM Beschreibungen entwickeln, um die treibenden Kräfte des SVM Verhaltens zu analysieren. Das Hauptziel ist dabei zu verstehen, welche Umweltfaktoren die Evolution von SVM Verhalten lokal bestimmen und wie sie globale Verteilungsmuster im SVM Verhalten und dessen Effekte auf Plankton-Ökologie und -Biogeochemie beeinflussen. Anschließend werden wir das Potential von SVM untersuchen, das Verhalten globaler Modelle zu verbessern, z.B. bezüglich der Verteilungen von Nährstoffen und Exportproduktion. Schließlich möchten wir SVM Effekte in Langzeitsimulationen vergangener und zukünftiger Klima-Szenarien analysieren. Unser Projekt bringt enge Verbindungen zwischen DynaTrait und anderen großen Forschungsprojekten mit sich, wobei DynaTrait vom DFG-finanzierten SFB 754 zu Sauerstoff-Minimum-Zonen und dem BMBF-finanzierten PalMod Projekt zu Langzeit-Klimasimulationen profitiert, aber auch einen Beitrag zu diesen Projekten leistet. Dadurch kann die Sichtbarkeit und Relevanz von DynaTrait für die globale Modellierung deutlich verbessert werden.
Das Projekt "Teilprojekt: Zuordnung von Verantwortlichkeit für durch Gletscher verursachte, regionale Meeresspiegeländerungen" wird vom Umweltbundesamt gefördert und von Universität Bremen, Institut für Geographie, Arbeitsgruppe Klimageographie durchgeführt. Abschmelzende Gletscher liefern einen von drei Hauptbeiträgen zum globalen Meeresspiegelanstieg, zusammen mit der Wärmeausdehnung des Meereswassers und den Massenverlusten der Eisschilde in Grönland und der Antarktis. Im 20. Jahrhundert waren sie sehr wahrscheinlich die Hauptursache des Meeresspiegelanstiegs. In den kommenden Jahrhunderten wird der Massenverlust von Grönland und der Antarktis signifikant steigen, während der Gletscherbeitrag durch ihre relativ geringe Größe begrenzt wird. Dieser Anteil wird im 21. Jahrhundert jedoch beträchtlich und über die nächsten mindestens 300 Jahre nicht unbedeutend bleiben. Ein anthropogener Beitrag zur Gletscherschmelze ist in der zweiten Hälfte des 20. Jahrhunderts eindeutig feststellbar, und in den vergangenen Jahrzehnten sind anthropogene zu den Hauptursachen der Gletscherschmelze geworden. Die Reaktion der Gletscher auf Treibhausgasemissionen hängt jedoch von der zeitlichen Abfolge der Emissionen ab. Das zentrale Ziel des beantragten Projekts ist es, die Zuordnung von Verantwortlichkeiten für durch Gletscher verursachte, regionale Meeresspiegeländerungen zu spezifischen Emissionspfaden der Vergangenheit zu ermöglichen. Im Einzelnen werden wir- die Klimasensitivität der globalen Gletschermasse unter Berücksichtigung ihrer Abhängigkeit vom Grundzustand des Klimasystems quantifizieren;- die räumliche Verteilung dieser Sensitivität berechnen, wobei zwischen verschiedenen Strahlungsantriebsmechanismen unterschieden wird (d. h. CO2 und andere langlebige Treibhausgase, Aerosole und Landnutzungsänderung);- regionale Meeresspiegeländerungen ermitteln, die durch die Reaktion der Gletscher auf den Strahlungsantrieb des Klimasystems verursacht werden, wieder mit Unterscheidung verschiedener Mechanismen;- die Informationen über regionale Meeresspiegelmuster mit bestimmten realen, historischen Emissionspfaden (z. B. denen individueller Länder) verbinden, um Verantwortlichkeiten für durch Geltscher verursachte regionale Meeresspiegeländerungen Verursachern zuzuordnen;- die zeitliche Entwicklung von durch Gletscher verursachter Meeresspiegeländerungen ermitteln, die von einem bestimmten Emissionspfad verursacht wurden;- den Ansatz validieren durch Anwendung des globalen Gesamtstrahlungsantriebs, um entsprechende globale Gletschermassenverluste zu rekonstruieren, sowie durch Vergleiche mit Beobachtungsdaten von Gletschern. Mithilfe dieser Schritte wird es uns beispielsweise möglich, Fragen wie die folgenden zu beantworten:- Wie gestaltet sich die Verantwortlichkeit Deutschlands - angesichts seines historischen Emissionspfades - für durch Gletscher verursachte Meeresspiegeländerungen in Indonesien?- Wie viel dieser Meeresspiegeländerungen ist bereits erfolgt, und wie war der zeitliche Ablauf?- Wie viel Meeresspiegeländerung wird in Zukunft erfolgen, und wie wird zeitliche Ablauf sein?- Was sind die Unsicherheiten bei dieser Zuordnung von Verantwortlichkeit?
Das Projekt "Teilprojekt (18) S02: Verbesserte Parametrisierungen und Numerik in Klimamodellen" wird vom Umweltbundesamt gefördert und von Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung - Fachbereich Klimawissenschaften durchgeführt. Das Ziel dieses Projektes ist es, neue Parametrisierungen und numerische Algorithmen zur Verbesserung der Energiekonsistenz in die Ozeankomponenten der neuen Erdsystemmodelle, die momentan in Deutschland entwickelt werden, zu implementieren. Das Projekt wird ebenfalls die Entwicklung und Implementierung von neuen atmosphärischen Parametrisierungen unterstützen. In Zusammenarbeit mit den anderen Projekten im SFB/TRR wird das Projekt einen Rahmen für die Synthese der gemeinsamen Arbeit liefern und dient - zusammen mit S1 - als ein Erfolgskriterium.
Das Projekt "Teilprojekt B 05: Verhalten von Mikroplastik im System Landoberfläche-Atmosphäre und gegliedertem Gelände" wird vom Umweltbundesamt gefördert und von Technische Universität Berlin, Institut für Technischen Umweltschutz durchgeführt. Mikroplastik wird zwischen Land- und Wasseroberflächen und der Atmosphäre ausgetauscht und kann luftgetragen über weite Strecken transportiert werden, bevor die Mikroplastikpartikel wieder aus der Atmosphäre entfernt und abgelagert werden. Obwohl diese Transportprozesse für die Verteilung und die wirksamen Abbaumechanismen von Mikroplastik sehr wichtig sind, gibt es bislang keine systematischen Untersuchungen zum atmosphärischen Transport von Mikroplastik. Der luftgetragene Transport von Mikroplastik wird im vorliegenden Teilprojekt in einem Windkanal als idealisiertem Modellsystem experimentell untersucht und mit einem strömungsauflösenden Transportmodell numerisch simuliert, um die grundlegenden Prozesse verstehen und quantifizieren zu können.
Das Projekt "Teilprojekt: Diversitätseffekte von trait-basierten Zooplanktonfraßbeziehungen in einem globalen Ökosystemmodell" wird vom Umweltbundesamt gefördert und von Helmholtz-Zentrum für Ozeanforschung Kiel (GEOMAR), Forschungsbereich 2: Marine Biogeochemie, Forschungseinheit Biogeochemische Modellierung durchgeführt. Der fortlaufende Verlust von Biodiversität, der in verschiedensten Ökosystemen beobachtet wird, wirft die Frage auf, wie Diversität ökologische und biogeochemische Prozesse im pelagischen Ozean beeinflusst. Globale biogeochemische Modelle werden derzeit zur Untersuchung von Interaktionen zwischen Diversität und biogeochemischen Kreisläufen herangezogen, legen ihren Schwerpunkt aber auf mehr oder weniger detaillierte Beschreibungen und simulierte Verteilungen des Phytoplanktons. In solchen Modellen können jedoch die Fraßbeziehungen des Zooplanktons die Diversität und Struktur der Planktongemeinschaft entscheidend beeinflussen, und somit auch Ökosystemfunktionen des Ozeans wie Primärproduktion und Export von organischem Material in die Tiefsee. Fraßbeziehungen in solchen Modellen zeichnen sich typischerweise durch stark vereinfachte, statische Beziehungen und vorgeschriebene trophische Verbindungen zwischen funktionalen Gruppen des Phyto- und Zooplanktons aus. Solche starren Fraßformulierungen können die Fähigkeit des Modells, Reaktionen der Planktongemeinschaft auf biotische und abiotische Veränderungen darzustellen, behindern. Im Gegensatz dazu sind alternative Modellierungsansätze, die mehr Plastizität erlauben, wie z.B. optimalitätsbasierte Modelle oder sogenannte Adaptive-Dynamics-Modelle, besser geeignet, Diversitätseffekte aufzulösen. Sie können so möglicherweise das Potential eines Modells vergrößern, auf sich ändernde Umwelteinflüsse, wie sie z.B. im Zuge des Globalen Wandels erwartet werden, zu reagieren. Solche Modellansätze wurden bisher allerdings nicht für die globale Ebene eingesetzt. In diesem Projekt wollen wir die Rolle von Planktoncharakteristika, sog. traits, und -ökologie, insbesondere Diversität und Struktur der Gemeinschaft, in biogeochemischen Kreisläufen untersuchen, indem wir flexible Fraßstrategien in ein state-of-the-art globales Biogeochemie-Ökologie-Zirkulationsmodell einbinden. Wir werden Prozessmodelle aus der Literatur und zu einem späteren Zeitpunkt aus Dynatraitprojekten, die für spezifische Bedingungen, Experimente oder Orte entwickelt worden sind, auf die globale Ebene extrapolieren. Dieses upscaling ermöglicht es uns, Effekte von trait-Plastizität und -variabilität auf großskalige Diversitätsmuster unter verschiedenen Umweltbedingungen, die zeitliche und räumliche Rahmenbedingungen vorgeben, zu bewerten. Konkrete Fragestellungen innerhalb dieses Ansatzes sind: 1. Wie beeinflussen flexible trophische Beziehungen die simulierten regionalen und globalen Muster von Diversität und Struktur der Planktongemeinschaften im Vergleich zu traditionellen, starren Formulierungen? 2. Wie beeinflusst Zooplanktondiversität (bisher nicht in globalen Modellen repräsentiert) die simulierte Dynamik und Diversität von Planktongemeinschaften sowie Ökosystemfunktionen? 3. Wie beeinflussen simulierte zukünftige Umweltänderungen die Planktondynamik und die Beziehung zwischen Diversität und großskaligen Ökosystemfunktionen?
Das Projekt "Teilprojekt: Variabilität und Kosten (Trade-offs) nährstoffrelevanter Merkmale - adaptive Evolution und Ökosystemfunktion in konkurrierendem Phytoplankton" wird vom Umweltbundesamt gefördert und von Helmholtz-Zentrum für Ozeanforschung Kiel (GEOMAR) durchgeführt. Phytoplanktongemeinschaften im Meer sind weitgehend durch das Nährstoffregime reguliert. Dabei selektieren beide Aspekte, die Konzentration und die Stoichiometrie der Nährstoffe, für bestimmte nährstoffrelevante Merkmale wie die maximale Aufnahmerate (Vmax) und Halbsättigungskonstante (Kn). Die Ausprägung dieser Merkmale mit den zugehörigen Kosten (Trade-offs) prägen die ökologische Nische, die Konkurrenzfähigkeit, und letztendlich die Umsetzung der gelösten Nährstoffe in Primärproduktion als Maß einer wichtigen Ökosystemfunktion des Phytoplanktons. Zu Verstehen bleibt die Rolle der intra- und interspezifischen Variabilität von nährstoffrelevanten Merkmalsausprägungen für adaptive evolutive Dynamiken. Genauso wenig untersucht ist die Konsequenz der Variabilität für Primärproduktion in verschiedenen Nährstoffregimen. In diesem Projekt zielen wir auf zwei wichtige Phytoplanktongruppen, Diatomeen und Coccolithophoriden, ab, die sich fundamental in ihren Strategien zur Nährstoffaufnahme (affinity vs. velocity adaptiert für N und P) unterscheiden. Als Funktion der Diversität und Nährstoffregime werden öko-evolutive Dynamiken des Phytoplanktons über die Zeit beobachtet und deren Konsequenz für die Ökosystemfunktion untersucht. Dies ist insbesondere aufgrund der zunehmenden Nährstofflimitation durch verstärkte Stratifizierung in vielen ozeanischen Regionen relevant. Dieses Projekt umfasst experimentelle Öko-Evolution, molekulare Ansätze sowie voraussagende Modellierung, um die folgenden Hypothesen zu testen: (1) Adaptive Evolution hin zu optimaler Nährstoffnutzung der Zielart ist verlangsamt, wenn das zu besetzende Merkmalsspektrum einer Nische bereits durch die Präsenz einer gut angepassten Konkurrenzart eingenommen ist; (2) Die Ökosystemfunktion des Phytoplanktons ist zusammenwirkend durch öko-evolutive Dynamiken der inner- und zwischenartlichen Diversität von nährstoffrelevanten Merkmalen reguliert und hängt von dem durch die jeweiligen Arten besetzten Merkmalsspektrum einer Nische ab. Die geplanten experimentellen Arbeiten werden durch vorhersagende Modellierung basierend auf nährstoffrelevanten Merkmalen sowie durch Untersuchungen nährstoffrelevanter Genexpression untermauert.
Origin | Count |
---|---|
Bund | 9 |
Type | Count |
---|---|
Förderprogramm | 9 |
License | Count |
---|---|
open | 9 |
Language | Count |
---|---|
Deutsch | 9 |
Englisch | 9 |
Resource type | Count |
---|---|
Webseite | 9 |
Topic | Count |
---|---|
Boden | 5 |
Lebewesen & Lebensräume | 6 |
Luft | 8 |
Mensch & Umwelt | 9 |
Wasser | 9 |
Weitere | 9 |