Das Projekt "Forschergruppe (FOR) 1525: INUIT - Ice Nuclei research UnIT, Heterogende Eisnukleation ausgelöst durch poröse Materialien" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Universität Bielefeld, Fakultät für Chemie, Arbeitsgruppe Physikalische Chemie II.Die Nukleation von Eispartikeln spielt eine wichtige Rolle bei der Wolken- und Niederschlagsbildung, mit Konsequenten für die atmosphärische Chemie, die Wolkenphysik und das Erdklima. Für eine Quantifizierung und Vorhersage des Einflusses von Wolken in Wettervorhersage- und Klimamodellen muss die Bildung von Eispartikeln daher in einer realistischen Art und Weise beschrieben werden. Einer der wichtigen Bildungsmechanismen ist dabei die heterogene Eisnukleation im Immersionsmodus, bei dem Eis an der Oberfläche eines in einem wässrigen Tröpfchen suspendierten Eiskeims - zum Beispiel eines Mineralstaub- Partikels - gebildet wird. Wir werden im Rahmen dieses Forschungsprojekts zahlreiche Gefrierexperimente im Immersionsmodus durchführen. So werden eine Reihe verschiedener, als Aerosolpartikel in der Atmosphäre vorkommende Materialien auf ihre Eisnukleationseigenschaften hin untersucht werden. Insbesondere sollen hier die Temperatur- und Zeitabhängigkeit der von diesen Materialien ausgelösten Eisnukleation quantifiziert werden. Dabei werden wir spezielles Augenmerk auf die systematische Untersuchung der von porösen Materialien ausgelösten Eisnukleation legen. Es sollen sowohl synthetische Materialien wie beispielsweise mesoporöse Silikate untersucht werden, als auch natürlich vorkommende Materialien wie etwa mikroporöse Zeolithe.
Das Projekt "Schwerpunktprogramm (SPP) 2248: Polymer-basierte Batterien; Priority Program (SPP) 2248: Polymer-based batteries, Aufklärung von Degradationsmechanismen in Polymer-basierten Dual-Ionen-Batterien und Entwicklung von Strategien zur Leistungsoptimierung" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Westfälische Wilhelms-Universität Münster, MEET Batterieforschungszentrum.Polymer-basierte Batterien gelten als aussichtsreiche Kandidaten für eine nachhaltige Energiespeicherung, was u.a. motiviert wird durch einen reduzierten Energieverbrauch bei der Herstellung, eine einfachere Recyclingfähigkeit sowie die Verwendung leicht zugänglicher Materialien und dem Austausch kritischer Metalle. Aktuell leiden Polymer-basierte Batterien jedoch unter diversen Herausforderungen hinsichtlich ihrer elektrochemischen Performanz, insbesondere einer geringen Energiedichte oder nicht ausreichender Zyklenstabilität. Zudem fehlt aktuell noch ein grundlegendes Verständnis bzgl. der Kapazitätsverluste der Zellen sowie der auftretenden Alterungsmechanismen an den Elektroden/Elektrolyt-Grenzflächen. In diesem Projekt soll ein Spezialtyp einer Polymer-basierten Batterie systematisch untersucht werden, eine sogenannte Polymer-basierte Dual-Ionen-Batterie (DIB), welche organische Materialien des n- und p-Typs zur simultanen Speicherung von Kationen und Anionen verwendet. Das DIB-System unterscheidet sich von klassischen Polymer-Batterien basierend auf dem Kationen- oder Anionen-'Rocking-Chair'-Prinzip, da hier nicht nur eine Ionensorte, sondern sowohl Kationen als auch Anionen beteiligt sind. Dieses Speicherprinzip bietet verschiedene Vorteile, wie u.a. eine hohe Variabilität möglicher Kation-Anion-Paare sowie typischerweise eine hohe Zellspannung, die durch geeignete Polymermaterialien erreicht werden kann. Zur Entwicklung Polymer-basierter DIB-Systeme mit verbesserter Energiedichte und Stabilität werden in diesem Projekt verschiedene Strategien adressiert: (I) Design neuartiger Polymermaterialien mit höherem Arbeitspotential für die positive Elektrode ('Spannungstuning'), (II) Entwicklung von Hybridsystemen wie Graphit / Polymer mit hoher Zellspannung, (III) Entwicklung von 'All-Polymer'-DIB-Systemen, mit verschiedenen Konzepten wie der Entwicklung ambipolarer Polymersysteme sowie sogenannter 'Reverse-All-Polymer-DIB-Systeme'. Die verschiedenen Polymer-DIB-Systeme sollen hinsichtlich ihrer elektrochemischen Performanz umfassend untersucht werden, wobei der Einfluss der Elektrolytformulierung und der gebildeten 'Interphasen' auf die reversible Kapazität und Stabilität während der Lade-/Entladezyklisierung im Vordergrund der Untersuchungen stehen. Zu diesem Zweck werden verschiedene ex-situ und in-situ Analysen durchgeführt, um wichtige und umfassende Einblicke in die mechanistischen Eigenschaften der Kationen- bzw. Anionen-Speicherung, die Stabilität der Polymermaterialien und die Rolle der 'Interphasen' zu erhalten. Es wird erwartet, dass die in diesem Projekt gewonnenen grundlegenden Erkenntnisse für die Entwicklung verbesserter polymerer Aktivmaterialien und optimierter Elektrolyte für Polymer-basierte DIB-Zellen mit hoher Energiedichte und Zyklenstabilität von großer Bedeutung sind.
Das Projekt "Deutsch-Italienischer Workshop, Chemical Processes in the Troposphere and Related Problems in Urban Air in Eltville/Rheingau" wird/wurde gefördert durch: Deutsche Bundesstiftung Umwelt. Es wird/wurde ausgeführt durch: Universität-Gesamthochschule Wuppertal, Fachbereich 9 Naturwissenschaften II, Physikalische Chemie.
Das Projekt "Charakterisierung und Dekontamination von i-Grafiten" wird/wurde gefördert durch: Bundesministerium für Bildung und Forschung. Es wird/wurde ausgeführt durch: Hochschule Mannheim, Institut für Physikalische Chemie und Radiochemie.
Das Projekt "FH-Impuls 2016 I: LaNDER³ - Explorativprojekt 3 (EXP3) Abtrennung und Aufarbeitung der anorganischen Fraktion von Fermentationsbrühen nach mikrobiellem Faseraufschluss" wird/wurde gefördert durch: Bundesministerium für Bildung und Forschung. Es wird/wurde ausgeführt durch: Hochschule Zittau/Görlitz, Fakultät Natur- und Umweltwissenschaften, Professur für Physikalische Chemie.
Das Projekt "Aufbau eines Wasserstoff-Kompetenzzentrums in Braunschweig" wird/wurde ausgeführt durch: Universität Hamburg, Fachbereich Chemie, Institut für Physikalische Chemie.
Das Projekt "Photochemische Stabilitaet einfacher Nitrosaminverbindungen unter atmosphaerischen Bedingungen" wird/wurde ausgeführt durch: Universität Konstanz, Lehrstuhl für Physikalische Chemie I.Nitrosamine sind ausgesprochen starke Karzinogene. Ihre Bildung im Magen durch die mit der Nahrung oder Pharmakas aufgenommenen Vorstufen gilt als gesichert. In Loesungen zersetzen sie sich beim Bestrahlen mit Sonnenlicht relativ schnell. Das Vorkommen von Nitrosaminen in der Atmosphaere und damit ihr Einatmen wurde bisher nicht in Erwaegung gezogen, da man auch unter diesen Bedingungen mit einer schnellen photochemischen Zersetzung durch das Sonnenlicht rechnete. Dieser Aufnahme stehen die 1975 in der Atemluft einiger amerikanischer Grosstaedte entdeckten Nitrosaminkonzentrationen entgegen. Bis Heute liegen jedoch keine detaillierten Untersuchungen ueber das Verhalten der Nitrosamine unter atmosphaerischen Bedingungen (Gasphase) vor. Die Aufklaerung des physikalisch-chemischen Verhaltens der Nitrosamine in der Gasphase koennte der Krebsforschung und dem Gesetzgeber neue Erkenntnisse und Entscheidungshilfen geben.
Das Projekt "Photoreaktor Atmosphäre" wird/wurde gefördert durch: BASF SE / Fonds der Chemischen Industrie im Verband der Chemischen Industrie e.V. (Fonds,VCI) / Ministerium für Innovation, Wissenschaft und Forschung des Landes Nordrhein-Westfalen / Sachtleben Chemie GmbH. Es wird/wurde ausgeführt durch: Universität Wuppertal, Fachgruppe Chemie und Biologie, Arbeitsgruppe Chemische Mikrobiologie.Im Rahmen des EU-Projekts Environmental Science Published for Everybody Round the Earth - Educational Network on Climate (EU-Projekt Nr. HPRP-CT-2002-00002) wurden Materialien zu 8 Themenfeldern (troposphärische Prozesse, stratosphärische Prozesse, anthropogene Emissionen, Wetter, Aerosole und Tropfen, Ozeanographie, Landwirtschaft und Klima, Zukunftsszenarien) für das Internet entwickelt, geprüft und eingebunden. Ein Baustein mit Unterrichtsmaterialien zum Thema Ozon wurde bereits erstellt und ist unter www.lehrer-online.de (Fach Chemie - Unterrichtspraxis - Ozon) zu finden. Der aktuelle Stand von ESPERE ist unter www.espere.net einzusehen. Die Erforschung und Entwicklung von Experimenten und didaktischen Bausteinen zur Chemie im Zweikammer-Photoreaktor Atmosphäre wird im Rahmen des Exzellenzclusters The Reacting Atmosphere, der federführend von der Physikalischen Chemie an der Bergischen Universität eingerichtet wird, fortgeführt. Die Ergebnisse werden im didaktischen Forschungsprojekt des Studiengangs Master of Education sowie in Workshops mit Chemielehrerinnen und -lehrern eingesetzt und evaluiert.
Das Projekt "Von Kohlenhydraten aus sekundären Rohstoffquellen zu Chemierohstoffen, CARBO-DIOL2.0 - Von Kohlenhydraten aus sekundären Rohstoffquellen zu Chemierohstoffen" wird/wurde ausgeführt durch: Universität Bayreuth, Fakultät für Biologie, Chemie und Geowissenschaften, Arbeitsgruppe Physikalische Chemie V: Theorie und maschinelles Lernen.
Das Projekt "Biogasaufbereitung und mikrobielle Proteinproduktion durch Anreicherung phototropher und schwefeloxidierender mikrobieller Konsortien, Bioökonomie International 2024: BioGas2protein -Biogasaufbereitung und mikrobielle Proteinproduktion durch Anreicherung phototropher und schwefeloxidierender mikrobieller Konsortien" wird/wurde ausgeführt durch: Universität Leipzig, Institut für Biochemie, Professur für Physikalische Chemie, Forschungs- und Transferzentrum für bioaktive Materie b-ACT matter.
Origin | Count |
---|---|
Bund | 311 |
Land | 1 |
Wissenschaft | 1 |
Type | Count |
---|---|
Förderprogramm | 310 |
Text | 2 |
License | Count |
---|---|
geschlossen | 3 |
offen | 309 |
Language | Count |
---|---|
Deutsch | 307 |
Englisch | 16 |
Resource type | Count |
---|---|
Keine | 229 |
Webseite | 83 |
Topic | Count |
---|---|
Boden | 183 |
Lebewesen & Lebensräume | 186 |
Luft | 191 |
Mensch & Umwelt | 312 |
Wasser | 175 |
Weitere | 305 |