Das Projekt "Von der Geburt bis zum Wachstum von metastabilen Metalloxiden in Ionischen Flüssigkeiten" wird vom Umweltbundesamt gefördert und von Leibniz Universität Hannover, Institut für Anorganische Chemie (ACI) durchgeführt. Es ist in der Chemie allgemein bekannt, dass die Energie von Übergangzuständen durch das umgebende Lösungsmittel beeinflusst werden kann und man so auch auf den Reaktionsverlauf einwirken kann. In den Materialwissenschaften können nanodimensionierte Keime als solche Übergangszustände angesehen werden, die für die Steuerung der Partikelform oder von alternativen Kristallstrukturen eingesetzt werden. In beiden Fällen ist man sehr oft an thermodynamisch weniger begünstigten, d. h. metastabilen Produkten interessiert, im vorliegenden Fall also ungewöhnlichen Formen oder Polymorphen. Neben der Kristallstruktur bedingt auch die Form eines Partikels seine Eigenschaften, da diese mit der Art und Häufigkeiten bestimmter, zu Netzebenen korrespondierender Oberflächen korreliert. Um die genannten, metastabilen Produkte erhalten zu können, ist es notwendig die festen Phasen durch kinetisch kontrollierte Reaktionswege generieren zu können. Die Hauptaufgabe des Projektes besteht in der Untersuchung der Effekte von hochpolaren, aber nicht-wässrigen Lösungsmittelumgebungen (Ionische Flüssigkeiten) auf die Bildung von metastabilen Partikelzuständen: Formen, welche von der thermodynamisch stabilsten Form (Wulff-Form) abweichen, und die Ausbildung von polymorphen Kristallstrukturen. Wir werden die genannten, kinetisch-kontrollierten Bedingungen durch die Kombination von Molekülchemie mit Materialsynthese und verfeinerten in situ-Untersuchungen realisieren. Es werden von uns hochreaktive Organometallprecursoren eingesetzt werden, um wichtige Metalloxide mit Halbleitercharakter z. B. Zinkoxid (ZnO) oder Manganoxide (MnxOy) herzustellen. Eine besondere Herausforderung stellt die Synthese von neuartigen Precursoren dar, die in einem Molekül widerstrebende Gruppen enthalten (z. B. oxidierend und reduzierend). Dadurch soll die Bildung von Partikeln bereits bei sehr niedrigen Temperaturen, nahe Raumtemperatur oder darunter, oder sogar durch nicht-konventionelle Trigger wie Licht initiiert werden. Wir werden eine fundierte Wissensbasis nicht nur dadurch erarbeiten, dass die erhaltenen Produkte genauestens untersucht werden, sondern auch dadurch, dass umfangreiche Röntgen-Streuuntersuchungen (Klein- und Weitwinkel) in einem in situ-Modus durchgeführt werden. Hier kommt der Vorteil der genannten Übergangsmetalloxide zum Tragen, da diese eine höhere Elektronendichte im Vergleich zu den organischen, ionischen Flüssigkeiten aufweisen und somit Streuuntersuchungen mit hoher tempospatialer Auflösung ermöglicht werden. Wir werden somit die sehr frühen Abschnitte der Bildung der Partikel beobachten, um der Frage nachzugehen, an welchem Punkt die Festlegung von Partikelform und Kristallstruktur geschieht.
Das Projekt "Elektrochemische Synthese funktionaler Edelmetallverbindungen in Ionischen Flüssigkeiten" wird vom Umweltbundesamt gefördert und von Justus-Liebig-Universität Gießen, Physikalisch-Chemisches Institut durchgeführt. In diesem Projekt sollen elektrochemische Methoden zur Synthese neuer, funktionaler Verbindungen und zur strukturierten Abscheidungen der Edelmetalle Silber, Gold, Palladium und Platin eingesetzt werden. Bei der Synthese werden die besonderen Eigenschaften ionischer Flüssigkeiten ausgenutzt, insbesondere ihre hohe Stabilität gegen Reduktion und Oxidation. Es werden drei unterschiedliche Reaktionswege verfolgt. Zum einen ist dies die Abscheidung von Edelmetallverbindungen auf einer Edelmetallelektrode. Dieser Weg soll vor allem für die Präparation von Oxiden und Fluoriden der Metalle eingesetzt werden. Zum anderen sollen Edelmetallelektroden in den ionischen Flüssigkeiten oxidativ aufgelöst und in der erhaltenen Lösung in Folgereaktionen umgesetzt werden. Auf diesem Wege sollen vor allem Sulfide und oxoanionische Verbindungen dargestellt werden. Beide Routen bieten die Möglichkeit durch gezielte Einstellung der elektrochemischen Syntheseparameter definierte Oxidationsstufen der Metalle in ihren Verbindungen einzustellen, eine Möglichkeit, die sich im Rahmen klassischer chemischer Synthesen nicht bietet. Im Zuge der dritten Route sollen Edelmetalle aus der ionischen Flüssigkeit in elementarer Form und mit definierter Struktur, z. B. als Nanopartikel oder dünnen Drähten, abgeschieden werden. Alle Verbindungen und Abscheidungen werden umfassend hinsichtlich ihrer Struktur, ihrer Morphologie und ihrer physikalischen Eigenschaften untersucht. Die ermittelten Eigenschaften sollen dann in eine Funktion der Verbindungen münden, z. B. als Elektrika (Sulfide, Oxide) oder als Precursormaterialien (oxoanionische Verbindungen). Ein detailliertes Studium der Elektrodenreaktionen, insbesondere der zugrunde liegenden Kinetik, soll weitere Erkenntnisse zur Optimierung der Synthesebedingungen liefern.
Das Projekt "Polyimidazole als Redox-aktive Elektroden für stark eutektische Elektrolyte in Polymer-Battierien" wird vom Umweltbundesamt gefördert und von Universität Ulm, Institut für Elektrochemie durchgeführt. In diesem Projekt werden wir Elektroden auf Basis von Polyimidazol mit stark eutektischen Lösungsmitteln als Elektrolyte kombinieren, um biokompatible und biologisch abbaubare Polymerbatterien mit hoher Leistung herzustellen. Polyimidazol kann aus natürlich vorkommenden Rohstoffen hergestellt werden. Im Gegensatz zu anderen konjugierten Redox-Polymeren ist die Ladung im Polyimidazol an isolierten dimeren Einheiten lokalisiert. Diese Besonderheit ermöglicht ein überlegenes und stabiles Verhalten beim Laden und Entladen. Stark eutektische Elektrolyte können ebenfalls aus natürlichen Ressourcen gewonnen werden. Viele stark eutektische Elektrolyten weisen darüber hinaus auch eine geringe Zytotoxizität auf. Um eine hohe Ladungsspeicherleistung zu erzielen, werden die Polyimidazol-Elektroden in Bezug auf Molekularstruktur, Oberfläche und Kompatibilität mit den stark eutektischen Elektrolyten optimiert. Hierzu werden die jeweiligen Phänomene an den Elektroden (bzw. den Grenzschichten) sukzessive elektrochemisch charakterisiert. Schließlich werden darüber hinaus die Biokompatibilität und -abbaubarkeit der verschiedenen Materialien unter Kompostierungsbedingungen untersucht.
Das Projekt "Löslichkeit von molekularen und ionischen Präkursoren in ionischen Flüssigkeiten" wird vom Umweltbundesamt gefördert und von Technische Universität Dortmund, Lehrstuhl für Thermodynamik durchgeführt. Der Erfolg der ionothermalen Synthese ist entscheidend von der Auswahl geeigneter Precursors abhängig. Das Hauptziel dieses Forschungsvorhabens ist die Entwicklung eines allgemeinen thermodynamischen Verfahrens basierend auf der prädiktiven Zustandsgleichung electrolyte PC-SAFT (ePC-SAFT). Es wird eine Modellstrategie entwickelt und angewendet, die es erlaubt, die Löslichkeit von flüssigen oder festen Präkursoren in ionischen Flüssigkeiten (ILs), die als geeignete Lösungsmittel für ionothermale Synthesen verwendet werden, vorauszusagen. Als feste Präkursoren betrachten wir anorganische Salze; dies ist an die Synthese von Metallnanopartikeln in ILs angelehnt. Als flüssige Präkursoren werden homologe Reihen organischer Verbindungen (Alkane, Alkene, Aromaten, Alkohole, Ether, Ester) untersucht Die Entwicklung und Parametrisierung von ePC-SAFT wird mit Hilfe von zuverlässigen experimentellen Daten aus Literatur, aber auch anhand neuer Daten durchgeführt. In diesem Zusammenhang experimentelle Studien zu thermodynamischen Eigenschaften reiner ILs und Präkursoren sowie der Eigenschaften ihrer binären Mischungen durchgeführt. Die daraus entstandenen Daten dienen als Inputdatensätze der Entwicklung und Validierung des zu entwickelnden Modellansatzes innerhalb ePC-SAFT. Dies ermöglicht Modellvorhersagen, um letztendlich ILs als Synthesemedium für feste und flüssige Präkursoren zu screenen. Um die Anwendung von thermodynamischen Parametern, die aus binären Mischungen Präkursor-IL zu Mehrkomponenten-Systemen erhalten werden, weiter voranzutreiben, wird eine zusätzliche Validierung des ePC-SAFT Modells durch experimentelle und theoretische Untersuchung von zwei reaktiven Systemen durchgeführt. Diese Systeme bestehen aus den Reaktionsteilnehmern sowie dem Lösungsmittel (auch ILs).Die Erstellung von thermodynamischen Ergebnissen in Systemen Präkursor-IL ermöglicht die Entwicklung einer allgemeinen Löslichkeits-Skala mit dem Ziel ILs hinsichtlich ihrer Leistungsfähigkeit für die ionothermale Synthese und deren Verwendung als Lösungsmittel in reaktiven Systemen prädiktiv auszuwählen. Die so entwickelte Skala hat ein enormes Potenzial, die Anwendung von Ils auf eine breite Palette von molekularen und ionischen Präkursoren zu verbreitern und zu verbessern.
Das Projekt "Einblicke in die Dotierungsmechanismen von Polymerelektrolyt / redoxaktiven organischen Radikal Polymer lamellaren Verbundwerkstoffen" wird vom Umweltbundesamt gefördert und von Forschungszentrum Jülich GmbH, Institut für Energie- und Klimaforschung (IEK), IEK-12: Helmholtz-Institut Münster (HI MS) Ionenleiter für Energiespeicher durchgeführt. Organische Radikalbatterien sind aufgrund ihrer hohen Leistungsdichte besonders vielversprechend. Aus grundlegende Sicht müssen eine günstige Ladungstransferkinetik und ein schneller Ladungstransport gleichzeitig ermöglicht werden. Darüber hinaus erfordert die Ladungsspeicherung eine aliovalente Dotierung, um die Ladungsneutralität zu gewährleisten. Die zugrunde liegenden Mechanismen auf atomarer Ebene sind jedoch nicht gut verstanden. Dies gilt insbesondere für die 'trockenen' Gel- oder 'festen' Polymer-MehrschichtElektrolyte, die aufgrund ihrer hohen elektrochemischen Stabilität derzeit die bevorzugten Materialien sind. In einem systematischen Ansatz wird eine Familie von Mehrschichtpolymersystemen vorbereitet und in Bezug auf PolyTEMPO, ein etabliertes Redoxpolymersystem für Flüssigelektrolyte, untersucht. Die Modellsysteme bestehen aus einer Lithium-Metall-Anode, einer hochlithiumionenleitenden Polymerelektrolytschicht und gemischt leitenden Polymerverbunden, einschließlich Elektronenleiter, Redox-Polymer und einem hoch anionenleitenden Polymer. Der Syntheseteil umfasst die Herstellung und Verarbeitung der Polymermaterialien zu lamellaren Verbundwerkstoffen sowie eine umfassende elektrochemische Charakterisierung.Details der Radikal-Transfermechanismen und der auftretenden Ionenspezies werden anhand von c.w. und gepulsten EPR-Methoden aufgeklärt, wobei spektrale Merkmale von reinen und zyklischen Materialien (post-mortem) verglichen und bestimmt werden, einschließlich der Anwendung von PELDOR/DEER zur Aufklärung der Abstände und wahrscheinlichen Verteilungen der beim Zellbetrieb gebildeten Radikalspezies, trotz schwieriger hoher lokaler Radikalkonzentrationen. Wenn möglich, soll mittels ENDOR / HYSCORE die radikalen Arten mit den Materialien weiter charakterisiert werden. In-operando EPR wird an ausgewählten Proben durchgeführt, um die Entwicklung der radikalen Spezies anhand ihres Fingerabdrucksignals zu verfolgen und Einblicke in molekulare Details der Ladungsübertragungsprozesse zu geben. Weitere Einblicke in die mechanistischen Details des elektronischen und ionischen Ladungstransports werden durch die rechnerische Modellierung relevanter Prozesse vom elementaren Elektronentransfer bis zum Ionentransport über die Grenzflächen innerhalb des Schichtverbundes ermöglicht. Ab initio-Methoden werden zur Charakterisierung der elektronischen Eigenschaften der redoxaktiven Polymere eingesetzt, während die weitreichenden Ionentransport- und Dotierungsmechanismen der organischen Kathode auf der Grundlage klassischer molekulardynamischer Simulationen entschlüsselt werden. Zusammenfassend lässt sich sagen, dass all diese Bemühungen neben einem tieferen grundlegenden Verständnis als Leitfaden für die Identifizierung vielversprechender redoxaktiver Materialien und die Gestaltung von Grenzflächen innerhalb der Mehrschichtstrukturen dienen werden, um so die zukünftige Entwicklung leistungsfähiger fester organischer Elektrolyte zu fördern.
Das Projekt "Koordinationsfonds" wird vom Umweltbundesamt gefördert und von Technische Universität Dresden, Fachrichtung Chemie und Lebensmittelchemie, Professur für Anorganische Chemie 2 durchgeführt. Das Schwerpunktprogramm 1708 bündelt und koordiniert die Forschungsaktivitäten zur wissenschaftlichen und technologischen Entwicklung von Niedertemperatursynthesen anorganischer Materialien in Ionischen Flüssigkeiten (ILs). Das Schwerpunktprogramm hat drei Hauptziele: (A) Etablierung IL-basierter ressourceneffizienter Synthesen für bekannte Funktionsmaterialien. (B) Entdeckung neuer, möglicherweise unorthodoxer Materialien, die erst durch die besonderen, milden Synthesebedingungen in ILs zugänglich werden. (C) Verstehen der Prinzipien der Auflösung, Reaktion und Kristallisation von anorganischen Feststoffen in ILs. Das Koordinatorprojekt stellt die zentrale Plattform für Zusammenarbeit im SPP bereit. Dies umfasst die Organisation und Durchführung von Workshops und Arbeitstreffen, die Förderung von Nachwuchswissenschaftlern, die Betreuung von Mercator Fellows, Öffentlichkeitsarbeit und Gleichstellungsmaßnahmen.
Origin | Count |
---|---|
Bund | 6 |
Type | Count |
---|---|
Förderprogramm | 6 |
License | Count |
---|---|
open | 6 |
Language | Count |
---|---|
Deutsch | 6 |
Englisch | 5 |
Resource type | Count |
---|---|
Webseite | 6 |
Topic | Count |
---|---|
Boden | 2 |
Lebewesen & Lebensräume | 3 |
Luft | 4 |
Mensch & Umwelt | 6 |
Weitere | 6 |