API src

Found 8 results.

Teilprojekt B 03: Quellen und Senken von Gasen in der Critical Zone: in situ-Sensoren und Isotopie

Das Projekt "Teilprojekt B 03: Quellen und Senken von Gasen in der Critical Zone: in situ-Sensoren und Isotopie" wird vom Umweltbundesamt gefördert und von Leibniz-Institut für Photonische Technologien e.V. durchgeführt. Wir erforschen, wie Gase im Boden und im Grundwasser die Umweltbedingungen und die funktionelle Biodiversität der Critical Zone widerspiegeln. Hierzu (1) erforschen wir neue Konzepte für die verstärkte Raman-Gasspektroskopie, zur simultanen online-Quantifizierung einer ganzen Reihe von Gasen im Boden, (2) setzen Messkampanien zur Bestimmung zeitlicher Änderungen der Gaszusammensetzungen und der Isotopie vor Ort im Hainich-Transekt und den Sandstein-Probestellen fort und (3) führen kontrollierte Laborexperimente durch, um Einflüsse von mikrobieller Aktivität, Substratverfügbarkeit, etc. auf die Muster in der Freisetzung und Aufnahme einer Vielfalt von Gasen und Isotopen zu analysieren.

Teilprojekt B07 (ehem. A01): Bodenstrukturen und Massetransport mit NMR: Von Mustern auf der Porenskala zur Hydraulik auf der Meterskala

Das Projekt "Teilprojekt B07 (ehem. A01): Bodenstrukturen und Massetransport mit NMR: Von Mustern auf der Porenskala zur Hydraulik auf der Meterskala" wird vom Umweltbundesamt gefördert und von RWTH Aachen University, Institut für Technische Chemie und Makromolekulare Chemie durchgeführt. Bodenfeuchte, Bodenwassertransport und hydraulische Bodenparameter werden mit magnetischer Kernresonanz (NMR) auf der Poren- bis Zentimeterskala charakterisiert um die Verteilung lokaler physikalischer Bodenparameter, hydraulischer Bodenpermeabilität und dualer Permeabilität zu erstellen. Diese Parameter bilden die Brücke zum Hochskalieren lokaler Bodeneigenschaften und -prozesse auf der Porenskala zur Modellierung der Bodenhydrologie auf der Meter- bis Feldskala mit verbesserter Simulation des Wasser- und Energietransfers zwischen Landoberfläche und Atmosphäre.

Teilprojekt A03: Reaktion der mikrobiellen Gemeinschaft auf den Eintrag von Oberflächensignalen in Grundwässer des Hainich CZE

Das Projekt "Teilprojekt A03: Reaktion der mikrobiellen Gemeinschaft auf den Eintrag von Oberflächensignalen in Grundwässer des Hainich CZE" wird vom Umweltbundesamt gefördert und von Universität Jena, Institut für Biodiversität, Lehrstuhl Aquatische Geomikrobiologie durchgeführt. Dieses Projekt erforscht die Bedeutung von Chemolithoautotrophie und Oberflächeneintrag als Quellen von reduziertem Kohlenstoff für die mikrobielle Gemeinschaft in den Hainich-Aquiferen mittels Mikrokosmen-Experimenten. Basierend auf Raman-Mikrospektroskopie in Kombination mit Isotopenmarkierungs-Experimenten wird eine neue Methode zur Hochdurchsatzsortierung von Zellen etabliert um metabolisch aktive mikrobielle Subpopulationen zu isolieren. Mittels Metagenomanalyse kann dann gezielt deren Rolle in den biogeochemischen Kreisläufen im Grundwasser untersucht werden.

First-principles kinetic modeling for solar hydrogen production

Das Projekt "First-principles kinetic modeling for solar hydrogen production" wird vom Umweltbundesamt gefördert und von Technische Universität München, Fakultät für Chemie, Lehrstuhl für Theoretische Chemie durchgeführt. The development of sustainable and efficient energy conversion processes at interfaces is at the center of the rapidly growing field of basic energy science. How successful this challenge can be addressed will ultimately depend on the acquired degree of molecular-level understanding. In this respect, the severe knowledge gap in electro- or photocatalytic conversions compared to corresponding thermal processes in heterogeneous catalysis is staggering. This discrepancy is most blatant in the present status of predictive-quality, viz. first-principles based modelling in the two fields, which largely owes to multifactorial methodological issues connected with the treatment of the electrochemical environment and the description of the surface redox chemistry driven by the photo-excited charges or external potentials.Successfully tackling these complexities will advance modelling methodology in (photo)electrocatalysis to a similar level as already established in heterogeneous catalysis, with an impact that likely even supersedes the one seen there in the last decade. A corresponding method development is the core objective of the present proposal, with particular emphasis on numerically efficient approaches that will ultimately allow to reach comprehensive microkinetic formulations. Synergistically combining the methodological expertise of the two participating groups we specifically aim to implement and advance implicit and mixed implicit/explicit solvation models, as well as QM/MM approaches to describe energy-related processes at solid-liquid interfaces. With the clear objective to develop general-purpose methodology we will illustrate their use with applications to hydrogen generation through water splitting. Disentangling the electro- resp. photocatalytic effect with respect to the corresponding dark reaction, this concerns both the hydrogen evolution reaction at metal electrodes like Pt and direct water splitting at oxide photocatalysts like TiO2. Through this we expect to arrive at a detailed mechanistic understanding that will culminate in the formulation of comprehensive microkinetic models of the light- or potential-driven redox process. Evaluating these models with kinetic Monte Carlo simulations will unambiguously identify the rate-determining and overpotential-creating steps and therewith provide the basis for a rational optimization of the overall process. As such our study will provide a key example of how systematic method development in computational approaches to basic energy sciences leads to breakthrough progress and serves both fundamental understanding and cutting-edge application.

Ionische Flüssigkeiten in der Synthese und Feinabstimmung von porösen Materialien: Wissensbasiertes Design von Eigenschaften durch einen kombinierten experimentellen und theoretischen Ansatz

Das Projekt "Ionische Flüssigkeiten in der Synthese und Feinabstimmung von porösen Materialien: Wissensbasiertes Design von Eigenschaften durch einen kombinierten experimentellen und theoretischen Ansatz" wird vom Umweltbundesamt gefördert und von Universität Bonn, Institut für Physikalische und Theoretische Chemie - Mulliken Center for theoretical Chemistry durchgeführt. Dieses Projekt soll als bilaterales Projekt zwischen PD Dr. Annegret Stark (Leibniz-Institut für Oberflächenmodifizierung, Leipzig) und Prof. Dr. Barbara Kirchner (Universität Bonn) durchgeführt werden. Die Expertise einer experimentell und einer theoretisch arbeitenden Gruppe werden darin kombiniert. Forschungsfokus 1 (FF1) des Projekts behandelt die Untersuchung von ionischen Flüssigkeiten (IF) als Lösungsmittel und strukturdirigierende Agenzien in der Synthese von Zeolithen. Es ist das Ziel, die vorherrschenden und steuernden Wechselwirkungen auf molekularer Ebene zu verstehen, um zu einem Verständnis der Solvations- und Kristallisationsmechanismen, und somit den Hintergründen der hohen Selektivitäten der resultierenden Netzwerke, beizutragen. FF2 untersucht die Eigenschaften von IF in porösen Materialien. Das Ziel ist es, detailliertes Wissen über die Grenzflächenstruktur und Wechselwirkungen zwischen porösen anorganischen Materialien und IFs, welche zu Abweichungen von den Eigenschaften in der Bulk-Flüssigphase (Dichte, Schmelzpunkt etc.) führen, zu erlangen. Systematische Studien, die homologe Reihen von IFs einschließen, in welchen das Kation, das Anion oder die Substituenten des Kations variiert werden, werden durchgeführt. In FF 1 werden dabei unsere bisherigen Untersuchungen von AlPOs auf SAPOS, MaPOs und Aluminosilicate ausgeweitet, um die Grenzen der Ionothermalsynthese hinsichtlich der Präkursoren, der Wahl der IF sowie der resultierenden Netzwerke zu eruieren. In FF2 werden die Eigenschaften, Orientierung der IFs in porösen Materialien in Abhängigkeit der IF-Struktur (homologe Reihen), der Art des Trägermaterials (Porengröße, -geometrie, chemische Zusammensetzung) und der Beladung untersucht. Die folgenden Forschungsfragen sollen beantwortet werden. 1. Welche Strukturmerkmale der IF (Art des Kations, Kationsubstitutent, Art des Anions) beeinflussen das resultierende Netzwerk? Welche Wechselwirkungsmodi herrschen vor? 2. Kann die IF so strukturell konzipiert werden, dass neue Netzwerkstrukturen herstellbar sind? 3. Was ist die Rolle des Mineralisierers und kann er durch eine IF-Funktion ersetzt werden? 4. Kann die (Niedrigdruck-)Ionothermalsynthese in einen kontinuierlichen Prozess transferiert werden? 5. Was ist der Einfluss der Pore auf die physikalisch-chemischen Eigenschaften der IF? 6. Wie beeinflusst die Pore die Orientierung der IF? 7. Wie beeinflusst die IF-Zusammensetzung (d. h. Anion, Kation, Kationsubstituent) die Orientierung in der Pore, verglichen mit der Bulk-Flüssigphase? 8. Ist der Porenfüllungsmechanismus abhängig von der IF?

Materialien aus reduzierbaren Oxiden: Wissensbasierte Entwicklung neuer Tieftemperatur-Synthesemethoden

Das Projekt "Materialien aus reduzierbaren Oxiden: Wissensbasierte Entwicklung neuer Tieftemperatur-Synthesemethoden" wird vom Umweltbundesamt gefördert und von Universität Erlangen-Nürnberg, ECRC - Erlangen Catalysis Resource Center durchgeführt. Die Niedertemperatursynthese reduzibler oxidischer Nanomaterialien in ionischen Flüssigkeiten (ILs) verfügt über das Potential, neuartige Materialien mit maßgeschneiderten Eigenschaften zugänglich zu machen. Allerdings erfordert eine wissensbasierte Entwicklung komplexer Syntheseverfahren mit ILs ein detailliertes Verständnis der zugrunde liegenden Grenzflächenchemie, die die Nukleations- und Wachstumsprozesse bestimmt. Das Projekt zielt einerseits darauf ab, dieses Wissen über grundlegende grenzflächenwissenschaftliche Untersuchungen und In-situ-Spektroskopie bereitzustellen, und es andererseits unmittelbar für die gezielte Herstellung realer Nanomaterialien zu nutzen. Hierzu bringen die Arbeitsgruppen Wasserscheid und Libuda ihre komplementäre Expertise in den Bereichen Synthesechemie bzw. Grenzflächenspektroskopie mit IL-basierten Materialien ein. Zusätzlich profitiert das Projekt von einer Reihe von Kooperationen im SPP 1708.Ausgehend von den methodischen Entwicklungen in der ersten Förderperiode, zielt das Projekt auf die Synthese von reduzierbaren Oxiden ab, speziell von Kobaltoxid-Nanopartikeln. Kobaltoxid-basierten Materialien wird größtes Anwendungspotential im Bereich der Katalyse und Energietechnik zugeschrieben, wobei z. B. seltene Edelmetalle ersetzt werden können. Ein Ziel des Projektes besteht in der Herstellung von Nanostrukturen mit wohldefinierter Zusammensetzung, Form und Struktur, wobei wir von molekularen Precursoren und Imidazolium- bzw. Pyrrolidinium-basierten ILs ausgehen und diese mit ungewöhnlichen Oxidationsmitteln wie Ozon umsetzen. Über grundlegende Untersuchungen zur IL/Oxid-Grenzflächenchemie und In-situ-Spektroskopie bei der Synthese sollen die Wechselwirkungen von IL, Precursor und Ozon aufgeklärt, Reaktionsmechanismen und Intermediate identifiziert und kinetische Daten zu Partikelbildung gewonnen werden. Daneben sollen aber auch praktische Aspekte der Synthese wie das Löslichkeitsverhalten untersucht und optimiert werden. Über die Untersuchung von Strukturabhängigkeiten der IL/Oxid-Wechselwirkung sollen strukturdirigierende Mechanismen aufgeklärt und letztlich unter Ausnutzung der strukturellen Vielfalt von ILs (Variation von Anion, Kation, Substitution und Funktionalisierung) zu Modifikation der Synthese eingesetzt werden. Dabei stehen auch Verfahren zur Entfernung von Kontaminationen durch oxidative Überführung in flüchtige Produkte oder zur gezielten Dotierung im Zentrum des Interesses. Schließlich werden die mechanistischen, spektroskopischen und kinetischen Einblicke mit realen Materialeigenschaften korreliert, um so Faktoren zu identifizieren, die entscheidende Materialparameter wie Partikelform, Struktur, Größe und Zusammensetzung bestimmen. Auf diese Weise soll das Projekt dazu beitragen, das Potential der Niedertemperatursynthese oxidischer Nanomaterialien in ILs in bestmöglicher Weise zu nutzen.

Synthese anorganischer Materialien in ionischen Flüssigkeiten: Aufklärung der Reaktionsmechanismen vom Komplex zum Kristall

Das Projekt "Synthese anorganischer Materialien in ionischen Flüssigkeiten: Aufklärung der Reaktionsmechanismen vom Komplex zum Kristall" wird vom Umweltbundesamt gefördert und von Universität Bonn, Institut für Physikalische und Theoretische Chemie - Mulliken Center for theoretical Chemistry durchgeführt. Unter Verwendung von ionischen Flüssigkeiten wurde in den vergangenen Jahren eine Vielfalt an neuartigen Synthesen von kristallinen und anorganischen Materialen entwickelt. Trotz vorteilhafter Eigenschaften und Synthese-Bedingungen gegenüber konventionellen Methoden mangelt es stark am mechanistischen Verständnis, besonders was die dirigierende Rolle der ionischen Flüssigkeiten angeht. Wir setzen uns hier zum Ziel, die Synthese von mehreren ungewöhnlichen Modifikationen des TiO2, nämlich der Bronze-Phase TiO2(B) und einem jüngst synthetisierten Titanoxyhydroxy-Fluorid, aufzuklären. Beide werden unter erstaunlich milden Bedingungen aus einer Mischung von einfachen ionischen Flüssigkeiten mit Wasser und TiCl4 erhalten. Unsere bisherigen Experimente zeigten bereits den prägenden Einfluss von ionischen Flüssigkeiten, welche Fluor-Atome im Anion enthalten, und von Mischungen zweier Kationen mit jeweils Seitenketten von unterschiedlicher Länge. Die wesentliche Aufgabenstellung unseres Projektes besteht nun darin, mechanistische Zusammenhänge zu klären, und zwar sowohl zwischen der molekularen Struktur der Reaktionslösung und der Bildung von Fluorohydroxotitan-Komplexen als auch der Bildung von Clustern. Darüber hinaus möchten wir die Entstehung von Primär- und Nanopartikeln verstehen. Unser Ansatz liegt in der Variation von ionischen Flüssigkeiten (z. B. Ersatz von (BF4)- durch (F)-) und in der Verwendung alternativer Ti-Verbindungen wie (NH4)(TiF6). Einerseits sollen in-situ-Methoden (Raman-Spektroskopie, Röntgenweit- und Kleinwinkelstreuung) dabei helfen, die relevanten Zwischenstufen auf molekularer Ebene und Nanometer-Skala zu identifizieren, andererseits stärkt die Berechnung der molekularen Bildungsmechanismen und des Wachstums von Clustern aus Komplexen das mechanistische Verständnis. Zu diesem Zweck werden neue Wechselwirkungspotentiale parametrisiert, aber auch solche Simulationen durchgeführt, die mit expliziter elektronischer Struktur-Berechnung arbeiten. Es werden dabei Computer-Experimente aufgesetzt, die dem Experiment nicht zugängliche Einsichten erlauben, zum Beispiel zum Einfluss von lokaler Polarität, spezifischen Wechselwirkungen oder gewissen Zwischenstufen.

Koordinationsfonds

Das Projekt "Koordinationsfonds" wird vom Umweltbundesamt gefördert und von Technische Universität Dresden, Fachrichtung Chemie und Lebensmittelchemie, Professur für Anorganische Chemie 2 durchgeführt. Das Schwerpunktprogramm 1708 bündelt und koordiniert die Forschungsaktivitäten zur wissenschaftlichen und technologischen Entwicklung von Niedertemperatursynthesen anorganischer Materialien in Ionischen Flüssigkeiten (ILs). Das Schwerpunktprogramm hat drei Hauptziele: (A) Etablierung IL-basierter ressourceneffizienter Synthesen für bekannte Funktionsmaterialien. (B) Entdeckung neuer, möglicherweise unorthodoxer Materialien, die erst durch die besonderen, milden Synthesebedingungen in ILs zugänglich werden. (C) Verstehen der Prinzipien der Auflösung, Reaktion und Kristallisation von anorganischen Feststoffen in ILs. Das Koordinatorprojekt stellt die zentrale Plattform für Zusammenarbeit im SPP bereit. Dies umfasst die Organisation und Durchführung von Workshops und Arbeitstreffen, die Förderung von Nachwuchswissenschaftlern, die Betreuung von Mercator Fellows, Öffentlichkeitsarbeit und Gleichstellungsmaßnahmen.

1