<p>Jährlich werden in Deutschland rund 2.050 Tonnen Feinstaub (PM₁₀) durch das Abbrennen von Feuerwerkskörpern freigesetzt, der Großteil davon in der Silvesternacht. Dies entspricht in etwa einem Prozent der gesamt freigesetzten Feinstaubmenge in Deutschland. Am ersten Tag des neuen Jahres ist die Luftbelastung mit gesundheitsgefährdendem Feinstaub vielerorts so hoch, wie sonst im ganzen Jahr nicht.</p><p>Silvesterfeuerwerk: Einfluss auf Mensch und Umwelt</p><p>Ein Feuerwerk ist schön anzusehen. Es hat aber auch negative Seiten: Verbrennungen, Augenverletzungen und Hörschädigungen, Explosionsschäden und andere Sachschäden an Fahrzeugen und Gebäuden, der Eintrag von Plastik in die Umwelt, enorme Müllmengen, verängstigte Haustiere sowie ökologische Schäden und die Störung von Wildtieren. <br><br>Jährlich werden rund 2.050 Tonnen Feinstaub (PM10) - davon rund 1.700 Tonnen PM2.5 - durch das Abbrennen von Feuerwerkskörpern freigesetzt, der größte Teil davon in der Silvesternacht. Diese Menge entspricht in etwa einem Prozent der gesamt freigesetzten PM10-Menge in Deutschland. Die Broschüre zeigt anhand aktueller Auswertungen von Luftdaten, dass am ersten Tag des neuen Jahres die Luftbelastung mit gesundheitsgefährdendem Feinstaub vielerorts so hoch ist, wie sonst im ganzen Jahr nicht. Zudem fasst sie alle relevanten Wirkungen des Feuerwerks auf Mensch und Umwelt zusammen.<br><br></p><p>Die PM10-Stundenmittelwerte können über eine <a href="https://www.umweltbundesamt.de/service/glossar/a?tag=API#alphabar">API</a> automatisiert abgerufen werden (CSV-Tabelle mit 1-Stundenmittelwerten aller Messstationen):</p><p><a href="https://luftdaten.umweltbundesamt.de/api-proxy/measures/csv?date_from=2022-12-31&time_from=1&date_to=2023-01-01&time_to=24&data[0][co]=1&data[0][sc]=2&data[0][ti]=12&lang=de">Beispiel Stundenwerte-Abruf Jahreswechsel 2022 - 2023</a></p><p><a href="https://luftdaten.umweltbundesamt.de/api-proxy/measures/csv?date_from=2023-12-31&time_from=1&date_to=2024-01-01&time_to=24&data[0][co]=1&data[0][sc]=2&data[0][ti]=12&lang=de">Beispiel Stundenwerte-Abruf Jahreswechsel 2023 - 2024</a></p><p><a href="https://luftdaten.umweltbundesamt.de/api-proxy/measures/csv?date_from=2024-12-31&time_from=1&date_to=2025-01-01&time_to=24&data[0][co]=1&data[0][sc]=2&data[0][ti]=12&lang=de">Beispiel Stundenwerte-Abruf Jahreswechsel 2024 - 2025</a> </p><p><a href="https://luftdaten.umweltbundesamt.de/api-proxy/measures/csv?date_from=2025-12-31&time_from=1&date_to=2026-01-01&time_to=24&data[0][co]=1&data[0][sc]=2&data[0][ti]=12&lang=de">Beispiel Stundenwerte-Abruf Jahreswechsel 2025 - 2026</a> (erst ab 01.01.2026 verfügbar, Achtung: vorläufige, ungeprüfte Daten)</p><p>Die PM10-Tagesmittelwerte können über eine API automatisiert abgerufen werden (CSV-Tabelle mit Tagesmittelwerten aller Messstationen):</p><p><a href="https://luftdaten.umweltbundesamt.de/api-proxy/measures/csv?date_from=2023-01-01&time_from=1&date_to=2023-01-01&time_to=24&data[0][co]=1&data[0][sc]=1&data[0][ti]=12&lang=de">Beispiel Tagesmittelwert-Abruf 01.01.2023</a></p><p><a href="https://luftdaten.umweltbundesamt.de/api-proxy/measures/csv?date_from=2024-01-01&time_from=1&date_to=2024-01-01&time_to=24&data[0][co]=1&data[0][sc]=1&data[0][ti]=12&lang=de">Beispiel Tagesmittelwert-Abruf 01.01.2024</a></p><p><a href="https://luftdaten.umweltbundesamt.de/api-proxy/measures/csv?date_from=2025-01-01&time_from=1&date_to=2025-01-01&time_to=24&data[0][co]=1&data[0][sc]=1&data[0][ti]=12&lang=de">Beispiel Tagesmittelwert-Abruf 01.01.2025</a> </p><p><a href="https://luftdaten.umweltbundesamt.de/api-proxy/measures/csv?date_from=2026-01-01&time_from=1&date_to=2026-01-01&time_to=24&data[0][co]=1&data[0][sc]=1&data[0][ti]=12&lang=de">Beispiel Tagesmittelwert-Abruf 01.01.2026</a> (erst ab 02.01.2026 verfügbar, Achtung: vorläufige, ungeprüfte Daten)</p><p>PM10-Tagesmittelwerte am Neujahrstag</p><p>Einhergehend mit den durch das Silvesterfeuerwerk freigesetzten Emissionen ist die <a href="https://www.umweltbundesamt.de/service/glossar/p?tag=PM10#alphabar">PM10</a>-Belastung in der Silvesternacht hoch. Besonders an den Stunden nach Mitternacht treten Messwerte von bis zu mehreren 1.000 Mikrogramm pro m³ im Stundenmittel auf. Diese hohen Stundenwerte beeinflussen auch den PM10-Tagesmittelwert, mit dem der Schutz der menschlichen Gesundheit beurteilt wird. Tagesmittelwerte größer 50 µg/m³ gelten demnach bereits als einer von 35 zulässigen Überschreitungstagen.</p><p>Die der Höhe nach absteigenden PM10-Neujahrstagesmittelwerte aller Messstationen machen deutlich, dass die Belastung abhängig von den Wetterbedingungen in den letzten 10 Jahren zwar variierte, jedoch meist eine Vielzahl der Messstationen Werte oberhalb des Tagesgrenzwertes registrierte. Anders an den Neujahrstagen 2021 und 2022: durch die außergewöhnlich niedrigen freigesetzten PM10-Mengen aufgrund der Corona-Maßnahmen fehlen die üblichen Spitzenwerte komplett. Mit der Aufhebung aller Maßnahmen zum Jahreswechsel 2022/2023 ordnet sich der Neujahrstag 2023 wieder als ein typisch belasteter 1. Januar ein.</p><p>Tagesmittelwerte aller Stationen an den Neujahrstagen 2015-2025 in µg/m³</p><p>Tagesmittelwerte der Feinstaubkonzentration (PM10) - Neujahr 2025</p>
Zielsetzung:
Aufgrund aktueller umwelt- und gesundheitspolitischer Erfordernisse ist die Reduzierung von Energie und die völlige Vermeidung von Mikroplastik bei gleichzeitiger, nachhaltiger Verbesserung wirtschaftlich-technologischer sowie umweltschonender Aspekte, ein zentrales Anliegen von Lackrohstoffanbietern, Lackherstellern und industriellen Lackanwendern. Eine in Frage kommende Technologie zur Beschichtung von industrienahen Produkten ist die Pulverlackapplikation.
Aus diesen Gründen haben sich die Projektpartner iLF Magdeburg GmbH, Ganzlin Beschichtungspulver GmbH und die Otto-von-Guericke Universität Magdeburg das ehrgeizige Ziel gesteckt, eine biologisch abbaubare Beschichtung als Pulverlack zu entwickeln und den Eintrag von nicht abbaubaren Partikeln aus Kunststoffen während und nach der Nutzung der beschichteten Bauteile zu verhindern.
Es werden verschiedene Arten der Biokunststoffe unterschieden. Dabei existieren neben den biologisch abbaubaren Kunststoffen aus nachwachsenden und fossilen Rohstoffen auch biologisch nicht abbaubare Biokunststoffe. Im Rahmen des hier beschriebenen Vorhabens wird der Fokus auf die biologisch abbaubaren Kunststoffe gelegt. Dabei sollen im Wesentlichen zwei Pfade verfolgt werden: die PLA-Route und die Polyester-Route. In beiden Fällen sollen den Matrixmaterialien (PLA und Polyester) natürliche, regional verfügbare Füll- und Farbstoffe zugesetzt werden. Als Füllstoffmaterialien kommen dabei Cellulose, Maismehl oder Lignin in Frage. Die Farbgebung soll zunächst in 3 Farbtönen durch Verwendung natürlicher Farbstoffe wie Karotin, Rote Beete oder Ruß erfolgen.
Zusätzlich verfolgen die Projektpartner das Ziel, möglichst niedrige Verarbeitungstemperaturen zu erreichen, um in Zeiten massiv steigender Energiekosten wirtschaftlich und umweltschonend produzieren zu können. Weiterhin sollen möglichst alle Rohstoffe aus Europa stammen, um den gesamten Produktlebenszyklus nachhaltig zu gestalten.
Das Projektkonsortium stellt sicher, dass eine Charakterisierung der Ausgangsmaterialien und der erhaltenen Beschichtungen mit modernsten Methoden der Bildgebung und Analytik kombiniert werden mit Know-How und Methoden im Bereich der Oberflächenprüftechnik und der industriellen Entwicklung und Herstellung von Pulverlacken. Die Projektpartner haben in Ihrer langjährigen erfolgreichen Kooperation bereits mehrfach Produktinnovationen hervorgebracht und verfügen über die dafür notwendige Expertise.
Weltweit werden Böden zunehmend mit Plastikmüll belastet. Der kontinuierliche Eintrag von Mikroplastik beeinflusst Lebensbedingungen von Pflanzen und Bodenorganismen. Bislang verstehen wir nur unzureichend, wie sich die Anwesenheit von Mikroplastik auf Struktur und Funktionsweise des Bodens auswirkt. Es ist unklar, wie stark die Rhizosphäre dadurch beeinflusst wird und welche Risiken sich daraus für die Pflanzen ergeben. Inzwischen gibt es verschiedene Analyseverfahren, um unterschiedliche Aspekte der Mikroplastikverschmutzung des Bodens zu untersuchen. Allerdings beinhalten diese Verfahren üblicherweise Prozessschritte, bei denen die Integrität der Probe zerstört wird, wodurch sich der Zusammenhang zwischen der Verteilung von Mikroplastik in der Probe und der Mikrostruktur und Hydraulik des Bodens nicht mehr erschließen lässt. Vor kurzem haben wir jedoch einen nicht-invasiven Ansatz entwickelt, mit dem Mikroplastik in sandigen Böden nachgewiesen werden kann. Mittels komplementärer Neutronen- und Röntgentomographie lassen sich Mikroplastikpartikeln im trockenen Boden detektieren und gleichzeitig die dreidimensionale Struktur der Bodenmatrix analysieren. In diesem Projekt wird die Methode getestet, optimiert und dann angewandt, um besser zu verstehen, wie Mikroplastik unterschiedlicher Größe und Form die Mikrostruktur und Eigenschaften des Bodens beeinflusst. Außerdem wird untersucht, ob in die Rhizosphäre eingelagertes Mikroplastik die Bedingungen für das Wurzelwachstum und die Wasseraufnahme verändert und welchen Einfluss Mikroplastik unterschiedlicher Größe und Form auf die Infiltration und Wasserbewegung im Boden hat. Zunächst wird die Auflösung der Methode optimiert, um auch sehr feine Strukturen, wie Mikroplastikfasern und Folienfragmente, detektieren zu können. Die Segmentierung der 3D Bilddaten wird durch die Berücksichtigung von Form-Deskriptoren sowie durch Maschinelles Lernen unterstützt, um Mikroplastikpartikeln von organischen Bodenbestandteilen zu unterscheiden. In einem Aggregationsexperiment mit wird für einen natürlichen Sandboden der Einfluss von Mikroplastikfasern auf die Bildung und Stabilität von Bodenaggregaten mittels hochauflösender Dual-mode Tomographie analysiert. Im nächsten Schritt wird die Rhizosphäre junger Mais- und Lupinenpflanzen untersucht, um potentielle Einflüsse verschieden geformter Mikroplastikpartikel auf lokale Strukturen der Bodenmatrix, Wurzeln und Wasserpfade zu ermitteln. Schließlich werden wir High-Speed Neutronentomographie einsetzen, um dynamischen 3D-Infiltrationsmuster in Bodensäulen mit und ohne Wurzelsysteme zu erfassen. Die Form und Geschwindigkeit der Wasserfront wird zeigen, ob und wie die Bodenbenetzbarkeit durch eingelagerte Mikroplastikpartikel beeinflusst wird. Das vorgeschlagene Projekt wird einzigartige neue Einblicke in die durch Mikroplastik modifizierte Struktur der Bodenmatrix geben, die für das mechanistische Verständnis der resultierenden Bodeneigenschaften gebraucht werden.
Die Anwendung von Mulchfolien ist essentieller Bestandteil einer nachhaltigen Landwirtschaft. Allerdings treten zunehmende Umweltprobleme mit der damit assoziierten Müllakkumulation sowie auch der Mikroplastikkontamination im Umweltsystem auf. Das Mikroplastik ist hierbei ein physikalisches Abbauprodukt der Mulchfolien, welches sich im Agrarökosystem, in den Böden, den Gewässern und potentiell auch in der Nahrungskette verteilt. Daher wird der Übergang zu bioabbaubaren Mulchfolien als wegweisende Lösung aus dieser Problematik angesehen. Allerdings sind die Abbauprodukte dieser abbaubaren Plastikformen und deren Implikationen bisher wenig erforscht und ihre Auswirkung auf das Umweltsystem kann nicht abgeschätzt werden. Das übergreifende Ziel dieses Projekt ist es daher zu untersuchen, ob und in welchem Umfang die Freisetzung dieser Abbauprodukte das Bodenmikrobiom und dessen Funktionen aber auch den pflanzlichen Metabolismus und die Wurzelexsudation beeinflusst. Um diese zu untersuchen identifizieren wir die Abbauprodukte mittels einer Inkubation der bioabbaubaren Folien in einem Modellbodensystem mit Inokulaten mikrobieller Bodengemeinschaften. Des Weiteren wird die Auswirkung dieser Abbauprodukte auf das System Pflanzen-Boden in einem Mesokosmusversuch eruiert. In diesem werden die Auswirkung auf bodenmikrobielle Gemeinschaften, deren Funktionen und die Wurzelmetabolite von Mais untersucht - alle Faktoren, welche essentiell für Nährstoffkreisläufe und die Bodenfruchtbarkeit verantwortlich sind. Isotopenmarkierte abbaubare und konventionelle Plastikfolien (z.B. 13C-Polyhydroxybutyrate (PHBs - gewonnen aus mikrobiellen Kulturen), 13C-Polyethylene) werden eingesetzt um die Dynamik des Abbaus und das Schicksal der Abbauprodukte im Boden zu verfolgen. Die Applikation von 13C-markierten PHBs auf Böden mit 14C-angereicherter mikrobieller Nekromasse (repräsentativ für die junge organische Bodensubstanz) wird es uns nicht nur ermöglichen potentielle Primingeffekte der Abbauprodukte zu quantifizieren, sondern auch, welche Pools der organischen Bodensubstanz hiervon besonders betroffen sind. All diese Studien finden auf repräsentativen koreanischen und deutschen Ackerböden statt. Das so generierte übergeordnete Verständnis der Auswirkungen bioabbaubarer Mulchfolien auf das Boden-Pflanze-System wird es uns erlauben Implikationen für das Agrarökosystem abzuschätzen. Diese Erkenntnisse werden zu grundsätzlichen Empfehlungen über eine nachhaltige Weiterentwicklung einer zukunftsorientierten Landwirtschaft beitragen.
1
2
3
4
5
…
20
21
22