API src

Found 47 results.

Related terms

Implementierung der ab dem Berichtsjahr 2013 gültigen IPCC Guidelines for National Greenhouse Gas Inventories 2006 in die Inventarerhebung fluorierter Treibhausgase (HFKW, FKW, SF6, NF3)

Der vorliegende Bericht stellt die Anforderungen an die Berichterstattung von F-Gas-Emissionen entsprechend der neuesten Vorgaben der ⁠ UNFCCC ⁠ Reporting Guidelines sowie der methodischen Anleitungen der 2006 ⁠ IPCC ⁠ Guidelines jeweils im Vergleich zu den bisher gültigen Anforderungen dar. Für die bisher angewendeten Berechnungs- und Erhebungsmethoden der Emissionsberichterstattung werden Änderungen und Aktualisierungen vorgeschlagen. Neue (Unter-) Quellgruppen von F-Gas-Emissionen, etwa ORC-Anlagen und Wärmeüberträger, werden in das Emissionsinventar integriert. Auch neu zu berichtende F-Gase (z.B. HFKW-245fa, HFKW-365mfc, NF3) werden ausführlich hinsichtlich tatsächlicher und möglicher Anwendungen beschrieben. Emissionen für alle neuen F-Gase werden für den Zeitraum ab 1990 abgeschätzt. Darüber hinaus werden die Stoffgruppen der perfluorierten Polyether und der Hydrofluorether erstmals in ihren Anwendungen in Deutschland beschrieben. Die produzierten, importierten und exportierten Mengen dieser Stoffe werden nach der Überarbeitung der europäischen F-Gase-Verordnung von Unternehmen berichtet. Die Veränderungen für das deutsche F-Gas-Inventar werden abschließend im Überblick dargestellt. Veröffentlicht in Climate Change | 17/2015.

Kunststoff\PUR-Weichschaum-DE-2000

Die Herstellung von Polyurethan-Weichschaum (PUR-TDI) erfolgt über 1. Polyole - Polyetherpolyole aus Ethylenoxid und Polyetherpolyole aus Propylenoxid und 2. Polyisocyanate (Toluylendiisocyanat). Allokation: keine Genese der Kennziffern Massenbilanz: Nach (ISI 1999) werden für die Herstellung von einer Tonne PUR-Weichschaum 88,4 kg Ethen, 483,9 kg Propen, 196,4 kg Toluol und 83,6 kg Ammoniak eingesetzt. Heutzutage wird Ethylenoxid über Sauerstoff hergestellt, daher wurde O2 gasförmig entsprechend stöchiometrisch berechnet und in die Bilanz eingestellt (Ullmann 1987). H2O wurde ebenfalls als chemisches Edukt stöchiometrisch berechnet. Energiebedarf: Die Prozeßenergie zur Herstellung einer Tonne PUR-Weichschaum setzt sich aus Gasöl (1,45 GJ/Mg), Erdgas (6,37 GJ/Mg), Strom (3,18 GJ/Mg), Dampf (11,57 GJ/Mg) und Kohle (0,15 GJ/Mg) zusammen. In (ISI 1999) werden keine Angaben zu prozeßbedingten Luftemissionen, Abwasser und anderen Reststoffen gemacht. PUR-Weichschaum findet Anwendung in der Möbelindustrie, für Autositze und -Rücken und für Matratzen. Es wird aber auch als Verpackungs- und Filtermaterial verwendet. Auslastung: 5000h/a Brenn-/Einsatzstoff: Grundstoffe-Chemie gesicherte Leistung: 100% Jahr: 2000 Lebensdauer: 20a Leistung: 1t/h Nutzungsgrad: 207% Produkt: Kunststoffe

Kunststoff\PUR-Hartschaum-DE-2015

Die Herstellung von Polyurethan-Hartschaum (PUR-MDI) erfolgt über 1. Polyole - Polyetherpolyole aus Propylenoxid (hier nach dem Chlorhydrinverfahren) und Polyetherpolyole aus Propylenoxid und 2. Polyisocyanate (Methylendiaminisocyanat). Nach (ISI 1999) werden für die Herstellung von einer Tonne PUR-Hartschaum 326,6 kg Propen, 406,5 kg Benzol und 101,8 kg Ammoniak eingesetzt. Die Prozessenergie zur Herstellung einer Tonne PUR-Weichschaum setzt sich aus Gasöl (0,1 GJ/t), Erdgas (0,52 GJ/t), Strom (4,43 GJ/t), Dampf (8,6 GJ/t) und Kohle (0,14 GJ/t) zusammen. In (ISI 1999) werden keine Angaben zu prozeßbedingten Luftemissionen, Abwasser und anderen Reststoffen gemacht. Auslastung: 5000h/a Brenn-/Einsatzstoff: Grundstoffe-Chemie gesicherte Leistung: 100% Jahr: 2015 Lebensdauer: 20a Leistung: 1t/h Nutzungsgrad: 306% Produkt: Kunststoffe

Kunststoff\PUR-Hartschaum-DE-2030

Die Herstellung von Polyurethan-Hartschaum (PUR-MDI) erfolgt über 1. Polyole - Polyetherpolyole aus Propylenoxid (hier nach dem Chlorhydrinverfahren) und Polyetherpolyole aus Propylenoxid und 2. Polyisocyanate (Methylendiaminisocyanat). Allokation: keine Genese der Kennziffern Massenbilanz: Nach (ISI 1999) werden für die Herstellung von einer Tonne PUR-Hartschaum 326,6 kg Propen, 406,5 kg Benzol und 101,8 kg Ammoniak eingesetzt. Energiebedarf: Die Prozeßenergie zur Herstellung einer Tonne PUR-Weichschaum setzt sich aus Gasöl (0,1 GJ/Mg), Erdgas (0,52 GJ/Mg), Strom (4,43 GJ/Mg), Dampf (8,6 GJ/Mg) und Kohle (0,14 GJ/Mg) zusammen. In (ISI 1999) werden keine Angaben zu prozeßbedingten Luftemissionen, Abwasser und anderen Reststoffen gemacht. PUR-Hartschaum wird als Isolationsmittel für Kühlschränke und in der Gebäudedämmung eingesetzt. Hartschäume werden auch in der Möbelindustrie verarbeitet. PUR-Hartschaum kann Mineralwolle ersetzen. Auslastung: 5000h/a Brenn-/Einsatzstoff: Grundstoffe-Chemie gesicherte Leistung: 100% Jahr: 2030 Lebensdauer: 20a Leistung: 1t/h Nutzungsgrad: 306% Produkt: Kunststoffe

Kunststoff\PUR-Hartschaum-DE-2010

Die Herstellung von Polyurethan-Hartschaum (PUR-MDI) erfolgt über 1. Polyole - Polyetherpolyole aus Propylenoxid (hier nach dem Chlorhydrinverfahren) und Polyetherpolyole aus Propylenoxid und 2. Polyisocyanate (Methylendiaminisocyanat). Allokation: keine Genese der Kennziffern Massenbilanz: Nach (ISI 1999) werden für die Herstellung von einer Tonne PUR-Hartschaum 326,6 kg Propen, 406,5 kg Benzol und 101,8 kg Ammoniak eingesetzt. Energiebedarf: Die Prozeßenergie zur Herstellung einer Tonne PUR-Weichschaum setzt sich aus Gasöl (0,1 GJ/Mg), Erdgas (0,52 GJ/Mg), Strom (4,43 GJ/Mg), Dampf (8,6 GJ/Mg) und Kohle (0,14 GJ/Mg) zusammen. In (ISI 1999) werden keine Angaben zu prozeßbedingten Luftemissionen, Abwasser und anderen Reststoffen gemacht. PUR-Hartschaum wird als Isolationsmittel für Kühlschränke und in der Gebäudedämmung eingesetzt. Hartschäume werden auch in der Möbelindustrie verarbeitet. PUR-Hartschaum kann Mineralwolle ersetzen. Auslastung: 5000h/a Brenn-/Einsatzstoff: Grundstoffe-Chemie gesicherte Leistung: 100% Jahr: 2010 Lebensdauer: 20a Leistung: 1t/h Nutzungsgrad: 306% Produkt: Kunststoffe

Kunststoff\PUR-Hartschaum-DE-2005

Die Herstellung von Polyurethan-Hartschaum (PUR-MDI) erfolgt über 1. Polyole - Polyetherpolyole aus Propylenoxid (hier nach dem Chlorhydrinverfahren) und Polyetherpolyole aus Propylenoxid und 2. Polyisocyanate (Methylendiaminisocyanat). Allokation: keine Genese der Kennziffern Massenbilanz: Nach (ISI 1999) werden für die Herstellung von einer Tonne PUR-Hartschaum 326,6 kg Propen, 406,5 kg Benzol und 101,8 kg Ammoniak eingesetzt. Energiebedarf: Die Prozeßenergie zur Herstellung einer Tonne PUR-Weichschaum setzt sich aus Gasöl (0,1 GJ/Mg), Erdgas (0,52 GJ/Mg), Strom (4,43 GJ/Mg), Dampf (8,6 GJ/Mg) und Kohle (0,14 GJ/Mg) zusammen. In (ISI 1999) werden keine Angaben zu prozeßbedingten Luftemissionen, Abwasser und anderen Reststoffen gemacht. PUR-Hartschaum wird als Isolationsmittel für Kühlschränke und in der Gebäudedämmung eingesetzt. Hartschäume werden auch in der Möbelindustrie verarbeitet. PUR-Hartschaum kann Mineralwolle ersetzen. Auslastung: 5000h/a Brenn-/Einsatzstoff: Grundstoffe-Chemie gesicherte Leistung: 100% Jahr: 2005 Lebensdauer: 20a Leistung: 1t/h Nutzungsgrad: 306% Produkt: Kunststoffe

Kunststoff\PUR-Hartschaum-DE-2000

Die Herstellung von Polyurethan-Hartschaum (PUR-MDI) erfolgt über 1. Polyole - Polyetherpolyole aus Propylenoxid (hier nach dem Chlorhydrinverfahren) und Polyetherpolyole aus Propylenoxid und 2. Polyisocyanate (Methylendiaminisocyanat). Allokation: keine Genese der Kennziffern Massenbilanz: Nach (ISI 1999) werden für die Herstellung von einer Tonne PUR-Hartschaum 326,6 kg Propen, 406,5 kg Benzol und 101,8 kg Ammoniak eingesetzt. Energiebedarf: Die Prozeßenergie zur Herstellung einer Tonne PUR-Weichschaum setzt sich aus Gasöl (0,1 GJ/Mg), Erdgas (0,52 GJ/Mg), Strom (4,43 GJ/Mg), Dampf (8,6 GJ/Mg) und Kohle (0,14 GJ/Mg) zusammen. In (ISI 1999) werden keine Angaben zu prozeßbedingten Luftemissionen, Abwasser und anderen Reststoffen gemacht. PUR-Hartschaum wird als Isolationsmittel für Kühlschränke und in der Gebäudedämmung eingesetzt. Hartschäume werden auch in der Möbelindustrie verarbeitet. PUR-Hartschaum kann Mineralwolle ersetzen. Auslastung: 5000h/a Brenn-/Einsatzstoff: Grundstoffe-Chemie gesicherte Leistung: 100% Jahr: 2000 Lebensdauer: 20a Leistung: 1t/h Nutzungsgrad: 306% Produkt: Kunststoffe

Kunststoff\PUR-Hartschaum-DE-2020

Die Herstellung von Polyurethan-Hartschaum (PUR-MDI) erfolgt über 1. Polyole - Polyetherpolyole aus Propylenoxid (hier nach dem Chlorhydrinverfahren) und Polyetherpolyole aus Propylenoxid und 2. Polyisocyanate (Methylendiaminisocyanat). Allokation: keine Genese der Kennziffern Massenbilanz: Nach (ISI 1999) werden für die Herstellung von einer Tonne PUR-Hartschaum 326,6 kg Propen, 406,5 kg Benzol und 101,8 kg Ammoniak eingesetzt. Energiebedarf: Die Prozeßenergie zur Herstellung einer Tonne PUR-Weichschaum setzt sich aus Gasöl (0,1 GJ/Mg), Erdgas (0,52 GJ/Mg), Strom (4,43 GJ/Mg), Dampf (8,6 GJ/Mg) und Kohle (0,14 GJ/Mg) zusammen. In (ISI 1999) werden keine Angaben zu prozeßbedingten Luftemissionen, Abwasser und anderen Reststoffen gemacht. PUR-Hartschaum wird als Isolationsmittel für Kühlschränke und in der Gebäudedämmung eingesetzt. Hartschäume werden auch in der Möbelindustrie verarbeitet. PUR-Hartschaum kann Mineralwolle ersetzen. Auslastung: 5000h/a Brenn-/Einsatzstoff: Grundstoffe-Chemie gesicherte Leistung: 100% Jahr: 2020 Lebensdauer: 20a Leistung: 1t/h Nutzungsgrad: 306% Produkt: Kunststoffe

Implementierung der ab dem Berichtsjahr 2013 gültigen IPCC Guidelines for National Greenhouse Gas Inventories 2006 in die Inventarerhebung fluorierter Treibhausgase (HFKW, FKW, SF6, NF3)

Als Vertragsstaat der Klimarahmenkonvention der Vereinten Nationen (UNFCCC) und des Kyoto-Protokolls ist die Bundesrepublik Deutschland verpflichtet, jährlich Emissionsdaten von Treibhausgasen an das UN-Klimasekretariat zu berichten. Der Berichtspflicht unterliegen auch die fluorierten Treibhausgase HFKW, FKW und SF6 ("F-Gase"). Der vorliegende Bericht stellt die Anforderungen an die Berichterstattung von F-Gas-Emissionen entsprechend der neuesten Vorgaben der UNFCCC Reporting Guidelines sowie der methodischen Anleitungen der 2006 IPCC Guidelines jeweils im Vergleich zu den bisher gültigen Anforderungen dar. Für die bisher angewendeten Berechnungs- und Erhebungsmethoden der Emissionsberichterstattung werden Änderungen und Aktualisierungen vorgeschlagen. Neue (Unter-)Quellgruppen von F-Gas-Emissionen, etwa ORC-Anlagen und Wärmeüberträger, werden in das Emissionsinventar integriert. Auch neu zu berichtende F-Gase (z.B. HFKW-245fa, HFKW-365mfc, NF3) werden ausführlich hinsichtlich tatsächlicher und möglicher Anwendungen beschrieben. Emissionen für alle neuen F-Gase werden für den Zeitraum ab 1990 abgeschätzt. Darüber hinaus werden die Stoffgruppen der perfluorierten Polyether und der Hydrofluorether erstmals in ihren Anwendungen in Deutschland beschrieben. Die produzierten, importierten und exportierten Mengen dieser Stoffe werden nach der Überarbeitung der europäischen F-Gase-Verordnung von Unternehmen berichtet. Die Veränderungen für das deutsche F-Gas-Inventar werden abschließend im Überblick dargestellt.<BR>Quelle:Forschungsbericht

CO2-WIN: CO2 zu Propen via eMethanol

Das Projekt "CO2-WIN: CO2 zu Propen via eMethanol" wird vom Umweltbundesamt gefördert und von Covestro Deutschland AG durchgeführt. Propen ist ein essentieller Rohstoff für die chemische Industrie mit einer globalen Produktion von ca. 100 Millionen Tonnen pro Jahr. Es dient nicht nur zur Herstellung von Polypropylen sondern auch für die Herstellung von Propylenoxid. Propylenoxid ist ein wichtiger Rohstoff (Produktion ca. 6 Mio. t/a) z.B. für die Herstellung von Polyether, die für die Herstellung von Polyurethanschäumen benötigt werden. Derzeit wird Propen durch Cracken von Erdölfraktionen oder Gas sowie in zunehmendem Maße aus Methanol gewonnen, das überwiegend aus Kohle und Erdgas erzeugt wird. Hierdurch werden fossile Rohstoffe verbraucht und nach Ende der Nutzungsdauer der daraus hergestellten Produkte durch Verbrennung in klimaschädliches CO2 umgewandelt. Eine stoffliche Nutzung von CO2 als Rohstoffbasis für Propen ist derzeit noch nicht möglich. Im Projekt ProMet sollen die Grundlagen gelegt werden, um über Elektrolyse im industriell relevanten Maßstab CO2 in Methanol ('eMethanol') umzuwandeln.

1 2 3 4 5