Die Polymer-Gruppe mit Sitz in Bad Sobernheim entstand aus der 1973 gegründeten Polymer-Chemie GmbH, einem konzernunabhängigen Familienunternehmen, das Kunststoffe compoundiert, veredelt und modifiziert. Mit ihrer neu gegründeten Tochtergesellschaft SoBiCo GmbH plant die Gruppe, die weltweit erste Produktionslinie zur integrierten und energieeffizienten Herstellung von PLA-Copolymeren als Biokunststoff für Verpackungsfolien zu errichten. Die chemische Synthese und nachfolgende Verarbeitung der Kunststoffe zum fertigen Compound finden bisher üblicherweise in zwei komplett getrennten Arbeitsschritten statt. Dazwischen wird der Kunststoff auf Umgebungstemperatur abgekühlt. Durch die Herstellung des fertigen Kunststoffs in einem integrierten Verfahren entfällt der zusätzliche Energieaufwand für das nochmalige Aufschmelzen des Kunststoffes für die Compoundierung. Bei einer erwarteten Produktionsmenge von 10.000 Tonnen pro Jahr ergibt sich eine Energieeinsparung von 2,5 Millionen Kilowattstunden pro Jahr. So kann eine Minderung des CO 2 -Ausstoßes um 1.170 Tonnen pro Jahr erreicht werden. Dies führt zu einer Reduzierung der Emissionen von CO 2 im Vergleich zum bisher etablierten Prozess um 25 Prozent. Branche: Chemische und pharmazeutische Erzeugnisse, Gummi- und Kunststoffwaren Umweltbereich: Klimaschutz Fördernehmer: SoBiCo GmbH Bundesland: Rheinland-Pfalz Laufzeit: seit 2021 Status: Laufend
Fa. Röhm GmbH, Im Pfaffenwinkel 6, 67547 Worms hat einen Antrag auf Genehmigung nach § 16 Abs. 1 i.V.m. § 19 BImSchG für die Änderung der Anlage zur Herstellung von PMMA- und PMMI-Formmassen (Betrieb 208/808) mit Kapazitätssteigerung durch den Neubau der Kontinuierlichen Polymerisation "Straße 4" mit direkter Einfärbung (Online Colouring Anlage -OLC) am Standort in Worms, Gemarkung Worms, Flur 6, Nr. 33/1 gestellt. Es handelt sich hierbei um eine Anlage nach Nr. 4.1.4 des Anhangs 1 der 4. Verordnung zum Bundes-Immissionsschutzgesetz (4. BImSchV). Es war eine allgemeine Vorprüfung nach Ziffer 4.2, Spalte 2 der Anlage 1 zum Gesetz über die Umweltverträglichkeitsprüfung (UVPG) durchzuführen.
Mikroplastik in Kosmetika – Was ist das? Immer häufiger ist in den Medien von Mikroplastik in Kosmetika die Rede. Wie wird „Mikroplastik“ eigentlich genau definiert? Und welche Kunststoffe kommen in Kosmetikprodukten wie Duschgelen oder Peelings vor? Hier ein kurzer Überblick. Ausgangspunkt des Themas „Mikroplastik“ waren Diskussionen zum Thema „Abfälle im Meer“. Gleichzeitig ist es aber auch ein Teilbereich des übergeordneten Themas „Kunststoffe in der Umwelt“. „Abfälle im Meer“ sind alle langlebigen, gefertigten oder verarbeiteten beständigen Materialien, die durch Wegwerfen oder als herrenloses Gut in die Meeresumwelt gelangen ( UNEP 2005: Marine litter – an analytical overview. United Nations Environmental Programme). Durchschnittlich dreiviertel des gefundenen marinen Mülls besteht aus Kunststoffen. Die Meere als finale Senke sind in Bezug auf Kunststoffeinträge auch von besonderer Bedeutung und Schutzbedürftigkeit. Ausgehend von Arbeiten im internationalen Meeresschutz wurde vereinbart, alle Plastikpartikel von fünf Millimetern und kleiner als Mikroplastik zu bezeichnen. Damit werden zunächst nur werkstoffliche Materialien (Thermoplaste, Duroplaste und Elastomere) gefasst. Hinsichtlich der Stoffeigenschaften und weiterer Kriterien (z.B. Form) wurden bislang keine vergleichbaren Festlegungen getroffen. Aus Sicht des Umweltbundesamtes ist Mikroplastik somit ganz allgemein wie folgt definiert: „Mikroplastik sind Plastik-Partikel, die fünf Millimeter und kleiner sind.“ Die Diskussion um Mikroplastik in kosmetischen Mitteln geht auf die oben genannte Größeneinteilung zurück, da erkannt wurde, dass es auch kosmetische Mittel wie z. B. Peeling und Peelingduschgel gibt, die bewusst Mikroplastik (primäres Mikroplastik) beinhalten, welches bei ihrer Anwendung in die Umwelt gelangen kann. Daher werden alle in kosmetischen Mitteln enthaltenen festen Partikel aus Kunststoff in einer Größe kleiner gleich 5 Millimeter als Mikroplastik bezeichnet. Eine Untergrenze der Größe gibt es dabei nicht. Als Definition für Mikroplastik im Zusammenhang mit kosmetischen Mitteln und mit Wasch- und Reinigungsmitteln (Detergenzien) wird zukünftig voraussichtlich die neue technische Definition aus den Kriterien des EU-Ecolabel für Wasch- und Reinigungsmittel verwendet werden. „Mikroplastik“: Partikel mit einer Größe von weniger als 5 mm eines unlöslichen, makromolekularen Kunststoffs, der durch eines der folgenden Verfahren gewonnen wird: a) ein Polymerisationsverfahren, wie z. B. Polyaddition oder Polykondensation oder ein ähnliches Verfahren, bei dem Monomere oder andere Ausgangsstoffe verwendet werden; b) chemische Modifikation natürlicher oder synthetischer Makromoleküle; c) mikrobielle Fermentation; Diese Definition bezieht sich auf feste, wasserunlösliche Partikel und wurde Ende Juni im Amtsblatt der EU veröffentlicht. Mikroplastik ist somit ein Sammelbegriff für verschiedene feste Kunststoffe. Hinzu kommt, dass Plastik abhängig von den eingesetzten Polymeren und den jeweiligen Additiven unterschiedliche Eigenschaften hat. Diese Definitionen - sowohl beim EU-Ecolabel als auch aus dem Meeresschutz - umfassen alle in kosmetischen Mitteln oder Wasch- und Reinigungsmitteln eingesetzten Arten von Mikroplastik unabhängig von ihrer technischen Funktion im Produkt. Welche Wirkungen sind zu befürchten? Bei festen Kunststoffpartikeln sind physikalische Schäden des Magen-Darm-Traktes zu befürchten. Weiterhin kann es zur Blockierung der Nahrungsaufnahme, der Behinderung der Verdauung sowie zu einem ständigen Sättigungsgefühl kommen. Dies kann das Wachstum, die Mobilität und die Fortpflanzungsfähigkeit beeinträchtigen. Labor-Tests mit Mikroplastik-Partikeln an Wasserflöhen (Daphnien) zeigten nun erste Hinweise auf Auswirkungen auf das Wachstum und die Mobilität dieser Tiere. Da die durchgeführten Tests nicht für wasserunlösliche Feststoffe konzipiert sind, ist deren Ergebnis nicht direkt auf die etwaige Wirkungen in der Umwelt zu übertragen. Trotzdem scheint ein Handeln aus Gründen der Vorsorge geboten. Mikroplastik wird kosmetischen Mitteln oder Detergenzien (Wasch- und Reinigungsmitteln) als Schleifmittel sowie als Trübungsmittel zugesetzt. Der Eintrag von Mikroplastik aus Detergenzien und aus kosmetischen Mitteln über das Abwasser in die Umwelt ist im Verhältnis zu anderen Quellen gering. Ein wesentlicher Teil des in Abwasser enthaltenen Mikroplastiks wird im Klärschlamm gebunden, wenn das Abwasser in einer biologischen Kläranlage gereinigt wird. Auch wenn nur geringe Mengen aus Detergenzien und Kosmetika in die Umwelt kommen, so hält das Umweltbundesamt Mikroplastik in diesen Produkten für verzichtbar. Daher sollten auch diese Industriezweige ihrer Verantwortung gerecht werden und zu einer Reduktion des Eintrags von Mikroplastik in die Umwelt beitragen. Das Umweltministerium hat im Rahmen des Kosmetikdialoges mehrfach Gespräche mit der Kosmetikindustrie hinsichtlich der Möglichkeit einer Reduzierung des Eintrags von Mikroplastik aus kosmetischen Mitteln in das Abwasser geführt. Die Kosmetikindustrie hat unter anderem in Folge dieser Gespräche im Rahmen einer freiwilligen Empfehlung zum Verzicht auf Mikroplastik als Schleifmittel in kosmetischen Mitteln aufgerufen, wodurch der Einsatz von Mikroplastik als Schleifmittel in Produkten wie Peelings und Zahncreme erfolgreich reduziert wurde. Mikroplastik wurde seit dem in diesen Produkten weitgehend gegen geeignete Ersatzstoffe ausgetauscht. Diese Empfehlung geht dem UBA jedoch langfristig nicht weit genug, da sie nur den Anwendungsbereich der Schleifmittel umfasst und Trübungsmittel keine Berücksichtigung finden. Als zweiter Schritt sollte nun auch der Ausstieg auch bei Detergenzien erfolgen. Zusätzlich sollte jegliche Verwendung von Mikroplastik, auch als Trübungsmittel in Kosmetika, unterbunden werden. Nach Auffassung des Umweltbundesamtes sollte dies EU-weit durch harmonisiert gesetzlich Regelungen zum Verbot der Verwendung von Mikroplastik in kosmetischen Mitteln im Sinne der Verordnung (EG) Nr. 1223/2009 und in Wasch- und Reinigungsmitteln im Sinne der Verordnung (EG) Nr. 648/2004 erfolgen, um zusätzlich die Hersteller zu berücksichtigen, welch die freiwilligen Maßnahmen der Industrieverbände nicht unterstützen. Die Auffassung, dass eine gesetzliche Maßnahme zum Verbot von Mikroplastik sinnvoll ist, wird auch von anderen EU Mitgliedsstaaten geteilt. Eine endgültige Entscheidung Seitens der EU-Kommission als Ergebnis der Konsultation steht jedoch noch aus. Was ist kein Mikroplastik? In kosmetischen Mitteln und Wasch- und Reinigungsmitteln werden zusätzlich weitere, im Gegensatz zu Mikroplastik jedoch wasserlösliche synthetische Polymere zu unterschiedlichen technischen Zwecken eingesetzt. So werden in Duschgelen z. B. Acrylsäure-Copolymere als Filmbildner eingesetzt. Verschiedene Verbände betrachten auch diese wasserlöslichen Polymere zusätzlich als Mikroplastik. Diese wasserlöslichen Polymere liegen jedoch nicht als feste Partikel in den Produkten vor. Lösliche Stoffe wie z. B. Acrylsäure-Copolymere sind daher kein Mikroplastik im Sinne der o. g. Definitionen. Anders als bei festen wasserunlöslichen Mikroplastik-Partikeln kann bei wasserlöslichen synthetischen Polymeren für jedes Polymer individuell eine Bewertung etwaiger Gefahren nach Vorgabe des Chemikalienrechts erfolgen, da für diese die in REACh und in der CLP -Verordnung vorgesehenen Tests mit Fischen, Daphnien und Algen zur Bestimmung der Ökotoxizität durchgeführt werden können, wodurch eine Bewertung des Verhaltens in der Umwelt möglich ist. Weiterhin sind hier physikalische Schäden des Magen-Darm-Traktes sowie die Verdrängung von Nahrung nicht zu befürchten, da hier keine Feststoffe vorliegen. Für jedes wasserlösliche synthetische Polymer ist daher eine eigene Gefährdungsbeurteilung auf Basis der Ökotox-Daten, der Abbau-Daten und der Exposition seitens des Herstellers des Polymers möglich. Ungeachtet dieser Unterscheidung in der Definition sollten kosmetische Mittel und Wasch- und Reinigungsmittel möglichst keine oder so wenig wie möglich schwer abbaubare Stoffe enthalten. Verbraucherinnen und Verbraucher sollten daher bevorzugt zu Produkten greifen, die solche Stoffe nicht oder nur in geringen Mengen enthalten. Eine gute Hilfestellung bei der Auswahl bieten der Blaue Engel, das EU-Ecolabel oder auch andere vertrauenswürdige Label/Siegel.
PVC-Polymerisation von monomerem Vinylchlorid (VCM) zu Polyvinylchorid (PVC) nach dem Suspensionsverfahren. Drei Verfahren zur Herstellung von PVC werden industriell durchgeführt, das Suspensionsverfahren, das Masseverfahren und das Emulsionsverfahren. Das Herstellungsverfahren beeinflußt die Eigenschaften des PVC und damit dessen Anwendungsgebiete. [PVC wird nie in Reinform verarbeitet. Hilfsstoffe (Farbmittel, Weichmacher etc.) ermöglichen die reibungslose Verarbeitung und bestimmen die Eigenschaften des Produkts. Die Weiterverarbeitung von PVC wird in diesem Prozess nicht berücksichtigt.]. Ein wesentlicher Teil des technischen Aufwandes zur PVC-Herstellung gilt der Verhinderung von VCM-Emissionen und der Entmonomerisierung (Entfernen von VCM aus dem Polymerisationsprodukt). Bei der Suspensionspolymerisation des VCM wird dieses durch starkes Rühren in Wasser fein verteilt. Die Polymerisation wird durch die Zugabe von Initiatoren (meist ein organisches Peroxid) in Gang gesetzt, die sich im Monomeren lösen. Suspendierungsmittel verhindern ein Zusammenbacken der sich bildenden Partikel. Die Polymerisation (Dauer 6 bis 8 Stunden) erfolgt diskontinuierlich in Rührkesseln. Wenn 90 % des VCM polymerisiert sind, wird die Reaktion abgebrochen. Nicht polymerisiertes VCM wird wiedergewonnen. Die Suspension (etwa 32 % Feststoff) wird in Zentrifugen weitgehend vom Wasser befreit. Anschließend erfolgt die Trocknung und Lagerung des PVC. Ortsbezug: Weltweit wurden 1990 18,3 Mio. t PVC produziert (Nordamerika 4,7 Mio. t, Westeuropa 4,8 Mio. t, Japan 2,1 Mio. t) (Ullmann 1992). In (APME 1994) werden für Westeuropa 1994 PVC-Produktionsmengen von 5,243 Mio. t angegeben. Nach (Ullmann 1992) entfallen 80 % der Weltprodukion auf das Suspensionsverfahren, 12 % auf das Emulsionsverfahren (1989: weltweit 1,6 Mio. t; davon 41 % Westeuropa, 17 % USA, 10 % Japan) und 8 % auf das Masseverfahren. Nach (OEKO 1989) entfallen in der Bundesrepublik Deutschland 60 % der PVC-Produktion auf das Suspensionsverfahren, 28 % auf das Emulsionsverfahren und 12 % auf das Masseverfahren. In der BRD wurden 1987 1,32 Mio PVC hergestellt (Tötsch 1990). Für die Genese der Kennziffern in GEMIS wurden Daten aus #1 und #2 bzw. #3 verwendet (siehe unten). Die dort enthaltenen Werte geben den Stand der Technik Ende der 80er bzw. Anfang der 90er Jahre in der BRD bzw. von Standorten der Fa. Norsk Hydro wieder. Allokation: keine Genese der Daten: Massenbilanz - Für die Erzeugung von 1 t PVC werden 1010 kg an monomerem Vinylchlorid eingesetzt. Weiterhin werden und Initiatoren (organische Peroxide 0,87 kg) zum Starten der Polymerisation und Stabilisatoren (Methylzellulose 0,5 kg) von zusammen 1,37 kg benötigt. Die Verluste bei der Massenbilanz werden in #1 mit "Verluste im Abwasser" 3 kg, "Verluste als PVC Staub" 1 kg und "sonstige Verluste" ca. 7,4 kg beziffert. Energiebedarf - Der Energiebedarf zur Herstellung einer Tonne PVC beträgt nach #1 rund 0,72 GJ an elektrische Energie. Emissionen - An prozessspezifischen Luftemissionen bei der PVC-Polymerisation ist vor allem VCM von Bedeutung. Es wird in #1 mit einem Umwelteintrag von 300 t VCM für 1988 gerechnet. Legt man die PVC-Produktionszahlen von 1987 (1,32 Mio. t) zugrunde, so ergibt sich für die VCM-Emission ein Wert von ca. 0,23 kg/tP. Verfahrensunterschiede (Suspensions-, Masse- oder Emulsionsverfahren) bleiben bei dieser Berechnung unberücksichtigt. In #2 werden die prozessbedingten VOC-Emissionen bei der PVC-Herstellung (Suspensionsverfahren) abgeschätzt. Daraus ergibt sich ein Wert von ca. 1,5 kg VOC/t PVC. Dieser Wert wird bei GEMIS unter NMVOC aufgeführt. In #3 werden Emissionen der PVC-Produktion nach einer Studie von Norsk Hydro (Grundlagen sind Daten von vier Standorten der Fa. Norsk Hydro) aufgeführt. Es werden folgende Emissionen genannt: 0,675 kg VCM/t PVC (Luft), 0,185 kg PVC-Staub/t PVC (Luft), 0,059 kg PVC/t PVC (Wasser) und 3,9 kg verunreinigtes PVC/t PVC (Abfall). Eine Zuordnung der Emissionen zu einem bestimmten Herstellungsverfahren ist dabei nicht möglich. Wasser - Für die Herstellung von einer Tonne PVC werden insgesamt 104 t Wasser benötigt. 100 t werden davon als Kühlwasser, 1,0 t als Mitteldruckdampf verwendet. Bei den restlichen 3 t handelt es sich um entmineralisiertes Wasser (#1). Beim Suspensions- und Emulsionsverfahren entstehen VCM-belastete Abwässer (quantitative Angaben zu Abwasserfrachten liegen nicht vor). Im Ablauf von zentralen biologischen Abwasserreinigungsanlagen ist VCM in der Regel nicht nachweisbar. Wegen der Flüchtigkeit geben VCM-haltige Abwässer das Vinylchlorid relativ schnell an die Atmosphäre ab (UBA 1991). Auslastung: 5000h/a Brenn-/Einsatzstoff: Grundstoffe-Chemie gesicherte Leistung: 100% Jahr: 2030 Lebensdauer: 20a Leistung: 1t/h Nutzungsgrad: 99% Produkt: Kunststoffe
PVC-Polymerisation von monomerem Vinylchlorid (VCM) zu Polyvinylchorid (PVC) nach dem Suspensionsverfahren. Drei Verfahren zur Herstellung von PVC werden industriell durchgeführt, das Suspensionsverfahren, das Masseverfahren und das Emulsionsverfahren. Das Herstellungsverfahren beeinflußt die Eigenschaften des PVC und damit dessen Anwendungsgebiete. [PVC wird nie in Reinform verarbeitet. Hilfsstoffe (Farbmittel, Weichmacher etc.) ermöglichen die reibungslose Verarbeitung und bestimmen die Eigenschaften des Produkts. Die Weiterverarbeitung von PVC wird in diesem Prozess nicht berücksichtigt.]. Ein wesentlicher Teil des technischen Aufwandes zur PVC-Herstellung gilt der Verhinderung von VCM-Emissionen und der Entmonomerisierung (Entfernen von VCM aus dem Polymerisationsprodukt). Bei der Suspensionspolymerisation des VCM wird dieses durch starkes Rühren in Wasser fein verteilt. Die Polymerisation wird durch die Zugabe von Initiatoren (meist ein organisches Peroxid) in Gang gesetzt, die sich im Monomeren lösen. Suspendierungsmittel verhindern ein Zusammenbacken der sich bildenden Partikel. Die Polymerisation (Dauer 6 bis 8 Stunden) erfolgt diskontinuierlich in Rührkesseln. Wenn 90 % des VCM polymerisiert sind, wird die Reaktion abgebrochen. Nicht polymerisiertes VCM wird wiedergewonnen. Die Suspension (etwa 32 % Feststoff) wird in Zentrifugen weitgehend vom Wasser befreit. Anschließend erfolgt die Trocknung und Lagerung des PVC. Ortsbezug: Weltweit wurden 1990 18,3 Mio. t PVC produziert (Nordamerika 4,7 Mio. t, Westeuropa 4,8 Mio. t, Japan 2,1 Mio. t) (Ullmann 1992). In (APME 1994) werden für Westeuropa 1994 PVC-Produktionsmengen von 5,243 Mio. t angegeben. Nach (Ullmann 1992) entfallen 80 % der Weltprodukion auf das Suspensionsverfahren, 12 % auf das Emulsionsverfahren (1989: weltweit 1,6 Mio. t; davon 41 % Westeuropa, 17 % USA, 10 % Japan) und 8 % auf das Masseverfahren. Nach (OEKO 1989) entfallen in der Bundesrepublik Deutschland 60 % der PVC-Produktion auf das Suspensionsverfahren, 28 % auf das Emulsionsverfahren und 12 % auf das Masseverfahren. In der BRD wurden 1987 1,32 Mio PVC hergestellt (Tötsch 1990). Für die Genese der Kennziffern in GEMIS wurden Daten aus #1 und #2 bzw. #3 verwendet (siehe unten). Die dort enthaltenen Werte geben den Stand der Technik Ende der 80er bzw. Anfang der 90er Jahre in der BRD bzw. von Standorten der Fa. Norsk Hydro wieder. Allokation: keine Genese der Daten: Massenbilanz - Für die Erzeugung von 1 t PVC werden 1010 kg an monomerem Vinylchlorid eingesetzt. Weiterhin werden und Initiatoren (organische Peroxide 0,87 kg) zum Starten der Polymerisation und Stabilisatoren (Methylzellulose 0,5 kg) von zusammen 1,37 kg benötigt. Die Verluste bei der Massenbilanz werden in #1 mit "Verluste im Abwasser" 3 kg, "Verluste als PVC Staub" 1 kg und "sonstige Verluste" ca. 7,4 kg beziffert. Energiebedarf - Der Energiebedarf zur Herstellung einer Tonne PVC beträgt nach #1 rund 0,72 GJ an elektrische Energie. Emissionen - An prozessspezifischen Luftemissionen bei der PVC-Polymerisation ist vor allem VCM von Bedeutung. Es wird in #1 mit einem Umwelteintrag von 300 t VCM für 1988 gerechnet. Legt man die PVC-Produktionszahlen von 1987 (1,32 Mio. t) zugrunde, so ergibt sich für die VCM-Emission ein Wert von ca. 0,23 kg/tP. Verfahrensunterschiede (Suspensions-, Masse- oder Emulsionsverfahren) bleiben bei dieser Berechnung unberücksichtigt. In #2 werden die prozessbedingten VOC-Emissionen bei der PVC-Herstellung (Suspensionsverfahren) abgeschätzt. Daraus ergibt sich ein Wert von ca. 1,5 kg VOC/t PVC. Dieser Wert wird bei GEMIS unter NMVOC aufgeführt. In #3 werden Emissionen der PVC-Produktion nach einer Studie von Norsk Hydro (Grundlagen sind Daten von vier Standorten der Fa. Norsk Hydro) aufgeführt. Es werden folgende Emissionen genannt: 0,675 kg VCM/t PVC (Luft), 0,185 kg PVC-Staub/t PVC (Luft), 0,059 kg PVC/t PVC (Wasser) und 3,9 kg verunreinigtes PVC/t PVC (Abfall). Eine Zuordnung der Emissionen zu einem bestimmten Herstellungsverfahren ist dabei nicht möglich. Wasser - Für die Herstellung von einer Tonne PVC werden insgesamt 104 t Wasser benötigt. 100 t werden davon als Kühlwasser, 1,0 t als Mitteldruckdampf verwendet. Bei den restlichen 3 t handelt es sich um entmineralisiertes Wasser (#1). Beim Suspensions- und Emulsionsverfahren entstehen VCM-belastete Abwässer (quantitative Angaben zu Abwasserfrachten liegen nicht vor). Im Ablauf von zentralen biologischen Abwasserreinigungsanlagen ist VCM in der Regel nicht nachweisbar. Wegen der Flüchtigkeit geben VCM-haltige Abwässer das Vinylchlorid relativ schnell an die Atmosphäre ab (UBA 1991). Auslastung: 5000h/a Brenn-/Einsatzstoff: Grundstoffe-Chemie gesicherte Leistung: 100% Jahr: 2010 Lebensdauer: 20a Leistung: 1t/h Nutzungsgrad: 99% Produkt: Kunststoffe
PVC-Polymerisation von monomerem Vinylchlorid (VCM) zu Polyvinylchorid (PVC) nach dem Suspensionsverfahren. Drei Verfahren zur Herstellung von PVC werden industriell durchgeführt, das Suspensionsverfahren, das Masseverfahren und das Emulsionsverfahren. Das Herstellungsverfahren beeinflußt die Eigenschaften des PVC und damit dessen Anwendungsgebiete. [PVC wird nie in Reinform verarbeitet. Hilfsstoffe (Farbmittel, Weichmacher etc.) ermöglichen die reibungslose Verarbeitung und bestimmen die Eigenschaften des Produkts. Die Weiterverarbeitung von PVC wird in diesem Prozess nicht berücksichtigt.]. Ein wesentlicher Teil des technischen Aufwandes zur PVC-Herstellung gilt der Verhinderung von VCM-Emissionen und der Entmonomerisierung (Entfernen von VCM aus dem Polymerisationsprodukt). Bei der Suspensionspolymerisation des VCM wird dieses durch starkes Rühren in Wasser fein verteilt. Die Polymerisation wird durch die Zugabe von Initiatoren (meist ein organisches Peroxid) in Gang gesetzt, die sich im Monomeren lösen. Suspendierungsmittel verhindern ein Zusammenbacken der sich bildenden Partikel. Die Polymerisation (Dauer 6 bis 8 Stunden) erfolgt diskontinuierlich in Rührkesseln. Wenn 90 % des VCM polymerisiert sind, wird die Reaktion abgebrochen. Nicht polymerisiertes VCM wird wiedergewonnen. Die Suspension (etwa 32 % Feststoff) wird in Zentrifugen weitgehend vom Wasser befreit. Anschließend erfolgt die Trocknung und Lagerung des PVC. Ortsbezug: Weltweit wurden 1990 18,3 Mio. t PVC produziert (Nordamerika 4,7 Mio. t, Westeuropa 4,8 Mio. t, Japan 2,1 Mio. t) (Ullmann 1992). In (APME 1994) werden für Westeuropa 1994 PVC-Produktionsmengen von 5,243 Mio. t angegeben. Nach (Ullmann 1992) entfallen 80 % der Weltprodukion auf das Suspensionsverfahren, 12 % auf das Emulsionsverfahren (1989: weltweit 1,6 Mio. t; davon 41 % Westeuropa, 17 % USA, 10 % Japan) und 8 % auf das Masseverfahren. Nach (OEKO 1989) entfallen in der Bundesrepublik Deutschland 60 % der PVC-Produktion auf das Suspensionsverfahren, 28 % auf das Emulsionsverfahren und 12 % auf das Masseverfahren. In der BRD wurden 1987 1,32 Mio PVC hergestellt (Tötsch 1990). Für die Genese der Kennziffern in GEMIS wurden Daten aus #1 und #2 bzw. #3 verwendet (siehe unten). Die dort enthaltenen Werte geben den Stand der Technik Ende der 80er bzw. Anfang der 90er Jahre in der BRD bzw. von Standorten der Fa. Norsk Hydro wieder. Allokation: keine Genese der Daten: Massenbilanz - Für die Erzeugung von 1 t PVC werden 1010 kg an monomerem Vinylchlorid eingesetzt. Weiterhin werden und Initiatoren (organische Peroxide 0,87 kg) zum Starten der Polymerisation und Stabilisatoren (Methylzellulose 0,5 kg) von zusammen 1,37 kg benötigt. Die Verluste bei der Massenbilanz werden in #1 mit "Verluste im Abwasser" 3 kg, "Verluste als PVC Staub" 1 kg und "sonstige Verluste" ca. 7,4 kg beziffert. Energiebedarf - Der Energiebedarf zur Herstellung einer Tonne PVC beträgt nach #1 rund 0,72 GJ an elektrische Energie. Emissionen - An prozessspezifischen Luftemissionen bei der PVC-Polymerisation ist vor allem VCM von Bedeutung. Es wird in #1 mit einem Umwelteintrag von 300 t VCM für 1988 gerechnet. Legt man die PVC-Produktionszahlen von 1987 (1,32 Mio. t) zugrunde, so ergibt sich für die VCM-Emission ein Wert von ca. 0,23 kg/tP. Verfahrensunterschiede (Suspensions-, Masse- oder Emulsionsverfahren) bleiben bei dieser Berechnung unberücksichtigt. In #2 werden die prozessbedingten VOC-Emissionen bei der PVC-Herstellung (Suspensionsverfahren) abgeschätzt. Daraus ergibt sich ein Wert von ca. 1,5 kg VOC/t PVC. Dieser Wert wird bei GEMIS unter NMVOC aufgeführt. In #3 werden Emissionen der PVC-Produktion nach einer Studie von Norsk Hydro (Grundlagen sind Daten von vier Standorten der Fa. Norsk Hydro) aufgeführt. Es werden folgende Emissionen genannt: 0,675 kg VCM/t PVC (Luft), 0,185 kg PVC-Staub/t PVC (Luft), 0,059 kg PVC/t PVC (Wasser) und 3,9 kg verunreinigtes PVC/t PVC (Abfall). Eine Zuordnung der Emissionen zu einem bestimmten Herstellungsverfahren ist dabei nicht möglich. Wasser - Für die Herstellung von einer Tonne PVC werden insgesamt 104 t Wasser benötigt. 100 t werden davon als Kühlwasser, 1,0 t als Mitteldruckdampf verwendet. Bei den restlichen 3 t handelt es sich um entmineralisiertes Wasser (#1). Beim Suspensions- und Emulsionsverfahren entstehen VCM-belastete Abwässer (quantitative Angaben zu Abwasserfrachten liegen nicht vor). Im Ablauf von zentralen biologischen Abwasserreinigungsanlagen ist VCM in der Regel nicht nachweisbar. Wegen der Flüchtigkeit geben VCM-haltige Abwässer das Vinylchlorid relativ schnell an die Atmosphäre ab (UBA 1991). Auslastung: 5000h/a Brenn-/Einsatzstoff: Grundstoffe-Chemie gesicherte Leistung: 100% Jahr: 2005 Lebensdauer: 20a Leistung: 1t/h Nutzungsgrad: 99% Produkt: Kunststoffe
PVC-Polymerisation von monomerem Vinylchlorid (VCM) zu Polyvinylchorid (PVC) nach dem Suspensionsverfahren. Drei Verfahren zur Herstellung von PVC werden industriell durchgeführt, das Suspensionsverfahren, das Masseverfahren und das Emulsionsverfahren. Das Herstellungsverfahren beeinflußt die Eigenschaften des PVC und damit dessen Anwendungsgebiete. [PVC wird nie in Reinform verarbeitet. Hilfsstoffe (Farbmittel, Weichmacher etc.) ermöglichen die reibungslose Verarbeitung und bestimmen die Eigenschaften des Produkts. Die Weiterverarbeitung von PVC wird in diesem Prozess nicht berücksichtigt.]. Ein wesentlicher Teil des technischen Aufwandes zur PVC-Herstellung gilt der Verhinderung von VCM-Emissionen und der Entmonomerisierung (Entfernen von VCM aus dem Polymerisationsprodukt). Bei der Suspensionspolymerisation des VCM wird dieses durch starkes Rühren in Wasser fein verteilt. Die Polymerisation wird durch die Zugabe von Initiatoren (meist ein organisches Peroxid) in Gang gesetzt, die sich im Monomeren lösen. Suspendierungsmittel verhindern ein Zusammenbacken der sich bildenden Partikel. Die Polymerisation (Dauer 6 bis 8 Stunden) erfolgt diskontinuierlich in Rührkesseln. Wenn 90 % des VCM polymerisiert sind, wird die Reaktion abgebrochen. Nicht polymerisiertes VCM wird wiedergewonnen. Die Suspension (etwa 32 % Feststoff) wird in Zentrifugen weitgehend vom Wasser befreit. Anschließend erfolgt die Trocknung und Lagerung des PVC. Ortsbezug: Weltweit wurden 1990 18,3 Mio. t PVC produziert (Nordamerika 4,7 Mio. t, Westeuropa 4,8 Mio. t, Japan 2,1 Mio. t) (Ullmann 1992). In (APME 1994) werden für Westeuropa 1994 PVC-Produktionsmengen von 5,243 Mio. t angegeben. Nach (Ullmann 1992) entfallen 80 % der Weltprodukion auf das Suspensionsverfahren, 12 % auf das Emulsionsverfahren (1989: weltweit 1,6 Mio. t; davon 41 % Westeuropa, 17 % USA, 10 % Japan) und 8 % auf das Masseverfahren. Nach (OEKO 1989) entfallen in der Bundesrepublik Deutschland 60 % der PVC-Produktion auf das Suspensionsverfahren, 28 % auf das Emulsionsverfahren und 12 % auf das Masseverfahren. In der BRD wurden 1987 1,32 Mio PVC hergestellt (Tötsch 1990). Für die Genese der Kennziffern in GEMIS wurden Daten aus #1 und #2 bzw. #3 verwendet (siehe unten). Die dort enthaltenen Werte geben den Stand der Technik Ende der 80er bzw. Anfang der 90er Jahre in der BRD bzw. von Standorten der Fa. Norsk Hydro wieder. Allokation: keine Genese der Daten: Massenbilanz - Für die Erzeugung von 1 t PVC werden 1010 kg an monomerem Vinylchlorid eingesetzt. Weiterhin werden und Initiatoren (organische Peroxide 0,87 kg) zum Starten der Polymerisation und Stabilisatoren (Methylzellulose 0,5 kg) von zusammen 1,37 kg benötigt. Die Verluste bei der Massenbilanz werden in #1 mit "Verluste im Abwasser" 3 kg, "Verluste als PVC Staub" 1 kg und "sonstige Verluste" ca. 7,4 kg beziffert. Energiebedarf - Der Energiebedarf zur Herstellung einer Tonne PVC beträgt nach #1 rund 0,72 GJ an elektrische Energie. Emissionen - An prozessspezifischen Luftemissionen bei der PVC-Polymerisation ist vor allem VCM von Bedeutung. Es wird in #1 mit einem Umwelteintrag von 300 t VCM für 1988 gerechnet. Legt man die PVC-Produktionszahlen von 1987 (1,32 Mio. t) zugrunde, so ergibt sich für die VCM-Emission ein Wert von ca. 0,23 kg/tP. Verfahrensunterschiede (Suspensions-, Masse- oder Emulsionsverfahren) bleiben bei dieser Berechnung unberücksichtigt. In #2 werden die prozessbedingten VOC-Emissionen bei der PVC-Herstellung (Suspensionsverfahren) abgeschätzt. Daraus ergibt sich ein Wert von ca. 1,5 kg VOC/t PVC. Dieser Wert wird bei GEMIS unter NMVOC aufgeführt. In #3 werden Emissionen der PVC-Produktion nach einer Studie von Norsk Hydro (Grundlagen sind Daten von vier Standorten der Fa. Norsk Hydro) aufgeführt. Es werden folgende Emissionen genannt: 0,675 kg VCM/t PVC (Luft), 0,185 kg PVC-Staub/t PVC (Luft), 0,059 kg PVC/t PVC (Wasser) und 3,9 kg verunreinigtes PVC/t PVC (Abfall). Eine Zuordnung der Emissionen zu einem bestimmten Herstellungsverfahren ist dabei nicht möglich. Wasser - Für die Herstellung von einer Tonne PVC werden insgesamt 104 t Wasser benötigt. 100 t werden davon als Kühlwasser, 1,0 t als Mitteldruckdampf verwendet. Bei den restlichen 3 t handelt es sich um entmineralisiertes Wasser (#1). Beim Suspensions- und Emulsionsverfahren entstehen VCM-belastete Abwässer (quantitative Angaben zu Abwasserfrachten liegen nicht vor). Im Ablauf von zentralen biologischen Abwasserreinigungsanlagen ist VCM in der Regel nicht nachweisbar. Wegen der Flüchtigkeit geben VCM-haltige Abwässer das Vinylchlorid relativ schnell an die Atmosphäre ab (UBA 1991). Auslastung: 5000h/a Brenn-/Einsatzstoff: Grundstoffe-Chemie gesicherte Leistung: 100% Jahr: 2020 Lebensdauer: 20a Leistung: 1t/h Nutzungsgrad: 99% Produkt: Kunststoffe
PVC-Polymerisation von monomerem Vinylchlorid (VCM) zu Polyvinylchorid (PVC) nach dem Suspensionsverfahren. Drei Verfahren zur Herstellung von PVC werden industriell durchgeführt, das Suspensionsverfahren, das Masseverfahren und das Emulsionsverfahren. Das Herstellungsverfahren beeinflußt die Eigenschaften des PVC und damit dessen Anwendungsgebiete. [PVC wird nie in Reinform verarbeitet. Hilfsstoffe (Farbmittel, Weichmacher etc.) ermöglichen die reibungslose Verarbeitung und bestimmen die Eigenschaften des Produkts. Die Weiterverarbeitung von PVC wird in diesem Prozess nicht berücksichtigt.]. Ein wesentlicher Teil des technischen Aufwandes zur PVC-Herstellung gilt der Verhinderung von VCM-Emissionen und der Entmonomerisierung (Entfernen von VCM aus dem Polymerisationsprodukt). Bei der Suspensionspolymerisation des VCM wird dieses durch starkes Rühren in Wasser fein verteilt. Die Polymerisation wird durch die Zugabe von Initiatoren (meist ein organisches Peroxid) in Gang gesetzt, die sich im Monomeren lösen. Suspendierungsmittel verhindern ein Zusammenbacken der sich bildenden Partikel. Die Polymerisation (Dauer 6 bis 8 Stunden) erfolgt diskontinuierlich in Rührkesseln. Wenn 90 % des VCM polymerisiert sind, wird die Reaktion abgebrochen. Nicht polymerisiertes VCM wird wiedergewonnen. Die Suspension (etwa 32 % Feststoff) wird in Zentrifugen weitgehend vom Wasser befreit. Anschließend erfolgt die Trocknung und Lagerung des PVC. Ortsbezug: Weltweit wurden 1990 18,3 Mio. t PVC produziert (Nordamerika 4,7 Mio. t, Westeuropa 4,8 Mio. t, Japan 2,1 Mio. t) (Ullmann 1992). In (APME 1994) werden für Westeuropa 1994 PVC-Produktionsmengen von 5,243 Mio. t angegeben. Nach (Ullmann 1992) entfallen 80 % der Weltprodukion auf das Suspensionsverfahren, 12 % auf das Emulsionsverfahren (1989: weltweit 1,6 Mio. t; davon 41 % Westeuropa, 17 % USA, 10 % Japan) und 8 % auf das Masseverfahren. Nach (OEKO 1989) entfallen in der Bundesrepublik Deutschland 60 % der PVC-Produktion auf das Suspensionsverfahren, 28 % auf das Emulsionsverfahren und 12 % auf das Masseverfahren. In der BRD wurden 1987 1,32 Mio PVC hergestellt (Tötsch 1990). Für die Genese der Kennziffern in GEMIS wurden Daten aus #1 und #2 bzw. #3 verwendet (siehe unten). Die dort enthaltenen Werte geben den Stand der Technik Ende der 80er bzw. Anfang der 90er Jahre in der BRD bzw. von Standorten der Fa. Norsk Hydro wieder. Allokation: keine Genese der Daten: Massenbilanz - Für die Erzeugung von 1 t PVC werden 1010 kg an monomerem Vinylchlorid eingesetzt. Weiterhin werden und Initiatoren (organische Peroxide 0,87 kg) zum Starten der Polymerisation und Stabilisatoren (Methylzellulose 0,5 kg) von zusammen 1,37 kg benötigt. Die Verluste bei der Massenbilanz werden in #1 mit "Verluste im Abwasser" 3 kg, "Verluste als PVC Staub" 1 kg und "sonstige Verluste" ca. 7,4 kg beziffert. Energiebedarf - Der Energiebedarf zur Herstellung einer Tonne PVC beträgt nach #1 rund 0,72 GJ an elektrische Energie. Emissionen - An prozessspezifischen Luftemissionen bei der PVC-Polymerisation ist vor allem VCM von Bedeutung. Es wird in #1 mit einem Umwelteintrag von 300 t VCM für 1988 gerechnet. Legt man die PVC-Produktionszahlen von 1987 (1,32 Mio. t) zugrunde, so ergibt sich für die VCM-Emission ein Wert von ca. 0,23 kg/tP. Verfahrensunterschiede (Suspensions-, Masse- oder Emulsionsverfahren) bleiben bei dieser Berechnung unberücksichtigt. In #2 werden die prozessbedingten VOC-Emissionen bei der PVC-Herstellung (Suspensionsverfahren) abgeschätzt. Daraus ergibt sich ein Wert von ca. 1,5 kg VOC/t PVC. Dieser Wert wird bei GEMIS unter NMVOC aufgeführt. In #3 werden Emissionen der PVC-Produktion nach einer Studie von Norsk Hydro (Grundlagen sind Daten von vier Standorten der Fa. Norsk Hydro) aufgeführt. Es werden folgende Emissionen genannt: 0,675 kg VCM/t PVC (Luft), 0,185 kg PVC-Staub/t PVC (Luft), 0,059 kg PVC/t PVC (Wasser) und 3,9 kg verunreinigtes PVC/t PVC (Abfall). Eine Zuordnung der Emissionen zu einem bestimmten Herstellungsverfahren ist dabei nicht möglich. Wasser - Für die Herstellung von einer Tonne PVC werden insgesamt 104 t Wasser benötigt. 100 t werden davon als Kühlwasser, 1,0 t als Mitteldruckdampf verwendet. Bei den restlichen 3 t handelt es sich um entmineralisiertes Wasser (#1). Beim Suspensions- und Emulsionsverfahren entstehen VCM-belastete Abwässer (quantitative Angaben zu Abwasserfrachten liegen nicht vor). Im Ablauf von zentralen biologischen Abwasserreinigungsanlagen ist VCM in der Regel nicht nachweisbar. Wegen der Flüchtigkeit geben VCM-haltige Abwässer das Vinylchlorid relativ schnell an die Atmosphäre ab (UBA 1991). Auslastung: 5000h/a Brenn-/Einsatzstoff: Grundstoffe-Chemie gesicherte Leistung: 100% Jahr: 2000 Lebensdauer: 20a Leistung: 1t/h Nutzungsgrad: 99% Produkt: Kunststoffe
PVC-Polymerisation von monomerem Vinylchlorid (VCM) zu Polyvinylchorid (PVC) nach dem Masseverfahren. Drei Verfahren zur Herstellung von PVC werden industriell durchgeführt, das Suspensionsverfahren, das Masseverfahren und das Emulsionsverfahren. Das Herstellungsverfahren beeinflußt die Eigenschaften des PVC und damit dessen Anwendungsgebiete. [PVC wird nie in Reinform verarbeitet. Hilfsstoffe (Farbmittel, Weichmacher etc.) ermöglichen die reibungslose Verarbeitung und bestimmen die Eigenschaften des Produkts. Die Weiterverarbeitung von PVC wird in diesem Prozess nicht berücksichtigt.]. Ein wesentlicher Teil des technischen Aufwandes zur PVC-Herstellung gilt der Verhinderung von VCM-Emissionen und der Entmonomerisierung (Entfernen von VCM aus dem Polymerisationsprodukt). Beim Masseverfahren wird reines VCM polymerisiert. Der Prozeß ist verfahrenstechnisch sehr einfach, da im Unterschied zum Suspensions- und Emulsionsverfahren keine wässrige Phase existiert. Es werden keine Emulgatoren oder Suspendierungsmittel verwendet, wodurch ein sehr reines Produkt entsteht. Die Polymerisation wird in einem Rührkessel durchgeführt. Nach Beendigung der Reaktion wird nicht umgesetztes VCM zurückgewonnen. Die Polymerpartikel werden gemahlen, gesiebt und verpackt. Der große Nachteil des Verfahrens ist seine geringe Flexibilität. Ortsbezug: Weltweit wurden 1990 18,3 Mio. t PVC produziert (Nordamerika 4,7 Mio. t, Westeuropa 4,8 Mio. t, Japan 2,1 Mio. t) (Ullmann 1992). In (APME 1994) werden für Westeuropa 1994 PVC-Produktionsmengen von 5,243 Mio. t angegeben. Nach (Ullmann 1992) entfallen 80 % der Weltprodukion auf das Suspensionsverfahren, 12 % auf das Emulsionsverfahren (1989: weltweit 1,6 Mio. t; davon 41 % Westeuropa, 17 % USA, 10 % Japan) und 8 % auf das Masseverfahren. Nach (OEKO 1989) entfallen in der Bundesrepublik Deutschland 60 % der PVC-Produktion auf das Suspensionsverfahren, 28 % auf das Emulsionsverfahren und 12 % auf das Masseverfahren. In der BRD wurden 1987 1,32 Mio PVC hergestellt (Tötsch 1990). Für die Genese der Kennziffern bei GEMIS wurden Daten aus #1 bzw #22 verwendet. Die dort enthaltenen Werte geben den Stand der Technik Ende der 80er bzw. Anfang der 90er Jahre in der BRD bzw. von Standorten der Fa. Norsk Hydro wieder. Allokation: keine Genese der Daten: Massenbilanz - Für die Erzeugung von 1 t PVC werden 1015 kg an monomerem Vinylchlorid eingesetzt. Weiterhin werden 0,4 kg an Betriebsstoffen (Katalysator) benötigt. Die Verluste bei der Massenbilanz werden bei (Tötsch 1990) mit "PVC-Verluste" 4,9 kg und "VCM-Verluste" 10,1 kg beziffert. Weiterhin fallen 0,4 kg Katalysator und desssen Abbauprodukte an. Energiebedarf - Der Energiebedarf zur Herstellung einer Tonne PVC beträgt nach #1 rund 1,18 GJ an elektrische Energie. Emissionen - An prozessspezifischen Luftemissionen bei der PVC-Polymerisation ist vor allem VCM von Bedeutung. Es wird mit einem Umwelteintrag von 300 t VCM für 1988 gerechnet (#1). Legt man die PVC-Produktionszahlen von 1987 (1,32 Mio. t) zugrunde, so ergibt sich für die VCM-Emission ein Wert von ca. 0,23 kg/t PVC. Verfahrensunterschiede (Suspensions-, Masse- oder Emulsionsverfahren) bleiben bei dieser Berechnung unberücksichtigt. In #2 werden Emissionen der PVC-Produktion nach einer Studie von Norsk Hydro (Grundlagen sind Daten von vier Standorten der Fa. Norsk Hydro) aufgeführt. Es werden folgende Emissionen genannt: 0,675 kg VCM/t PVC (Luft), 0,185 kg PVC-Staub/t PVC (Luft), 0,059 kg PVC/t PVC (Wasser) und 3,9 kg verunreinigtes PVC/t PVC (Produktionsabfall). Eine Zuordnung der Emissionen zu einem bestimmten Herstellungsverfahren ist dabei nicht möglich. Wasser - Für die Herstellung von PVC nach dem Masseverfahren werden insgesamt 66,61 t Wasser/t PVC benötigt. 66 t werden davon als Kühlwasser, 0,23 t als Hochdruck-, 0,06 t als Mitteldruck- und 0,14 t als Niederdruckdampf verwendet. Weitere 0,18 t werden unter der Bezeichnung "Prozeßwasser" aufgeführt (#1). Quantitative Angaben zu Abwasserfrachten beim Masserverfahren liegen nicht vor. Da bei der chemischen Umsetzung selbst keine wässrige Phase vorliegt, sollten die Abwasserfrachten gering sein. Auslastung: 5000h/a Brenn-/Einsatzstoff: Grundstoffe-Chemie gesicherte Leistung: 100% Jahr: 2030 Lebensdauer: 20a Leistung: 1t/h Nutzungsgrad: 98,5% Produkt: Kunststoffe
PVC-Polymerisation von monomerem Vinylchlorid (VCM) zu Polyvinylchorid (PVC) nach dem Masseverfahren. Drei Verfahren zur Herstellung von PVC werden industriell durchgeführt, das Suspensionsverfahren, das Masseverfahren und das Emulsionsverfahren. Das Herstellungsverfahren beeinflußt die Eigenschaften des PVC und damit dessen Anwendungsgebiete. [PVC wird nie in Reinform verarbeitet. Hilfsstoffe (Farbmittel, Weichmacher etc.) ermöglichen die reibungslose Verarbeitung und bestimmen die Eigenschaften des Produkts. Die Weiterverarbeitung von PVC wird in diesem Prozess nicht berücksichtigt.]. Ein wesentlicher Teil des technischen Aufwandes zur PVC-Herstellung gilt der Verhinderung von VCM-Emissionen und der Entmonomerisierung (Entfernen von VCM aus dem Polymerisationsprodukt). Beim Masseverfahren wird reines VCM polymerisiert. Der Prozeß ist verfahrenstechnisch sehr einfach, da im Unterschied zum Suspensions- und Emulsionsverfahren keine wässrige Phase existiert. Es werden keine Emulgatoren oder Suspendierungsmittel verwendet, wodurch ein sehr reines Produkt entsteht. Die Polymerisation wird in einem Rührkessel durchgeführt. Nach Beendigung der Reaktion wird nicht umgesetztes VCM zurückgewonnen. Die Polymerpartikel werden gemahlen, gesiebt und verpackt. Der große Nachteil des Verfahrens ist seine geringe Flexibilität. Ortsbezug: Weltweit wurden 1990 18,3 Mio. t PVC produziert (Nordamerika 4,7 Mio. t, Westeuropa 4,8 Mio. t, Japan 2,1 Mio. t) (Ullmann 1992). In (APME 1994) werden für Westeuropa 1994 PVC-Produktionsmengen von 5,243 Mio. t angegeben. Nach (Ullmann 1992) entfallen 80 % der Weltprodukion auf das Suspensionsverfahren, 12 % auf das Emulsionsverfahren (1989: weltweit 1,6 Mio. t; davon 41 % Westeuropa, 17 % USA, 10 % Japan) und 8 % auf das Masseverfahren. Nach (OEKO 1989) entfallen in der Bundesrepublik Deutschland 60 % der PVC-Produktion auf das Suspensionsverfahren, 28 % auf das Emulsionsverfahren und 12 % auf das Masseverfahren. In der BRD wurden 1987 1,32 Mio PVC hergestellt (Tötsch 1990). Für die Genese der Kennziffern bei GEMIS wurden Daten aus #1 bzw #22 verwendet. Die dort enthaltenen Werte geben den Stand der Technik Ende der 80er bzw. Anfang der 90er Jahre in der BRD bzw. von Standorten der Fa. Norsk Hydro wieder. Allokation: keine Genese der Daten: Massenbilanz - Für die Erzeugung von 1 t PVC werden 1015 kg an monomerem Vinylchlorid eingesetzt. Weiterhin werden 0,4 kg an Betriebsstoffen (Katalysator) benötigt. Die Verluste bei der Massenbilanz werden bei (Tötsch 1990) mit "PVC-Verluste" 4,9 kg und "VCM-Verluste" 10,1 kg beziffert. Weiterhin fallen 0,4 kg Katalysator und desssen Abbauprodukte an. Energiebedarf - Der Energiebedarf zur Herstellung einer Tonne PVC beträgt nach #1 rund 1,18 GJ an elektrische Energie. Emissionen - An prozessspezifischen Luftemissionen bei der PVC-Polymerisation ist vor allem VCM von Bedeutung. Es wird mit einem Umwelteintrag von 300 t VCM für 1988 gerechnet (#1). Legt man die PVC-Produktionszahlen von 1987 (1,32 Mio. t) zugrunde, so ergibt sich für die VCM-Emission ein Wert von ca. 0,23 kg/t PVC. Verfahrensunterschiede (Suspensions-, Masse- oder Emulsionsverfahren) bleiben bei dieser Berechnung unberücksichtigt. In #2 werden Emissionen der PVC-Produktion nach einer Studie von Norsk Hydro (Grundlagen sind Daten von vier Standorten der Fa. Norsk Hydro) aufgeführt. Es werden folgende Emissionen genannt: 0,675 kg VCM/t PVC (Luft), 0,185 kg PVC-Staub/t PVC (Luft), 0,059 kg PVC/t PVC (Wasser) und 3,9 kg verunreinigtes PVC/t PVC (Produktionsabfall). Eine Zuordnung der Emissionen zu einem bestimmten Herstellungsverfahren ist dabei nicht möglich. Wasser - Für die Herstellung von PVC nach dem Masseverfahren werden insgesamt 66,61 t Wasser/t PVC benötigt. 66 t werden davon als Kühlwasser, 0,23 t als Hochdruck-, 0,06 t als Mitteldruck- und 0,14 t als Niederdruckdampf verwendet. Weitere 0,18 t werden unter der Bezeichnung "Prozeßwasser" aufgeführt (#1). Quantitative Angaben zu Abwasserfrachten beim Masserverfahren liegen nicht vor. Da bei der chemischen Umsetzung selbst keine wässrige Phase vorliegt, sollten die Abwasserfrachten gering sein. Auslastung: 5000h/a Brenn-/Einsatzstoff: Grundstoffe-Chemie gesicherte Leistung: 100% Jahr: 2005 Lebensdauer: 20a Leistung: 1t/h Nutzungsgrad: 98,5% Produkt: Kunststoffe
Origin | Count |
---|---|
Bund | 331 |
Land | 2 |
Type | Count |
---|---|
Chemische Verbindung | 3 |
Förderprogramm | 286 |
Messwerte | 1 |
Text | 42 |
Umweltprüfung | 1 |
License | Count |
---|---|
geschlossen | 7 |
offen | 286 |
unbekannt | 40 |
Language | Count |
---|---|
Deutsch | 325 |
Englisch | 12 |
Resource type | Count |
---|---|
Archiv | 41 |
Datei | 40 |
Dokument | 42 |
Keine | 158 |
Webseite | 134 |
Topic | Count |
---|---|
Boden | 240 |
Lebewesen & Lebensräume | 203 |
Luft | 173 |
Mensch & Umwelt | 333 |
Wasser | 143 |
Weitere | 322 |