API src

Found 328 results.

Related terms

Polymerisation mit integrierter Compoundierung von PLA-Copolymeren

Die Polymer-Gruppe mit Sitz in Bad Sobernheim entstand aus der 1973 gegründeten Polymer-Chemie GmbH, einem konzernunabhängigen Familienunternehmen, das Kunststoffe compoundiert, veredelt und modifiziert. Mit ihrer neu gegründeten Tochtergesellschaft SoBiCo GmbH plant die Gruppe, die weltweit erste Produktionslinie zur integrierten und energieeffizienten Herstellung von PLA-Copolymeren als Biokunststoff für Verpackungsfolien zu errichten. Die chemische Synthese und nachfolgende Verarbeitung der Kunststoffe zum fertigen Compound finden bisher üblicherweise in zwei komplett getrennten Arbeitsschritten statt. Dazwischen wird der Kunststoff auf Umgebungstemperatur abgekühlt. Durch die Herstellung des fertigen Kunststoffs in einem integrierten Verfahren entfällt der zusätzliche Energieaufwand für das nochmalige Aufschmelzen des Kunststoffes für die Compoundierung. Bei einer erwarteten Produktionsmenge von 10.000 Tonnen pro Jahr ergibt sich eine Energieeinsparung von 2,5 Millionen Kilowattstunden pro Jahr. So kann eine Minderung des CO 2 -Ausstoßes um 1.170 Tonnen pro Jahr erreicht werden. Dies führt zu einer Reduzierung der Emissionen von CO 2 im Vergleich zum bisher etablierten Prozess um 25 Prozent. Branche: Chemische und pharmazeutische Erzeugnisse, Gummi- und Kunststoffwaren Umweltbereich: Klimaschutz Fördernehmer: SoBiCo GmbH Bundesland: Rheinland-Pfalz Laufzeit: seit 2021 Status: Laufend

EnOB: Elektrochrom schaltbare Fenster mit großer Farbvielfalt, Teilvorhaben: Skalierung der Synthese der elektrochromen Substanzen

Das Projekt "EnOB: Elektrochrom schaltbare Fenster mit großer Farbvielfalt, Teilvorhaben: Skalierung der Synthese der elektrochromen Substanzen" wird/wurde gefördert durch: Bundesministerium für Wirtschaft und Klimaschutz. Es wird/wurde ausgeführt durch: SYNTHON Chemicals GmbH & Co. KG.

Entwicklung eines energieeffizienten Depolymerisationsverfahrens für polyolefinhaltige Kunststoffabfälle mit Hilfe von Katalysatoren zur direkten Herstellung von Polymeren für Kunststoffneuware, Teilvorhaben 6: Standortspezifische Technologieintegration

Das Projekt "Entwicklung eines energieeffizienten Depolymerisationsverfahrens für polyolefinhaltige Kunststoffabfälle mit Hilfe von Katalysatoren zur direkten Herstellung von Polymeren für Kunststoffneuware, Teilvorhaben 6: Standortspezifische Technologieintegration" wird/wurde gefördert durch: Bundesministerium für Bildung und Forschung. Es wird/wurde ausgeführt durch: Braskem Europe GmbH.

Kondensation und Polymerisationsreaktionen von kleinen Kohlenwasserstoff-Radikalen mit ungesaettigten Kohlenwasserstoffen

Das Projekt "Kondensation und Polymerisationsreaktionen von kleinen Kohlenwasserstoff-Radikalen mit ungesaettigten Kohlenwasserstoffen" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Technische Universität Darmstadt, Fachbereich 7 Chemie, Institut für Physikalische Chemie.Untersuchung der Kinetik von elementaren Einleitungs- und Folgeschritten.

Oberflächen und Grenzflächen in Pflanzen: Lignin, Suberin und Cutin

Das Projekt "Oberflächen und Grenzflächen in Pflanzen: Lignin, Suberin und Cutin" wird/wurde gefördert durch: Fonds zur Förderung der Wissenschaftlichen Forschung. Es wird/wurde ausgeführt durch: Universität für Bodenkultur Wien, Institut für Holztechnologie und Nachwachsende Rohstoffe.Beim Übergang der Pflanzen vom Wasser- zum Landleben haben komplexe phenolische Verbindungen (Lignin) und natürliche Polyester (Cutin, Suberin) eine wichtige Rolle gespielt indem sie neue Grenzflächen und Oberflächen mit hydrobisierenden Eigenschaften ermöglichten. Die Einlagerung von Lignin zwischen den Cellulose Mikrofibrillen und Hemicellulosen war wesentlich für die Entwicklung funktionsfähiger Leitbahnen (Xylem) und die mechanische Festigkeit. An den Grenzflächen zur Luft musste der Wasserverlust minimiert werden, was durch die Einlagerung von Cutin (Blätter) und Suberin (Stamm, Wurzel) erreicht wurde. Auch wenn Basiswissen über die drei Polymere vorhanden ist, macht sie ihre große Variabilität sowohl im Vorkommen als auch in ihrer Zusammensetzung und offene Fragen bezüglich der Polymerisation zu den am wenigsten verstandenen pflanzlichen Polymeren. Durch die Adaptionen um in den sehr vielfältigen Lebensräumen zu überleben entwickelten sich verschiedenartigste Erscheinungsformen, die hoch spezialisierte Gewebe erfordern um damit unterschiedliche Eigenschaften und Funktionen zu erfüllen. Das wird erreicht durch eine sich ändernde Zusammensetzung und Struktur auf den verschieden hierarchischen Ebenen (mm-ìm-nm) und es gibt immer noch eine große Wissenslücke bezüglich Verteilung der Polymere und Struktur auf Mikro- und Nanoebene. Wir werden diese Lücke durch die Anwendung von Raman Imaging und Rasterkraftmikroskopie (AFM) füllen. Raman Imaging ermöglicht die chemische Zusammensetzung auf Mikroebene zu verfolgen und AFM ergänzt durch die Aufklärung von Nanostruktur und -mechanik. Jedes Raman-Image basiert auf Tausenden von Spektren, wovon jedes ein molekularer Fingerabdruck der Zellwand auf Mikroebene ist. Derzeit gelingt es nur einen Teil der chemischen und strukturellen Informationen die in der Raman-Signatur stecken, zu extrahieren. Durch mehr Wissen über die Raman-Spektren der Pflanzen und ihrer Komponenten und neue Ansätze der multivariater Datenanalyse wollen wir mehr Informationen zugänglich machen. Um auf Nano-Ebene die chemische Zusammensetzung von kleinsten Oberflächen und Grenzflächen zu entschlüsseln, werden wir Tip-enhanced Raman-Spektroskopie (TERS) anwenden. Mit diesen anspruchsvollen in-situ Ansätze werden wir 1) die Lignifizierung innerhalb der nativen Zellwand verfolgen und ungelöste Fragen rund um die Lignin Polymerisation angehen 2) die Chemie und Struktur der Tracheiden und Gefäßwände auf Mikro-und Nano-Ebene und etwaige Auswirkungen auf die hydraulischen und mechanischen Eigenschaften aufklären 3) die Mikrochemie und Nanostruktur von Cuticula und Periderm und ihren Einfluss auf die Barriereeigenschaften entschlüsseln und 4) beantworten ob Trockenstress sich auch auf der Mikroebene und Nanoebene widerspiegelt. Neue Einblicke in die Variabilität, Verteilung und Zusammensetzung der Pflanzenpolymere und den Einfluss von Trockenstress werden gewonnen und wichtige Struktur-Funktions-Beziehungen aufgeklärt. usw.

FB2-Hybrid - Querschnittsplattform Hybridisierung, FB2-Hybrid - Querschnittsplattform Hybridisierung

Das Projekt "FB2-Hybrid - Querschnittsplattform Hybridisierung, FB2-Hybrid - Querschnittsplattform Hybridisierung" wird/wurde gefördert durch: Bundesministerium für Bildung und Forschung. Es wird/wurde ausgeführt durch: Karlsruher Institut für Technologie (KIT), Institut für Technische Chemie und Polymerchemie.

IBZT-01: electraDetouch - Biohybride Klebsysteme: Über enzymaktivierte Polymerisation zur Technologieplattform der Adhäsionsausschaltung auf Knopfdruck (elektrochemisches Debonding), Teilprojekt C

Das Projekt "IBZT-01: electraDetouch - Biohybride Klebsysteme: Über enzymaktivierte Polymerisation zur Technologieplattform der Adhäsionsausschaltung auf Knopfdruck (elektrochemisches Debonding), Teilprojekt C" wird/wurde gefördert durch: Bundesministerium für Bildung und Forschung. Es wird/wurde ausgeführt durch: Henkel AG & Co. KGaA.

IBZT-01: electraDetouch - Biohybride Klebsysteme: Über enzymaktivierte Polymerisation zur Technologieplattform der Adhäsionsausschaltung auf Knopfdruck (elektrochemisches Debonding), Teilprojekt B

Das Projekt "IBZT-01: electraDetouch - Biohybride Klebsysteme: Über enzymaktivierte Polymerisation zur Technologieplattform der Adhäsionsausschaltung auf Knopfdruck (elektrochemisches Debonding), Teilprojekt B" wird/wurde gefördert durch: Bundesministerium für Bildung und Forschung. Es wird/wurde ausgeführt durch: Fraunhofer-Institut für Angewandte Polymerforschung.

IBZT-01: electraDetouch - Biohybride Klebsysteme: Über enzymaktivierte Polymerisation zur Technologieplattform der Adhäsionsausschaltung auf Knopfdruck (elektrochemisches Debonding), Teilprojekt A

Das Projekt "IBZT-01: electraDetouch - Biohybride Klebsysteme: Über enzymaktivierte Polymerisation zur Technologieplattform der Adhäsionsausschaltung auf Knopfdruck (elektrochemisches Debonding), Teilprojekt A" wird/wurde gefördert durch: Bundesministerium für Bildung und Forschung. Es wird/wurde ausgeführt durch: Humboldt-Universität zu Berlin, Institut für Chemie.

IBZT-01: electraDetouch - Biohybride Klebsysteme: Über enzymaktivierte Polymerisation zur Technologieplattform der Adhäsionsausschaltung auf Knopfdruck (elektrochemisches Debonding)

Das Projekt "IBZT-01: electraDetouch - Biohybride Klebsysteme: Über enzymaktivierte Polymerisation zur Technologieplattform der Adhäsionsausschaltung auf Knopfdruck (elektrochemisches Debonding)" wird/wurde gefördert durch: Bundesministerium für Bildung und Forschung. Es wird/wurde ausgeführt durch: Humboldt-Universität zu Berlin, Institut für Chemie.

1 2 3 4 531 32 33