Gemeinsame Pressemitteilung von Umweltbundesamt und Bundesministerium für Umwelt, Naturschutz und nukleare Sicherheit Blauer Engel macht Kaffeetrinken unterwegs umweltfreundlicher Der Blaue Engel zeichnet ab sofort ressourcenschonende Mehrwegbechersysteme (DE-UZ 210) aus. Ziel ist es, Einwegbecher zu reduzieren und umweltverträgliche Mehrwegbechersysteme zu stärken. Die Kriterien beinhalten sowohl Anforderungen an die Becher selbst als auch an die Anbieter. So müssen bei der Herstellung der Mehrwegbecher und -deckel beispielsweise umwelt- und gesundheitsbelastende Materialien vermieden werden. Zudem müssen die Becher eine Lebensdauer von mindestens 500 Spülzyklen aufweisen, am Ende ihrer Lebensdauer zurückgenommen und einer werkstofflichen Verwertung zugeführt werden. Den ersten Kaffee „auf die Hand“ gab es in Deutschland 1996. Mittlerweile greifen deutschlandweit 70 Prozent der Verbraucherinnen und Verbraucher besonders häufig oder gelegentlich zu Coffee-to-go-Bechern. Neuste Erhebungen des Instituts für Energie- und Umweltforschung gGmbH (ifeu) im Rahmen eines aktuellen Forschungsvorhabens beziffern im Außer-Haus-Verkauf eine Gesamtmenge von 2,8 Mrd. Einwegbechern jährlich ‒ davon ca. 1,2 Mrd. To-go-Becher. Die Folge: Immer mehr weggeworfene Einwegbecher verschmutzen öffentliche Plätze, Straßen und die Natur. Das Littering – also das achtlose Wegwerfen der Abfälle im öffentlichen Raum – sowie überfüllte Papierkörbe sind für die Kommunen eine kostspielige Herausforderung. Für die Einwegbecher werden wertvolle Ressourcen wie Holz und Kunststoff sowie Wasser und Energie benötigt und dass, obwohl die Nutzungsdauer der Einwegbecher nur rund 15 Minuten beträgt. Einwegbecher im Heißgetränke-Bereich bestehen meist aus Frischfaserpapier und sind innen mit einer dünnen Kunststoffschicht aus Polyethylen überzogen. Recyclingpapier kommt im Lebensmittelbereich in der Regel nicht zum Einsatz. Hinzu kommen noch die Kunststoffdeckel, die üblicherweise aus Polystyrol bestehen. Einwegbecher für Kaltgetränke werden vorrangig aus fossilem Kunststoff hergestellt. Typische Kunststoffsorten sind hier Polypropylen, Polystyrol und Polyethylenterephthalat. Wenn Anbieter wie Bäcker oder auch Getränkeausschänke auf Festivals vorrangig Mehrwegbecher anbieten und auch kundeneigene Individualbecher füllen („bring your cup“), können sie ihr Engagement für die Umwelt nunmehr mit dem neuen Blauen Engel sichtbar gegenüber den Verbraucherinnen und Verbraucher kommunizieren. Die Kriterien des Umweltzeichens beinhalten sowohl Anforderungen an die Becher selbst als auch an die Anbieter. Bei der Herstellung der Mehrwegbecher und -deckel müssen u. a. umwelt- und gesundheitsbelastende Materialien vermieden werden. Ausgeschlossen sind beispielsweise Melaminharze und Polycarbonat-Kunststoffe, die Bisphenol A freisetzen können. Um das Abfallaufkommen nicht zu erhöhen, müssen die Becher ein „werkstoffliches Recycling“ ermöglichen. Dies bedeutet, dass Becher aus Kunststoff nur aus sortenreinem Kunststoff ohne Beschichtung mit anderen Materialien hergestellt werden dürfen. Außerdem müssen die Becher langlebig sein und eine Lebensdauer von mindestens 500 Spülzyklen aufweisen. Außerdem ist die Umlaufzahl der Becher jährlich für das Kalenderjahr zu ermitteln. Ökobilanzielle Rechnungen zeigen, dass die Umlaufzahl eines Bechers, das heißt die Häufigkeit seiner tatsächlichen Wiederverwendung, ein wichtiges Kriterium zur Umweltentlastung darstellt. Weiterhin muss ein Pfand auf Becher und Deckel gefordert werden. Zudem müssen Becher und Deckel am Ende ihrer Lebensdauer zurückgenommen und einer werkstofflichen Verwertung zugeführt werden. Die Anbieter müssen sich überdies verpflichten, die „Guten Regeln“ für den Heißgetränke-Ausschank einzuhalten: Kundinnen und Kunden soll immer erst der Mehrwegbecher und -deckel angeboten werden oder kundeneigene Becher befüllt werden. Weiterhin müssen die Mehrwegbechersystem-Anbieter nachweisen, dass ihr Logistikkonzept zur ökologischen Optimierung von Transportwegen und von Transportfahrzeugen beiträgt. Das Umweltzeichen wurde durch die Jury Umweltzeichen mit einer Laufzeit von 3 Jahren beschlossen. Der Blaue Engel ist seit 40 Jahren das Umweltzeichen der Bundesregierung und die Orientierung beim nachhaltigen Einkauf. Unabhängig und glaubwürdig setzt er anspruchsvolle Maßstäbe für umweltfreundliche Produkte und Dienstleistungen. Der Blaue Engel garantiert, dass mit ihm ausgezeichnete Produkte und Dienstleistungen hohe Ansprüche an Umwelt-, Gesundheits- und Gebrauchseigenschaften erfüllen. Dabei ist bei der Beurteilung stets der gesamte Lebensweg zu betrachten. Für jede Produktgruppe werden Kriterien erarbeitet, die mit dem Blauen Engel gekennzeichnete Produkte und Dienstleistungen erfüllen müssen. Um dabei die technische Entwicklung widerzuspiegeln, überprüft das Umweltbundesamt alle drei bis vier Jahre die Kriterien. Auf diese Weise werden Unternehmen gefordert, ihre Produkte immer umweltfreundlicher zu gestalten.
The market relevance and presence of packagings made of biodegradable plastics has increased over the past few years. They are primarily used as alternatives for conventional plastics such as polyethylene (PE), polypropylene (PP), polystyrene (PS), and polystyrene terephthalate (PET). Veröffentlicht in Texte | 18/2013.
Polypropylen-Polymerisation: In diesem Prozeß wird die Polymerisation von Propylen (=Propen) zu Polypropylen (PP) betrachtet. Dabei kommen drei verschiedene Polymerisationsverfahren in Frage: das Verfahren in Lösung, das Suspensionsverfahren und das Verfahren in der Gasphase. Das Verfahren in Lösung wird selten durchgeführt. Bei den Verfahren hat die kontinuierliche Prozeßführung die diskontinuierliche in großem Umfang ersetzt. Die Polymerisation von Propylen wird in Reaktoren mit Hilfe von Zusatzstoffen [Katalysator (Ziegler-Natta auf Ti/Al/Mg-Basis), evtl. Lösungsmittel, Wasserstoff für den Polymerisationsabbruch] durchgeführt. Nach der Reaktion wird das Produkt Polypropylen, nicht umgesetztes Propylen und der Katalysator abgetrennt. PP kann in Form von zwei verschiedenen Isomeren, ataktisch und isotaktisch, entstehen. Das eigentliche Produkt stellt das hochkristalline, isotaktische PP dar, das zum Granulat weiterverarbeitet wird. Unterschiede in der Reaktionsführung treten beim Suspensionsverfahren (das Reaktionsgemisch stellt im wesentlichen einen Schlamm aus flüssigem Propylen oder einem inerten Kohlenwasserstoff und dem Polymer dar) durch die Wahl des Katalysators auf. Während beim Vefahren in der Gasphase (gasförmiges Propylen wird mit dem festen Katalysator kontaktiert, der in pulvrigem Polymer dispergiert ist) kein Abwasser produziert wird. Prozeßsituierung Die weltweite Produktionskapazität für PP betrug 1989 13,3 Mio. Tonnen (Nordamerika und Westeuropa jeweils 3,9 Mio. t) (Ullmann 1992). Nach (APME 1994) wurden 1994 in Westeuropa 5,470 Mio. t PP produziert. Die Bilanzierung der PP-Polymerisation beruht auf den Literaturquellen (Ullmann 1992), (PWMI 1993), (BUWAL 1991), (Brown 1985), (OEKO 1992c) und (Tellus 1992). Für die Synthese von PP wird bei Tellus davon ausgegangen, daß 75 % des Polymers über das Suspension- und 25 % über das Gasphaseverfahren hergestellt werden. Die Daten von (Tellus 1992) beziehen sich auf die Herstellung von PP in den USA und repräsentieren den Stand der Technik der 80er Jahre. Da in der Tellus-Studie keine Angaben zu den Betriebsstoffen und dem Abfall vorliegen, wurden für die Massenbilanz und den Abfall Daten der BUWAL-Studie (BUWAL 1991) übernommen. Die BUWAL-Studie betrachtet die Produktion in Westeuropa Ende der 80er Jahre. Allokation: keine Genese der Kennziffern Massenbilanz: Nach (BUWAL 1991) werden für die Herstellung einer Tonne Polypropylen 1015 kg Propylen eingesetzt. Unter „Hilfsstoffe, Zusätze“ werden weitere 1,3 kg aufgeführt, die nicht weiter spezifiziert sind. Es wird angenommen, daß Wasserstoff (zum Abbruch der Polymerisation), Lösungsmittel und Katalysatoren dieser Sparte zugerechnet werden. Weiterhin wird eine Menge von 1,5 kg an nicht weiter spezifizierten Nebenprodukten sowie 7,15 kg an festen Abfällen angegeben. Energiebedarf: Die Prozeßenergie zur Herstellung einer Tonne PP (12,1 GJ) setzt sich aus der elektrischen Energie (6,3 GJ) und dem Energiegehalt des benötigten Dampfes (5,8 GJ) zusammen (Tellus 1992). Im Vergleich dazu ergibt sich aus (DOE 1985) ein Energiebedarf von insgesamt 17,9 GJ/t PP (elektrische Energie 2,7 GJ, Energieinhalt des Prozeßdampfes 11,1 GJ und Energieträger 4,1 GJ). Bei (PWMI 1993) wird der Polymerisationsprozeß von Propylen zu PP nicht separat bilanziert. Aus der Differenz der Daten aus der PP-Herstellung (gesamte Prozeßkette) und der Propylen-Herstellung kann jedoch ein Energiebedarf für die Polymerisation in Größenordnung von 9 GJ abgeschätzt werden. Da die Werte bei (Tellus 1992) am plausibelsten erscheinen, werden diese zur Bildung der Kennziffern bei GEMIS verwendet. Prozeßbedingte Luftemissionen: Während der einzelnen Verfahrensschritte der Polymerisation (Reaktor, Trocknung, Granulatherstellung etc.) werden flüchtige organische Verbindungen (VOC) emittiert. In (OEKO 1992c) werden die prozeßbedingten VOC-Emissionen bei der Polypropylenherstellung abgeschätzt. Daraus ergibt sich ein Wert von ca. 8 kg VOC/t PP. Abwasser: Für die Abwasserkennziffern BSB5, CSB und TOC stehen nur Angaben zu Rohabwasserwerten zur Verfügung. An Parametern nach Abwasserbehandlungsmaßnahmen werden bei Tellus eine Reihe von organischen und anorganischen Stoffen aufgeführt. Stellvertretend werden hier Benzol 0,0015 kg/tP und 1,1,1-Trichlorethan 0,0058 kg/t PP als nutzerdefinierte Emissionen genannt. Auslastung: 5000h/a Brenn-/Einsatzstoff: Grundstoffe-Chemie gesicherte Leistung: 100% Jahr: 2030 Lebensdauer: 20a Leistung: 1t/h Nutzungsgrad: 98,5% Produkt: Kunststoffe
Polypropylen-Polymerisation: In diesem Prozeß wird die Polymerisation von Propylen (=Propen) zu Polypropylen (PP) betrachtet. Dabei kommen drei verschiedene Polymerisationsverfahren in Frage: das Verfahren in Lösung, das Suspensionsverfahren und das Verfahren in der Gasphase. Das Verfahren in Lösung wird selten durchgeführt. Bei den Verfahren hat die kontinuierliche Prozeßführung die diskontinuierliche in großem Umfang ersetzt. Die Polymerisation von Propylen wird in Reaktoren mit Hilfe von Zusatzstoffen [Katalysator (Ziegler-Natta auf Ti/Al/Mg-Basis), evtl. Lösungsmittel, Wasserstoff für den Polymerisationsabbruch] durchgeführt. Nach der Reaktion wird das Produkt Polypropylen, nicht umgesetztes Propylen und der Katalysator abgetrennt. PP kann in Form von zwei verschiedenen Isomeren, ataktisch und isotaktisch, entstehen. Das eigentliche Produkt stellt das hochkristalline, isotaktische PP dar, das zum Granulat weiterverarbeitet wird. Unterschiede in der Reaktionsführung treten beim Suspensionsverfahren (das Reaktionsgemisch stellt im wesentlichen einen Schlamm aus flüssigem Propylen oder einem inerten Kohlenwasserstoff und dem Polymer dar) durch die Wahl des Katalysators auf. Während beim Vefahren in der Gasphase (gasförmiges Propylen wird mit dem festen Katalysator kontaktiert, der in pulvrigem Polymer dispergiert ist) kein Abwasser produziert wird. Prozeßsituierung Die weltweite Produktionskapazität für PP betrug 1989 13,3 Mio. Tonnen (Nordamerika und Westeuropa jeweils 3,9 Mio. t) (Ullmann 1992). Nach (APME 1994) wurden 1994 in Westeuropa 5,470 Mio. t PP produziert. Die Bilanzierung der PP-Polymerisation beruht auf den Literaturquellen (Ullmann 1992), (PWMI 1993), (BUWAL 1991), (Brown 1985), (OEKO 1992c) und (Tellus 1992). Für die Synthese von PP wird bei Tellus davon ausgegangen, daß 75 % des Polymers über das Suspension- und 25 % über das Gasphaseverfahren hergestellt werden. Die Daten von (Tellus 1992) beziehen sich auf die Herstellung von PP in den USA und repräsentieren den Stand der Technik der 80er Jahre. Da in der Tellus-Studie keine Angaben zu den Betriebsstoffen und dem Abfall vorliegen, wurden für die Massenbilanz und den Abfall Daten der BUWAL-Studie (BUWAL 1991) übernommen. Die BUWAL-Studie betrachtet die Produktion in Westeuropa Ende der 80er Jahre. Allokation: keine Genese der Kennziffern Massenbilanz: Nach (BUWAL 1991) werden für die Herstellung einer Tonne Polypropylen 1015 kg Propylen eingesetzt. Unter „Hilfsstoffe, Zusätze“ werden weitere 1,3 kg aufgeführt, die nicht weiter spezifiziert sind. Es wird angenommen, daß Wasserstoff (zum Abbruch der Polymerisation), Lösungsmittel und Katalysatoren dieser Sparte zugerechnet werden. Weiterhin wird eine Menge von 1,5 kg an nicht weiter spezifizierten Nebenprodukten sowie 7,15 kg an festen Abfällen angegeben. Energiebedarf: Die Prozeßenergie zur Herstellung einer Tonne PP (12,1 GJ) setzt sich aus der elektrischen Energie (6,3 GJ) und dem Energiegehalt des benötigten Dampfes (5,8 GJ) zusammen (Tellus 1992). Im Vergleich dazu ergibt sich aus (DOE 1985) ein Energiebedarf von insgesamt 17,9 GJ/t PP (elektrische Energie 2,7 GJ, Energieinhalt des Prozeßdampfes 11,1 GJ und Energieträger 4,1 GJ). Bei (PWMI 1993) wird der Polymerisationsprozeß von Propylen zu PP nicht separat bilanziert. Aus der Differenz der Daten aus der PP-Herstellung (gesamte Prozeßkette) und der Propylen-Herstellung kann jedoch ein Energiebedarf für die Polymerisation in Größenordnung von 9 GJ abgeschätzt werden. Da die Werte bei (Tellus 1992) am plausibelsten erscheinen, werden diese zur Bildung der Kennziffern bei GEMIS verwendet. Prozeßbedingte Luftemissionen: Während der einzelnen Verfahrensschritte der Polymerisation (Reaktor, Trocknung, Granulatherstellung etc.) werden flüchtige organische Verbindungen (VOC) emittiert. In (OEKO 1992c) werden die prozeßbedingten VOC-Emissionen bei der Polypropylenherstellung abgeschätzt. Daraus ergibt sich ein Wert von ca. 8 kg VOC/t PP. Abwasser: Für die Abwasserkennziffern BSB5, CSB und TOC stehen nur Angaben zu Rohabwasserwerten zur Verfügung. An Parametern nach Abwasserbehandlungsmaßnahmen werden bei Tellus eine Reihe von organischen und anorganischen Stoffen aufgeführt. Stellvertretend werden hier Benzol 0,0015 kg/tP und 1,1,1-Trichlorethan 0,0058 kg/t PP als nutzerdefinierte Emissionen genannt. Auslastung: 5000h/a Brenn-/Einsatzstoff: Grundstoffe-Chemie gesicherte Leistung: 100% Jahr: 2000 Lebensdauer: 20a Leistung: 1t/h Nutzungsgrad: 98,5% Produkt: Kunststoffe
Polypropylen-Polymerisation: In diesem Prozeß wird die Polymerisation von Propylen (=Propen) zu Polypropylen (PP) betrachtet. Dabei kommen drei verschiedene Polymerisationsverfahren in Frage: das Verfahren in Lösung, das Suspensionsverfahren und das Verfahren in der Gasphase. Das Verfahren in Lösung wird selten durchgeführt. Bei den Verfahren hat die kontinuierliche Prozeßführung die diskontinuierliche in großem Umfang ersetzt. Die Polymerisation von Propylen wird in Reaktoren mit Hilfe von Zusatzstoffen [Katalysator (Ziegler-Natta auf Ti/Al/Mg-Basis), evtl. Lösungsmittel, Wasserstoff für den Polymerisationsabbruch] durchgeführt. Nach der Reaktion wird das Produkt Polypropylen, nicht umgesetztes Propylen und der Katalysator abgetrennt. PP kann in Form von zwei verschiedenen Isomeren, ataktisch und isotaktisch, entstehen. Das eigentliche Produkt stellt das hochkristalline, isotaktische PP dar, das zum Granulat weiterverarbeitet wird. Unterschiede in der Reaktionsführung treten beim Suspensionsverfahren (das Reaktionsgemisch stellt im wesentlichen einen Schlamm aus flüssigem Propylen oder einem inerten Kohlenwasserstoff und dem Polymer dar) durch die Wahl des Katalysators auf. Während beim Vefahren in der Gasphase (gasförmiges Propylen wird mit dem festen Katalysator kontaktiert, der in pulvrigem Polymer dispergiert ist) kein Abwasser produziert wird. Prozeßsituierung Die weltweite Produktionskapazität für PP betrug 1989 13,3 Mio. Tonnen (Nordamerika und Westeuropa jeweils 3,9 Mio. t) (Ullmann 1992). Nach (APME 1994) wurden 1994 in Westeuropa 5,470 Mio. t PP produziert. Die Bilanzierung der PP-Polymerisation beruht auf den Literaturquellen (Ullmann 1992), (PWMI 1993), (BUWAL 1991), (Brown 1985), (OEKO 1992c) und (Tellus 1992). Für die Synthese von PP wird bei Tellus davon ausgegangen, daß 75 % des Polymers über das Suspension- und 25 % über das Gasphaseverfahren hergestellt werden. Die Daten von (Tellus 1992) beziehen sich auf die Herstellung von PP in den USA und repräsentieren den Stand der Technik der 80er Jahre. Da in der Tellus-Studie keine Angaben zu den Betriebsstoffen und dem Abfall vorliegen, wurden für die Massenbilanz und den Abfall Daten der BUWAL-Studie (BUWAL 1991) übernommen. Die BUWAL-Studie betrachtet die Produktion in Westeuropa Ende der 80er Jahre. Allokation: keine Genese der Kennziffern Massenbilanz: Nach (BUWAL 1991) werden für die Herstellung einer Tonne Polypropylen 1015 kg Propylen eingesetzt. Unter „Hilfsstoffe, Zusätze“ werden weitere 1,3 kg aufgeführt, die nicht weiter spezifiziert sind. Es wird angenommen, daß Wasserstoff (zum Abbruch der Polymerisation), Lösungsmittel und Katalysatoren dieser Sparte zugerechnet werden. Weiterhin wird eine Menge von 1,5 kg an nicht weiter spezifizierten Nebenprodukten sowie 7,15 kg an festen Abfällen angegeben. Energiebedarf: Die Prozeßenergie zur Herstellung einer Tonne PP (12,1 GJ) setzt sich aus der elektrischen Energie (6,3 GJ) und dem Energiegehalt des benötigten Dampfes (5,8 GJ) zusammen (Tellus 1992). Im Vergleich dazu ergibt sich aus (DOE 1985) ein Energiebedarf von insgesamt 17,9 GJ/t PP (elektrische Energie 2,7 GJ, Energieinhalt des Prozeßdampfes 11,1 GJ und Energieträger 4,1 GJ). Bei (PWMI 1993) wird der Polymerisationsprozeß von Propylen zu PP nicht separat bilanziert. Aus der Differenz der Daten aus der PP-Herstellung (gesamte Prozeßkette) und der Propylen-Herstellung kann jedoch ein Energiebedarf für die Polymerisation in Größenordnung von 9 GJ abgeschätzt werden. Da die Werte bei (Tellus 1992) am plausibelsten erscheinen, werden diese zur Bildung der Kennziffern bei GEMIS verwendet. Prozeßbedingte Luftemissionen: Während der einzelnen Verfahrensschritte der Polymerisation (Reaktor, Trocknung, Granulatherstellung etc.) werden flüchtige organische Verbindungen (VOC) emittiert. In (OEKO 1992c) werden die prozeßbedingten VOC-Emissionen bei der Polypropylenherstellung abgeschätzt. Daraus ergibt sich ein Wert von ca. 8 kg VOC/t PP. Abwasser: Für die Abwasserkennziffern BSB5, CSB und TOC stehen nur Angaben zu Rohabwasserwerten zur Verfügung. An Parametern nach Abwasserbehandlungsmaßnahmen werden bei Tellus eine Reihe von organischen und anorganischen Stoffen aufgeführt. Stellvertretend werden hier Benzol 0,0015 kg/tP und 1,1,1-Trichlorethan 0,0058 kg/t PP als nutzerdefinierte Emissionen genannt. Auslastung: 5000h/a Brenn-/Einsatzstoff: Grundstoffe-Chemie gesicherte Leistung: 100% Jahr: 2020 Lebensdauer: 20a Leistung: 1t/h Nutzungsgrad: 98,5% Produkt: Kunststoffe
Polypropylen-Polymerisation: In diesem Prozeß wird die Polymerisation von Propylen (=Propen) zu Polypropylen (PP) betrachtet. Dabei kommen drei verschiedene Polymerisationsverfahren in Frage: das Verfahren in Lösung, das Suspensionsverfahren und das Verfahren in der Gasphase. Das Verfahren in Lösung wird selten durchgeführt. Bei den Verfahren hat die kontinuierliche Prozeßführung die diskontinuierliche in großem Umfang ersetzt. Die Polymerisation von Propylen wird in Reaktoren mit Hilfe von Zusatzstoffen [Katalysator (Ziegler-Natta auf Ti/Al/Mg-Basis), evtl. Lösungsmittel, Wasserstoff für den Polymerisationsabbruch] durchgeführt. Nach der Reaktion wird das Produkt Polypropylen, nicht umgesetztes Propylen und der Katalysator abgetrennt. PP kann in Form von zwei verschiedenen Isomeren, ataktisch und isotaktisch, entstehen. Das eigentliche Produkt stellt das hochkristalline, isotaktische PP dar, das zum Granulat weiterverarbeitet wird. Unterschiede in der Reaktionsführung treten beim Suspensionsverfahren (das Reaktionsgemisch stellt im wesentlichen einen Schlamm aus flüssigem Propylen oder einem inerten Kohlenwasserstoff und dem Polymer dar) durch die Wahl des Katalysators auf. Während beim Vefahren in der Gasphase (gasförmiges Propylen wird mit dem festen Katalysator kontaktiert, der in pulvrigem Polymer dispergiert ist) kein Abwasser produziert wird. Prozeßsituierung Die weltweite Produktionskapazität für PP betrug 1989 13,3 Mio. Tonnen (Nordamerika und Westeuropa jeweils 3,9 Mio. t) (Ullmann 1992). Nach (APME 1994) wurden 1994 in Westeuropa 5,470 Mio. t PP produziert. Die Bilanzierung der PP-Polymerisation beruht auf den Literaturquellen (Ullmann 1992), (PWMI 1993), (BUWAL 1991), (Brown 1985), (OEKO 1992c) und (Tellus 1992). Für die Synthese von PP wird bei Tellus davon ausgegangen, daß 75 % des Polymers über das Suspension- und 25 % über das Gasphaseverfahren hergestellt werden. Die Daten von (Tellus 1992) beziehen sich auf die Herstellung von PP in den USA und repräsentieren den Stand der Technik der 80er Jahre. Da in der Tellus-Studie keine Angaben zu den Betriebsstoffen und dem Abfall vorliegen, wurden für die Massenbilanz und den Abfall Daten der BUWAL-Studie (BUWAL 1991) übernommen. Die BUWAL-Studie betrachtet die Produktion in Westeuropa Ende der 80er Jahre. Allokation: keine Genese der Kennziffern Massenbilanz: Nach (BUWAL 1991) werden für die Herstellung einer Tonne Polypropylen 1015 kg Propylen eingesetzt. Unter „Hilfsstoffe, Zusätze“ werden weitere 1,3 kg aufgeführt, die nicht weiter spezifiziert sind. Es wird angenommen, daß Wasserstoff (zum Abbruch der Polymerisation), Lösungsmittel und Katalysatoren dieser Sparte zugerechnet werden. Weiterhin wird eine Menge von 1,5 kg an nicht weiter spezifizierten Nebenprodukten sowie 7,15 kg an festen Abfällen angegeben. Energiebedarf: Die Prozeßenergie zur Herstellung einer Tonne PP (12,1 GJ) setzt sich aus der elektrischen Energie (6,3 GJ) und dem Energiegehalt des benötigten Dampfes (5,8 GJ) zusammen (Tellus 1992). Im Vergleich dazu ergibt sich aus (DOE 1985) ein Energiebedarf von insgesamt 17,9 GJ/t PP (elektrische Energie 2,7 GJ, Energieinhalt des Prozeßdampfes 11,1 GJ und Energieträger 4,1 GJ). Bei (PWMI 1993) wird der Polymerisationsprozeß von Propylen zu PP nicht separat bilanziert. Aus der Differenz der Daten aus der PP-Herstellung (gesamte Prozeßkette) und der Propylen-Herstellung kann jedoch ein Energiebedarf für die Polymerisation in Größenordnung von 9 GJ abgeschätzt werden. Da die Werte bei (Tellus 1992) am plausibelsten erscheinen, werden diese zur Bildung der Kennziffern bei GEMIS verwendet. Prozeßbedingte Luftemissionen: Während der einzelnen Verfahrensschritte der Polymerisation (Reaktor, Trocknung, Granulatherstellung etc.) werden flüchtige organische Verbindungen (VOC) emittiert. In (OEKO 1992c) werden die prozeßbedingten VOC-Emissionen bei der Polypropylenherstellung abgeschätzt. Daraus ergibt sich ein Wert von ca. 8 kg VOC/t PP. Abwasser: Für die Abwasserkennziffern BSB5, CSB und TOC stehen nur Angaben zu Rohabwasserwerten zur Verfügung. An Parametern nach Abwasserbehandlungsmaßnahmen werden bei Tellus eine Reihe von organischen und anorganischen Stoffen aufgeführt. Stellvertretend werden hier Benzol 0,0015 kg/tP und 1,1,1-Trichlorethan 0,0058 kg/t PP als nutzerdefinierte Emissionen genannt. Auslastung: 5000h/a Brenn-/Einsatzstoff: Grundstoffe-Chemie gesicherte Leistung: 100% Jahr: 2010 Lebensdauer: 20a Leistung: 1t/h Nutzungsgrad: 98,5% Produkt: Kunststoffe
Polypropylen-Polymerisation: In diesem Prozeß wird die Polymerisation von Propylen (=Propen) zu Polypropylen (PP) betrachtet. Dabei kommen drei verschiedene Polymerisationsverfahren in Frage: das Verfahren in Lösung, das Suspensionsverfahren und das Verfahren in der Gasphase. Das Verfahren in Lösung wird selten durchgeführt. Bei den Verfahren hat die kontinuierliche Prozeßführung die diskontinuierliche in großem Umfang ersetzt. Die Polymerisation von Propylen wird in Reaktoren mit Hilfe von Zusatzstoffen [Katalysator (Ziegler-Natta auf Ti/Al/Mg-Basis), evtl. Lösungsmittel, Wasserstoff für den Polymerisationsabbruch] durchgeführt. Nach der Reaktion wird das Produkt Polypropylen, nicht umgesetztes Propylen und der Katalysator abgetrennt. PP kann in Form von zwei verschiedenen Isomeren, ataktisch und isotaktisch, entstehen. Das eigentliche Produkt stellt das hochkristalline, isotaktische PP dar, das zum Granulat weiterverarbeitet wird. Unterschiede in der Reaktionsführung treten beim Suspensionsverfahren (das Reaktionsgemisch stellt im wesentlichen einen Schlamm aus flüssigem Propylen oder einem inerten Kohlenwasserstoff und dem Polymer dar) durch die Wahl des Katalysators auf. Während beim Vefahren in der Gasphase (gasförmiges Propylen wird mit dem festen Katalysator kontaktiert, der in pulvrigem Polymer dispergiert ist) kein Abwasser produziert wird. Prozeßsituierung Die weltweite Produktionskapazität für PP betrug 1989 13,3 Mio. Tonnen (Nordamerika und Westeuropa jeweils 3,9 Mio. t) (Ullmann 1992). Nach (APME 1994) wurden 1994 in Westeuropa 5,470 Mio. t PP produziert. Die Bilanzierung der PP-Polymerisation beruht auf den Literaturquellen (Ullmann 1992), (PWMI 1993), (BUWAL 1991), (Brown 1985), (OEKO 1992c) und (Tellus 1992). Für die Synthese von PP wird bei Tellus davon ausgegangen, daß 75 % des Polymers über das Suspension- und 25 % über das Gasphaseverfahren hergestellt werden. Die Daten von (Tellus 1992) beziehen sich auf die Herstellung von PP in den USA und repräsentieren den Stand der Technik der 80er Jahre. Da in der Tellus-Studie keine Angaben zu den Betriebsstoffen und dem Abfall vorliegen, wurden für die Massenbilanz und den Abfall Daten der BUWAL-Studie (BUWAL 1991) übernommen. Die BUWAL-Studie betrachtet die Produktion in Westeuropa Ende der 80er Jahre. Allokation: keine Genese der Kennziffern Massenbilanz: Nach (BUWAL 1991) werden für die Herstellung einer Tonne Polypropylen 1015 kg Propylen eingesetzt. Unter „Hilfsstoffe, Zusätze“ werden weitere 1,3 kg aufgeführt, die nicht weiter spezifiziert sind. Es wird angenommen, daß Wasserstoff (zum Abbruch der Polymerisation), Lösungsmittel und Katalysatoren dieser Sparte zugerechnet werden. Weiterhin wird eine Menge von 1,5 kg an nicht weiter spezifizierten Nebenprodukten sowie 7,15 kg an festen Abfällen angegeben. Energiebedarf: Die Prozeßenergie zur Herstellung einer Tonne PP (12,1 GJ) setzt sich aus der elektrischen Energie (6,3 GJ) und dem Energiegehalt des benötigten Dampfes (5,8 GJ) zusammen (Tellus 1992). Im Vergleich dazu ergibt sich aus (DOE 1985) ein Energiebedarf von insgesamt 17,9 GJ/t PP (elektrische Energie 2,7 GJ, Energieinhalt des Prozeßdampfes 11,1 GJ und Energieträger 4,1 GJ). Bei (PWMI 1993) wird der Polymerisationsprozeß von Propylen zu PP nicht separat bilanziert. Aus der Differenz der Daten aus der PP-Herstellung (gesamte Prozeßkette) und der Propylen-Herstellung kann jedoch ein Energiebedarf für die Polymerisation in Größenordnung von 9 GJ abgeschätzt werden. Da die Werte bei (Tellus 1992) am plausibelsten erscheinen, werden diese zur Bildung der Kennziffern bei GEMIS verwendet. Prozeßbedingte Luftemissionen: Während der einzelnen Verfahrensschritte der Polymerisation (Reaktor, Trocknung, Granulatherstellung etc.) werden flüchtige organische Verbindungen (VOC) emittiert. In (OEKO 1992c) werden die prozeßbedingten VOC-Emissionen bei der Polypropylenherstellung abgeschätzt. Daraus ergibt sich ein Wert von ca. 8 kg VOC/t PP. Abwasser: Für die Abwasserkennziffern BSB5, CSB und TOC stehen nur Angaben zu Rohabwasserwerten zur Verfügung. An Parametern nach Abwasserbehandlungsmaßnahmen werden bei Tellus eine Reihe von organischen und anorganischen Stoffen aufgeführt. Stellvertretend werden hier Benzol 0,0015 kg/tP und 1,1,1-Trichlorethan 0,0058 kg/t PP als nutzerdefinierte Emissionen genannt. Auslastung: 5000h/a Brenn-/Einsatzstoff: Grundstoffe-Chemie gesicherte Leistung: 100% Jahr: 2005 Lebensdauer: 20a Leistung: 1t/h Nutzungsgrad: 98,5% Produkt: Kunststoffe
Zwischen Mai und August 2016 waren Umweltschützer von Greenpeace mit dem Schiff Beluga II unter dem Motto "Wellemachen für Meere ohne Plastikmüll" auf Rhein, Main, Donau, Elbe, Weser u.a. auf Expeditionstour. Auf ihrer Flusstour durch Deutschland klärte die Besatzung des Greenpeace-Aktionsschiffs Besucher über die Gefahren von Plastikmüll auf. Das Beluga-Team nutzte die Reise auch, um aus den Gewässern insgesamt 53 Wasserproben zu entnehmen. Die Ergebnisse teilte Greenpeace am 24. November 2016 mit. Die Laboranalysen zeigen, dass alle Gewässerproben Plastikpartikel enthalten. Die Mehrheit der 0,3 bis fünf Millimeter kleinen Plastikpartikel besteht aus Polyethylen und Polypropylen, die gängigsten Kunststoffe für Verpackungen aller Art. Ebenfalls nachweisbar sind Styropor, Polyamid/Nylon , Polyester, Styrol Acrylnitril Copolymerisat und Acrylnitril Butadien Styrol, das beispielsweise für Elektronikgehäuse oder Spielzeug verwendet wird. Bei den Plastikpartikeln handelt es sich überwiegend um Bruchstücke, Folienfetzen und weitere Fragmente, wie sie beim Zerfall oder Verschleiß größerer Plastikteile entstehen. Aber auch zylindrische Pellets aus der Kunststoff-Vorproduktion finden sich in den Proben – und Mikrokügelchen, wie sie in Kosmetik- und Körperpflegeprodukten eingesetzt werden.
technologyComment of hydroformylation of propylene (RER, RoW): In the oxo reaction (hydroformylation), carbon monoxide and hydrogen are added to a carbon – carbon double bond in the liquid phase in the presence of catalyst (hydrocarbonyls or substituted hydrocarbonyls of Co, Rh, or Ru). In the first reaction step aldehydes are formed with one more C-atom than the original olefins. For olefins with more than two C-atoms, isomeric aldehyde mixtures are normally obtained. In the case of propylene these consist of 1-butanal and 2-methylpropanal. imageUrlTagReplace600920a3-5103-4466-9c05-fd1d8ed0d89c There are several variations of the hydroformylation process, the differences being in the reaction conditions (pressure, temperature) as well as the catalyst system used. The classic high-pressure process exclusively used until the beginning of the 1970s operates at pressures of 20 – 30 MPa (200 – 300 bar) CO/H2 and temperatures of 100 – 180 °C. The catalyst is Co. It leads to about 75 % 1-butanol and about 25 % 2-methyl-1-propanol. The new process developments of the past few years have led to a clear shift in the range of products. The processes operating at relatively low pressures (1 – 5 MPa , 10 – 50 bar) use modified Rh-catalysts. The isomeric ratios achieved are about 92 : 8 or 95 : 5 1-butanol to 2-methyl-1-propanol. However, by the use of unmodified Rh the percentage of 2-methyl-1-propanol can be increased to about 50 %. Catalytic hydrogenation of the aldehydes leads to the formation of the corresponding alcohols. As only primary alcohols can be obtained via the oxo synthesis, it is not possible to produce 2-butanol and 2-methyl-2-propanol by this process. Reference: Hahn, H., Dämkes, G., Ruppric, N.: Butanols. In: Ullmann's Encyclopedia of In-dustrial Chemistry, Seventh Edition, 2004 Electronic Release (ed. Fiedler E., Grossmann G., Kersebohm D., Weiss G. and Witte C.). 7 th Electronic Release Edition. Wiley InterScience, New York, Online-Version under: http://www.mrw.interscience.wiley.com/ueic/articles/ technologyComment of synthetic fuel production, from coal, high temperature Fisher-Tropsch operations (ZA): SECUNDA SYNFUEL OPERATIONS: Secunda Synfuels Operations operates the world’s only commercial coal-based synthetic fuels manufacturing facility of its kind, producing synthesis gas (syngas) through coal gasification and natural gas reforming. They make use of their proprietary technology to convert syngas into synthetic fuel components, pipeline gas and chemical feedstock for the downstream production of solvents, polymers, comonomers and other chemicals. Primary internal customers are Sasol Chemicals Operations, Sasol Exploration and Production International and other chemical companies. Carbon is produced for the recarburiser, aluminium, electrode and cathodic production markets. Secunda Synfuels Operations receives coal from five mines in Mpumalanga (see figure attached). After being crushed, the coal is blended to obtain an even quality distribution. Electricity is generated by both steam and gas and used to gasify the coal at a temperature of 1300°C. This produces syngas from which two types of reactor - circulating fluidised bed and Sasol Advanced SynthoTM reactors – produce components for making synthetic fuels as well as a number of downstream chemicals. Gas water and tar oil streams emanating from the gasification process are refined to produce ammonia and various grades of coke respectively. imageUrlTagReplacea79dc0c2-0dda-47ec-94e0-6f076bc8cdb6 SECUNDA CHEMICAL OPERATIONS: The Secunda Chemicals Operations hub forms part of the Southern African Operations and is the consolidation of all the chemical operating facilities in Secunda, along with Site Services activities. The Secunda Chemicals hub produces a diverse range of products that include industrial explosives, fertilisers; polypropylene, ethylene and propylene; solvents (acetone, methyl ethyl ketone (MEK), ethanol, n-Propanol, iso-propanol, SABUTOL-TM, PROPYLOL-TM, mixed C3 and C4 alcohols, mixed C5 and C6 alcohols, High Purity Ethanol, and Ethyl Acetate) as well as the co-monomers, 1-hexene, 1-pentene and 1-octene and detergent alcohol (SafolTM).
technologyComment of methanol production (GLO): For normal methanol synthesis, reforming is performed in one step in a tubular reactor at 850 – 900 °C in order to leave as little methane as possible in the synthesis gas. For large methanol synthesis plants, Lurgi has introduced a two-step combination (combined reforming process) that gives better results. In the primary tubular reformer, lower temperature (ca. 800 °C) but higher pressure (2.5-4.0 MPa instead of 1.5-2.5 MPa) are applied. More recently, Lurgi developed another two-step gas production scheme. It is based on catalytic autothermal reforming with an adiabatic performer and has economical advantages for very large methanol plants. At locations where no carbon dioxide is available most of the methanol plants are based on the following gas production technologies, depending on their capacities: steam reforming for capacities up to 2000 t d-1 or combined reforming from 1800 to 2500 t d-1 (Ullmann 2001). For the energy and resource flows in this inventory a modern steam reforming process was taken as average technology. To estimate best and worst case values, also values from combined reforming and autothermal reforming were investigated. Methanol produced using a low pressure steam reforming process (ICI LPM) accounts for approximately 60% of the world capacity (Synetix 2000a). Besides steam reforming, combined reforming has gained importance due to the production of methanol in large plants at remote locations. The reaction of the steam-reforming route can be formulated for methane, the major constituent of natural gas, as follows: Synthesis gas preparation: CH4 + H2O → CO + 3 H2; ΔH = 206 kJ mol-1 CO + H2O → CO2 + H2; ΔH = - 41 kJ mol-1 Methanol synthesis: CO + 2 H2 → CH3OH; ΔH = -98 kJ mol-1 CO2 + 3 H2 → CH3OH + H2O; ΔH = -58 kJ mol-1 For an average plant the total carbon efficiency is around 75%, 81% for the synthesis gas preparation and 93% for the methanol synthesis (Le Blanc et al. 1994, p. 114). For steam reformers usually a steam to carbon ratio of 3:1 to 3.5:1 is used. As methanol production is a highly integrated process with a complicated steam system, heat recovery and often also internal electricity production (out of excess steam), there were only data of the efficiency and energy consumption of the total process available. Therefore the process was not divided into a reforming process, a synthesis process and a purification process for estimating the energy and resource flows. Also the energy and resource flows in the methanol production plants are site specific (dependent on the local availability of resources such as CO2, O2, or electricity). In this inventory typical values for a methanol plant using steam-reforming technology were used. The main resource for methanol production is natural gas, which acts as feedstock and fuel. A natural gas based methanol plant consumes typically 29-37 MJ (LHV) of natural gas per kg of methanol. This gas is needed as feedstock for the produced methanol (20 MJ kg-1 LHV) and also used as fuel for the utilities of the plant. From the converted feed, 1 kg methanol and 0.06 kg hydrogen is yielded. It was assumed that the purged hydrogen was also burned in the furnace. The only emission to air considered from burning hydrogen is NOX. The energy amount generated is not considered, because the process of the furnace is specified for natural gas as fuel. The NOX emissions of the hydrogen burning were therefore calculated separately. References: Althaus H.-J., Chudacoff M., Hischier R., Jungbluth N., Osses M. and Primas A. (2007) Life Cycle Inventories of Chemicals. ecoinvent report No. 8, v2.0. EMPA Dübendorf, Swiss Centre for Life Cycle Inventories, Dübendorf, CH. technologyComment of synthetic fuel production, from coal, high temperature Fisher-Tropsch operations (ZA): SECUNDA SYNFUEL OPERATIONS: Secunda Synfuels Operations operates the world’s only commercial coal-based synthetic fuels manufacturing facility of its kind, producing synthesis gas (syngas) through coal gasification and natural gas reforming. They make use of their proprietary technology to convert syngas into synthetic fuel components, pipeline gas and chemical feedstock for the downstream production of solvents, polymers, comonomers and other chemicals. Primary internal customers are Sasol Chemicals Operations, Sasol Exploration and Production International and other chemical companies. Carbon is produced for the recarburiser, aluminium, electrode and cathodic production markets. Secunda Synfuels Operations receives coal from five mines in Mpumalanga (see figure attached). After being crushed, the coal is blended to obtain an even quality distribution. Electricity is generated by both steam and gas and used to gasify the coal at a temperature of 1300°C. This produces syngas from which two types of reactor - circulating fluidised bed and Sasol Advanced SynthoTM reactors – produce components for making synthetic fuels as well as a number of downstream chemicals. Gas water and tar oil streams emanating from the gasification process are refined to produce ammonia and various grades of coke respectively. imageUrlTagReplacea79dc0c2-0dda-47ec-94e0-6f076bc8cdb6 SECUNDA CHEMICAL OPERATIONS: The Secunda Chemicals Operations hub forms part of the Southern African Operations and is the consolidation of all the chemical operating facilities in Secunda, along with Site Services activities. The Secunda Chemicals hub produces a diverse range of products that include industrial explosives, fertilisers; polypropylene, ethylene and propylene; solvents (acetone, methyl ethyl ketone (MEK), ethanol, n-Propanol, iso-propanol, SABUTOL-TM, PROPYLOL-TM, mixed C3 and C4 alcohols, mixed C5 and C6 alcohols, High Purity Ethanol, and Ethyl Acetate) as well as the co-monomers, 1-hexene, 1-pentene and 1-octene and detergent alcohol (SafolTM).
Origin | Count |
---|---|
Bund | 185 |
Land | 5 |
Type | Count |
---|---|
Ereignis | 1 |
Förderprogramm | 161 |
Text | 18 |
Umweltprüfung | 2 |
unbekannt | 8 |
License | Count |
---|---|
closed | 15 |
open | 160 |
unknown | 15 |
Language | Count |
---|---|
Deutsch | 182 |
Englisch | 15 |
Resource type | Count |
---|---|
Archiv | 8 |
Datei | 9 |
Dokument | 18 |
Keine | 126 |
Webseite | 49 |
Topic | Count |
---|---|
Boden | 127 |
Lebewesen & Lebensräume | 108 |
Luft | 99 |
Mensch & Umwelt | 190 |
Wasser | 59 |
Weitere | 173 |