API src

Found 817 results.

Wasserhaushalt der Böden in Deutschland (WMS)

Das in den Boden eindringende Wasser ist für den Boden selbst, aber auch für die Umwelt und für den Menschen von höchster Bedeutung. Böden speichern Wasser und sie können es den Pflanzen auch zeitversetzt wieder zur Verfügung stellen. Wie viel Wasser die unterschiedlichen Böden liefern können, hängt entscheidend von den Bodeneigenschaften ab. Ein Teil des Niederschlags verlässt den Wurzelraum als Sickerwasser und trägt so zur Grundwasserneubildung bei. Mit dem Wasser werden Nähr- und Schadstoffe im Boden transportiert. In die Themenkarten zum Wasserhaushalt der Böden in Deutschland fließen bodenkundliche Kennwerte aus der nutzungsdifferenzierten Bodenübersichtskarte von Deutschland 1:1.000.000 (BÜK1000N), morphologische Kennwerte aus dem DGM50 des Bundesamtes für Kartographie und Geodäsie (BKG), klimatische Kennwerte des Deutschen Wetterdienstes (DWD) für die Referenzperiode 1961–1990 sowie Landnutzungsdaten aus dem Datensatz CORINE Land Cover 2006 (UBA) ein.

Luftkapazität der Böden im effektiven Wurzelraum in Deutschland (WMS)

Die Karte der Luftkapazität im effektiven Wurzelraum in Deutschland gibt einen Überblick über die Größe des Luftspeichers der Böden. Unter Luftkapazität wird der Porenraum verstanden, der bei Feldkapazität mit Luft gefüllt ist. Damit stellt sie ein Maß für die Versorgung der Wurzeln mit Sauerstoff dar. Die Größe des Luftspeichers im Boden hängt von der Bodenart, der Lagerungsdichte und dem Humusgehalt ab. Der effektive Wurzelraum wird anhand von Landnutzungs- und Bodendaten bestimmt. Die Karte basiert auf der Auswertung der nutzungsdifferenzierten Bodenübersichtskarte 1:1.000.000 (BUEK1000N) und zeigt die klassifizierte Luftkapazität. Die Methode ist in der Bodenkundlichen Kartieranleitung (KA4) und in der Methodendokumentation Bodenkunde der Ad-hoc-AG Boden veröffentlicht. Als Landnutzungsinformation und zur nutzungsabhängigen Differenzierung der Profildaten werden Daten des CORINE Land Cover Projektes (2006) herangezogen.

Luftkapazität der Böden im effektiven Wurzelraum in Deutschland

Die Karte der Luftkapazität im effektiven Wurzelraum in Deutschland gibt einen Überblick über die Größe des Luftspeichers der Böden. Unter Luftkapazität wird der Porenraum verstanden, der bei Feldkapazität mit Luft gefüllt ist. Damit stellt sie ein Maß für die Versorgung der Wurzeln mit Sauerstoff dar. Die Größe des Luftspeichers im Boden hängt von der Bodenart, der Lagerungsdichte und dem Humusgehalt ab. Der effektive Wurzelraum wird anhand von Landnutzungs- und Bodendaten bestimmt. Die Karte basiert auf der Auswertung der nutzungsdifferenzierten Bodenübersichtskarte 1:1.000.000 (BUEK1000N) und zeigt die klassifizierte Luftkapazität. Die Methode ist in der Bodenkundlichen Kartieranleitung (KA4) und in der Methodendokumentation Bodenkunde der Ad-hoc-AG Boden veröffentlicht. Als Landnutzungsinformation und zur nutzungsabhängigen Differenzierung der Profildaten werden Daten des CORINE Land Cover Projektes (2006) herangezogen.

BAMP: Bauen mit Papier

Das Projekt "BAMP: Bauen mit Papier" wird vom Umweltbundesamt gefördert und von Technische Universität Darmstadt, Fachgebiet Papierfabrikation und Mechanische Verfahrenstechnik durchgeführt. Der vom LOEWE-Programm des Landes Hessen geförderte Schwerpunkt soll langfristig dazu beitragen, die Vorteile des Werkstoffes Papier für das Bauwesen systematisch zu erschließen und Voraussetzungen für ein neues Wirtschaftsfeld mit einem international sichtbaren Schwerpunkt in Hessen zu etablieren und an den beteiligten Universitäten und Hochschulen langfristig zu verankern. Papier als Baumaterial: Natürliche Materialien wie Holz oder Papier werden seit Jahrtausenden im Bauwesen eingesetzt und spielen auch im modernen Hochbau und Innenausbau eine wesentliche Rolle. Beispiele reichen hier von Schichtholzplatten über Gipsfaserplatten bis hin zu Laminaten. Die verfügbaren Produkte basieren im Wesentlichen auf Erfahrungen der Hersteller. Dabei bietet gerade Papier ein hervorragendes Potential für biobasierte Anwendungen im Baubereich. Es ist kostengünstig herstellbar, besteht überwiegend aus nachwachsendem Rohstoff, bietet bezogen auf das Eigengewicht sehr gute Festigkeitseigenschaften, kann als flächiges Material aber auch mit hoher Porosität bzw. sogar als Schaum produziert werden und ist verhältnismäßig einfach chemisch zu funktionalisieren. Zielsetzung: Ziel des beantragten Schwerpunktes ist es, wissenschaftliche und technische Grundlagen für die Nutzung von Papier in Bauanwendungen zu schaffen und neue Lösungsansätze zu entwickeln. Dazu sind die Materialeigenschaften von Papier auf die neuen Anforderungen hin anzupassen und weiter zu entwickeln (z. B. hohe Festigkeit, Wasserbeständigkeit), die Möglichkeiten zu einer individualisierbaren Formgebung mit Papiermaterialien sind zu erforschen (z. B. die Verarbeitung in Tiefziehprozessen) und Gestaltungsansätze für die Bauteil- und Bauwerksgestaltung sowie die Dimensionierung und Auslegung sind zu erarbeiten. Modellhaft sollen die Fertigung von Stab- und Flächenelementen auf Papierbasis entwickelt werden, was mit Hilfe von wissenschaftlich abgesicherten Methoden die Gestaltung neuer Bauwerke aus Papier werkstoff-, herstellungs- und nutzungsgerecht ermöglichen soll. Temporäre Bauwerke: Der Fokus des Schwerpunktes liegt dabei auf Bauwerken für temporäre Nutzung (so genannte 'fliegende Bauten'), die entsprechend der baurechtlichen Forderungen gegebenenfalls mit geringeren technischen Anforderungen versehen sind. Technologien und Systeme zur Herstellung solcher Bauwerke für Nutzungen, wie z. B. Übergangsbauten für gewerbliche Zwecke oder Schulen, Notunterkünfte oder einmalige Großveranstaltungen sowie für so genannte 'Microhomes' oder im Messebau, wurden bisher in Deutschland nur wenig entwickelt. Sie stellen aber ein größeres Potential dar, sowohl für Material, Konstruktion als auch den optimierten Einsatz von Ressourcen und Finanzmitteln, da gerade bei temporär genutzten Bauwerken die Verwendung nachhaltiger Materialien und effizienter Prozesse eine große Rolle spielt.

Sub project: Fault zone damage and chemical reactions at depth in the San Andreas Fault Zone: A study of SAFOD drill core samples

Das Projekt "Sub project: Fault zone damage and chemical reactions at depth in the San Andreas Fault Zone: A study of SAFOD drill core samples" wird vom Umweltbundesamt gefördert und von Helmholtz-Zentrum Potsdam Deutsches GeoForschungsZentrum durchgeführt. The results of the first funding period, particularly the proof of several weakening and hardening mechanisms operating in the fault gouge of four SAFOD core samples (e.g. amorphous material, nano-scale pore spaces, dissolution-precipitation processes, intracrystalline plasticity) inspired a more detailed study of microstructures in order to specify the cause of mechanical weakness along the San Andreas Fault (SAF). Therefore we applied for and received four additional core samples from different depths and different distances to the fault contact. In particular, we will focus on: - The analysis of dominant microstructures in the new SAFOD samples. Based on our previous experience we will predominantly use the transmission electron microscopy (TEM). These studies have proven to be the most powerful tool for analyzing microstructures. The cutting of foils with the focused ion beam technique (FIB) allows identifying microstructures down to the nm scale without damage. - The observed microstructures will be interpreted in view of their implication for fault weakening mechanisms integrating previous results of the core samples from the first funding period. - The observed agglomeration of flocculated clay particles in previous samples calls for further detailed TEM investigations of clay minerals. - Some vein-calcites show evidence for intense intracrystalline plasticity (deformation twins and dislocation creep). We will measure dislocation and twin densities in calcite veins in the new sample set. The results will be used for stress estimations based on paleo-piezometric relationships. - First results of stable isotope analyses of vein calcites provide indications that the fluids were dominantly derived from deeper sources. We will further analyze stable isotopes with the aim to characterize the origin of fluids penetrating the fault gouge. - Mercury porosimetry and the BET gas adsorption methods will be used to measure the connected rock porosity pore volume and pore surface areas of our new samples. Porosity data will be used to roughly estimate permeability. - SAFOD microstructures will be compared to samples recently obtained from the Taiwan Chelungpu fault Drilling Project (TCDP).

Phase 2

Das Projekt "Phase 2" wird vom Umweltbundesamt gefördert und von Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) gGmbH - Fachbereich Endlagersicherheitsforschung durchgeführt. Anhydrit- und Salztonschichten sind Bestandteile der Normalabfolge des Salinars und unterliegen in der Betriebs- und Nachbetriebsphase eines Endlagers gebirgsmechanischen Beanspruchungen. In den steiferen und festeren Anhydrit- und Salztonschichten kommt es zu Belastungserhöhungen durch Spannungsumlagerungen. Es muss hier mit Klüften gerechnet werden und infolgedessen mit Zutritten von Laugen und Wässern. Das Vorhaben soll als Gemeinschaftsprojekt mit dem Institut für Gebirgsmechanik, Leipzig im Salzbergwerk Bernburg weitergeführt werden. Da in dieser Grube Steinsalz gewonnen wird und Anhydrit in Form von Klippenstrukturen aufgeschlossen ist, bestehen sehr günstige Bedingungen, den Anhydrit unter dem Einfluss großräumiger Gebirgsspannungsänderungen zu untersuchen. Die für die Untersuchungen notwendige Instrumentierung ist bereits im vorhergehenden Projekt erfolgt. Mit den Messungen wurde Mitte 2000 begonnen. Schwerpunkte sind die quantitative Beschreibung der induzierten Seismizität (Rissbildung und -fortpflanzung), der Einfluss des Spannungsfeldes auf die Risspermeabilität sowie de Modellierung der mechanischen und hydraulischen Vorgänge.

Bau und Erprobung einer FRAK-Anlage fuer Bodensanierung

Das Projekt "Bau und Erprobung einer FRAK-Anlage fuer Bodensanierung" wird vom Umweltbundesamt gefördert und von Hegemann Engineering durchgeführt. Objective: A FRAK installation for facilitating the clean-up of heavy soils is to be designed and built. The aggregate consists of a series of pipes mounted on a hydraulic excavator; the pipes are equipped with venting holes at their ends and can be pushed into the ground. By high-pressure air blasts from the vents will change the entire pore structure of the soil, opening consolidated soil structures in particular. Similar installations have been tested to improve agricultural soil structure; the main difference is the heavy-duty layout of the installation. General Information: In-situ treatment of polluted soil is frequently prevented by the soil structure: if the soil contains much clay or has been compressed by heavy loads, neither water nor air will penetrate the dense layer, save along a few channels that are correspondingly washed out, forming channels to guide water and air through the soil layer without much affecting the layer itself. To extend the range of soils to be treatable, the FRAK process has been conceived, which works by applying gas shocks to the dense soil and thus changing the entire pore structure of the soil. The Commission of the European Communities has, within the frame of the ACE 89 demonstration programme, granted financial assistance to the development of a FRAK apparatus that is able to work under the condition of industrial grounds, i.e., stones and other obstacles occurring from time to time, and of not impairing industrial use of the ground; the site selected for demonstration was a railway station polluted with oil. The construction was carried out by the Bremen-based DETLEF HEGEMANN ENGINEERING GmbH who made a very flexible apparatus, operating vertically as well as in inclined mode, the four venting pipes being each separately adjustable for optimal re-shuffling of the entire soil. Commission assistance was restricted to the period of 1-10-90 through 30-4-92, during which time the FRAK apparatus was constructed and tested in operation. First results show that the FRAK apparatus performs according to expectations in rugged industrial environment, increasing the water flow rate through the treated soil by a factor of 5. Every blast will reshuffle up to 60 m2 of soil. The working depth extending up to 4 m, up to 240 m3 of soil may be treated by this apparatus in every drilling step; up to 25 drilling steps may be made per hour. Thus, with Commission assistance, a major break-through has been achieved to make polluted soils of low permeability accessible to in-situ treatment. This will be particularly important for the application of biological treatment systems whose performance usually suffer from bad aeration of the soil to be treated. FRAK will help to condition this kind of soil for biological in-situ treatment...

INI 1128575 STP-2: Fate of Plant Residues in Soil Organic Matter Pools under Contrast Land Use as Evaluated by Two Tracer Techniques

Das Projekt "INI 1128575 STP-2: Fate of Plant Residues in Soil Organic Matter Pools under Contrast Land Use as Evaluated by Two Tracer Techniques" wird vom Umweltbundesamt gefördert und von Universität Bayreuth, Fachgruppe Geowissenschaften, Bayreuther Zentrum für Ökologie und Umweltforschung (BayCEER), Lehrstuhl für Agrarökosystemforschung durchgeführt. Soil C sequestration through changes in land use and management is one of the important strategies to mitigate the global greenhouse effect. Plant residue is the primary source of C formation and sequestration in soil. The relative contribution of residues depends upon composition and decomposability of litter which is a function of lad use and management. The present project is conceived with objective to evaluate the fate of plant residue in soil C influenced by different land-use management practices. Ultimate aim to sketch policy for appropriate management practices, which would facilitate enrichment of C stock in soils for maintaining soil health and fertility as well as mitigation of global warming by C sequestration. Management practices like intensity of tilling and no tillage have a definite effect on SOC stock; it would be considered as pertinent management practice for residue derived C-turnover. To fulfil the objective as stated, representative soil samples will be collected under various land covers/uses and management practices and analysed for important physico chemical properties e.g. pH, CEC, clay content, bulk density, soil water storage, and soil porosity are the important soil physical parameters which influences C load in soil. Different pools of C viz. total SOC (Ctot), Water stable aggregates, labile fractions of oxidisable organic carbon etc. will be studied to know the C stock and its distribution in soil. Impact of added plant residue on C sequestration and C dynamics of plant residues decomposition in contrast land use will be analyzed and quantified by using 14C labelled plant residues as well as 13C natural abundance and allow for differentiation between residues-derived carbon and native SOC. Labeled microbial biomass C and mineralizable C, acetone exactable reside, 14C and d13C in CO2 and in SOM pool will be measured that may provide precise estimates of residues decomposition rates and contribution in soil organic C. Microbial biomass carbon (Cmic) and mineralizable carbon (Cmin) measured as early indicators of future trends in total SOM as it provides a good measure of labile organic matter because it directly reflects recent soil organic matter turnover. Data on biomass productivity will also be collected from those sites. Results would help us to know the relative efficiency of different land use managements for organic C enrichment or depletion in soils.

Teil LBF

Das Projekt "Teil LBF" wird vom Umweltbundesamt gefördert und von Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF, Standort Kranichstein durchgeführt. Für die tragenden Bauteile von Windkraftanlagen kommen nur Werkstoffe mit einer hohen Wechselfestigkeit und Zuverlässigkeit in Frage. Deswegen und aufgrund der nahezu unbegrenzten konstruktiven Freiheiten sind schon heute ca. 30 % des Gondelgewichts aus duktilem Gusseisen. Besonders in der Offshore-Windenergie sind aufgrund der hohen Risiken Neuentwicklungen ohne Zertifizierung nicht durchsetzbar. Im vorliegenden Projekt wurde auf Basis des bewährten Sphäroguss ein höherfester Werkstoff entwickelt und untersucht. Für die Zertifizierung durch den Germanischen Lloyd wurden umfangreiche Versuchsreihen durchgeführt und zusätzlich ein bruchmechanisches Sicherheitskonzept erarbeitet.

Nanostructured carbon-supported bimetal catalysts for the oxygen reduction at the H2-PEMFC and DMFC

Das Projekt "Nanostructured carbon-supported bimetal catalysts for the oxygen reduction at the H2-PEMFC and DMFC" wird vom Umweltbundesamt gefördert und von DECHEMA Forschungsinstitut Stiftung bürgerlichen Rechts durchgeführt. Background: Fuel cells are usually classified into working temperature categories. High temperature fuel cells (HTFC), such as the Solid Oxide Fuel Cell (SOFC) or the Molten Carbonate Fuel Cell (MCFC) are working in a temperature range of 600-950°C that allows a sufficient conductivity of the electrolyte. State of the art HTFCs have already shown high cell efficiency up to 60%. Low temperature fuel cells (LTFC) are mostly equipped with a polymer membrane such as Nafion whose conductivity depends on the presence of water molecules. Therefore, their working temperatures are usually limited to 80-90°C. With exception of MCFC that is specially designed for stationary electricity plans, both, high and low temperature fuel cells are planned to be used in a foreseeable future as energy converter for stationary and automotive applications. In the case of the LTFC, however, more robust systems and especially, more stable polymer membranes than PBI-based ones, which are still sensitive to cold starting processes that are able to work at 100-150°C are needed. Higher working temperatures mean higher efficiency of the catalysts, lower electrolyte resistances and as a consequence higher cell performances. These depend not only on the working temperature, kind of catalyst and membrane, but also on the purity of the fuel and its distribution within the diffusion and reaction layers and also on the evacuation of the reaction products, which can lead to catalyst poisoning and electrode flooding, respectively. The latter depends on the morphology and properties inherent to the diffusion and reaction layers, such as catalyst loading, porosity, hydrophobicity, thickness and additionally on the compression forces within the stack. For these reasons, the design of the membrane-electrodes assembly (MEA) remains a very important step within the fuel cell concept. One distinguishes two strategies: the most common one consists on coating the electrodes with the diffusion and reaction layers (CCE) and finally press them together with the membrane to a MEA. The second one aims to directly coat the membrane with the reaction and diffusion layer inks or pastes (CCM).

1 2 3 4 580 81 82