This subproject will assess net-fluxes of CH4 and N2O as well as soil CO2 emissions from flooded and non-flooded rice as well as maize grown in different rotations and under different management practices. SP5 will encompass two research tasks, (i) automated chamber measurements and (ii) soil gas concentration measurements of different crop rotations. In total 36 automated chambers will be placed in two large field blocks (18 chambers each) divided into fields representing three crop-rotations: R-WET (rice flooded - rice flooded), R-MIX (rice flooded - rice non-flooded), M-MIX (maize - rice flooded) experiencing three differ-ent crop management practices: a control with no fertilizer application (zero-N), site specific nutrient management (site-spec) and conventional fertilizer application (conv). In the fields of conventional fertilization SP5 will also conduct soil concentration measurements of CO2, N2O and CH4 for identification of the main production and/ or consumption horizons which may differ between the three crop rotation systems which will allow identification of the dominating processes responsible for GHG exchange with the atmosphere. Emissions of different greenhouse gases together with data on biomass production/ yields (conducted by IRRI) will be aggregated to compile the total GHG exchange of different crop rotations and management practices. Thus, the data obtained in SP5 will create a sound basis for projecting the environmental consequences of different land use options in rice-based systems with respect to the net GHG exchange. Moreover, data obtained in SP5 will be linked in particular with results from C and N process studies of SP1-SP4 and will form a sound base for further development, testing and valida-tion of the process based model applied in SP6/ 7.
Im Rahmen des Forschungsvorhabens soll ein prozessorientiertes Modell zur Beschreibung von biogeochemischen Stoffumsetzungen in landwirtschaftlich genutzten Böden derart weiterentwickelt werden, daß es zur Prognose von CH4- und N2O-Spurengasemissionen aus dem Reisanbau eingesetzt werden kann. Insbesondere soll die numerische Beschreibung der in der CH4- und N2O-Produktion und Konsumption involvierten mikrobiologischen Prozesse Methanogenese, Methan-Oxidation, Nitrifikation und Denitrifikation und deren Abhängigkeit von Änderungen des Redoxpotentials im Boden implementiert bzw. verbessert werden. Zudem sollen die verschiedenen Mechanismen, die zur Emission von Spurengasen aus dem Reisanbau beitragen (Diffusion, Gasblasenbildung bei Überstauung, Pflanzentransport) sowie die Auswirkung von radialen Sauerstoffverlusten der Reiswurzeln auf die mikrobiologischen Prozesse in einer durch Anaerobiosis dominierten Umgebung in das Modell implementiert werden.
Organotin and especially butyltin compounds are used for a variety of applications, e.g. as biocides, stabilizers, catalysts and intermediates in chemical syntheses. Tributyltin (TBT) compounds exhibit the greatest toxicity of all organotins and have even been characterized as one of the most toxic groups of xenobiotics ever produced and deliberately introduced into the environment. TBT is not only used as an active biocidal compound in antifouling paints, which are designed to prevent marine and freshwater biota from settlement on ship hulls, harbour and offshore installations, but also as a biocide in wood preservatives, textiles, dispersion paints and agricultural pesticides. Additionally, it occurs as a by-product of mono- (MBT) and dibutyltin (DBT) compounds, which are used as UV stabilizer in many plastics and for other applications. Triphenyltin (TPT) compounds are also used as the active biocide in antifouling paints outside Europe and furthermore as an agricultural fungicide since the early 1960s to combat a range of fungal diseases in various crops, particularly potato blight, leaf spot and powdery mildew on sugar beet, peanuts and celery, other fungi on hop, brown rust on beans, grey moulds on onions, rice blast and coffee leaf rust. Although the use of TBT and TPT was regulated in many countries world-wide from restrictions for certain applications to a total ban, these compounds are still present in the environment. In the early 1970s the impact of TBT on nontarget organisms became apparent. Among the broad variety of malformations caused by TBT in aquatic animals, molluscs have been found to be an extremely sensitive group of invertebrates and no other pathological condition produced by TBT at relative low concentrations rivals that of the imposex phenomenon in prosobranch gastropods speaking in terms of sensitivity. TBT induces imposex in marine prosobranchs at concentrations as low as 0,5 ng TBT-Sn/L. Since 1993, for the littorinid snail Littorina littorea a second virilisation phenomenon, termed intersex, is known. In female specimens affected by intersex the pallial oviduct is transformed of towards a male morphology with a final supplanting of female organs by the corresponding male formations. Imposex and intersex are morphological alterations caused by a chronic exposure to ultra-trace concentrations of TBT. A biological effect monitoring offers the possibility to determine the degree of contamination with organotin compounds in the aquatic environment and especially in coastal waters without using any expensive analytical methods. Furthermore, the biological effect monitoring allows an assessment of the existing TBT pollution on the basis of biological effects. Such results are normally more relevant for the ecosystem than pure analytical data. usw.
Many studies have been conducted with the aim to better understand biologic and hydrologic processes that control C and N fluxes in rice paddy systems. But rarely have studies attempted to explicitly link the hydrological and biogeochemical controls of nutrient transport on the field scale. In this research project we aim to improve our understanding of processes that are involved in storing and releasing water and nutrients of different rice-based cropping systems. The Catchment Modeling Framework (CMF) will be coupled to the biogeochemical MOBILE-DNDC model (SP6) in to simulate (1) vertical and lateral transport processes of water, C and N and (2) to predict the reaction of ecosystem services such as water storage and purification, gas regulation, nutrient cycling and food supply in dependence of cropping systems. SP7 follows a rejectionist framework where model complexity is adapted to available data and process understanding. State-of-the-art analytical instruments will be connected to a unique automatic sampling system to continuously measure water isotopic composition as well as dissolved carbon and nitrogen solutes in situ for the first time. Waters to be sampled include surface water, irrigation water, groundwater and water vapor. Cavity Ringdown Spectroscopy will be used to measure 2H/H and 18O/16O. Isotopic signatures will allow estimating water mean transit times, partitioning between evaporation and transpiration and separating flow paths. Hyperspectral UV photometers equipped with a flow-through cell will be installed for continuous measurements of nitrate and DOC.
Steigende Temperaturen und Wassermangel verringern die Ernteerträge und die Qualität der Ernte in vielen landwirtschaftlichen Regionen. Dieses Problem wird sich durch den Klimawandel voraussichtlich noch verstärken. Wir werden uns in diesem Projekt auf Reis, eine er die wichtigste menschliche Nahrungspflanzen, konzentrieren. Der Anbau von Reis ist wasserintensiv, und vom Klimawandel besonders betroffen. Wir wollen mehrere natürliche genetische Variationen identifizieren und testen, die bereits einige Reis-Landrassen in die Lage versetzen, unter warmen und trockenen Klimabedingungen ausreichend Saatgut zu produzieren. Das Projekt hat die Verbesserung der Klimaresistenz von Nutzpflanzen zum Ziel. Ein Fokus liegt dabei auf der Rolle der Spaltöffnungen. Diese regulierbaren Poren steuern den Wasserverlust aus der Pflanze und sind daher entscheidend für die Verdunstungskälte und die Reaktion auf Trockenstress. Wir haben bereits die Genome von fast eintausend Reissorten untersucht, um eine Liste von 30 Genen mit natürlich vorkommenden Variationen zu identifizieren, die mit Wachstum in schwierigen Umgebungen verbunden sind. Sechs dieser Gene wurden priorisiert, und drei von ihnen sind direkt an der Regulierung der Spaltöffnungen beteiligt. Um herauszufinden, welche dieser Gene am ehesten in der Lage sind, Klimaresilienz zu verleihen, werden wir 200 traditionelle Reissorten, die entweder funktionale oder nicht-funktionale Kopien unserer Zielgene enthalten, untersuchen. Wir werden diese Reissorten sowohl in sorgfältig kontrollierten Umgebungen als auch in tropischen Feldversuchen anbauen und ihre Stressresistenz und ihren Nährstoffgehalt messen. Die Daten aus diesen Experimenten werden nicht nur die genetischen Sequenzen aufzeigen, die von Natur aus mit Hitze- und Dürretoleranz verbunden sind, sondern es auch ermöglichen, mit Hilfe von maschinelles Lernen die Eigenschaften, die die beste Vorhersagen für die Leistung der Pflanzen auf dem Feld erbringen, zu ermitteln. Wir werden die Funktion unserer Zielgene durch genetische Manipulation ihrer Expression verifizieren und durch in silico transkriptomische, physiologische und biochemische Analysen neue genomische Ressourcen für die Reisforschungsgemeinschaft bereitstellen. Schließlich werden wir mit Hilfe von Gene Editing versuchen die gefundene Stressresistenz in stressanfälligen modernen Elitereissorte wiederherzustellen. Um dies zu erreichen, brauchen wir die verschiedenen Fähigkeiten unseres multidisziplinären Teams. Darüber hinaus haben wir ein "Bürgerwissenschaftliches" Programm entwickelt, um die Rolle aller 30 klimaassoziierten Reisgenen neben den vorrangigen Zielgenen zu untersuchen. Zu diesem Zweck werden wir mit Schülern in lokalen Schulen in den USA und Großbritannien zusammenarbeiten. Hierbei werden wir zusätzliche Gene untersuchen und den Schülern und Lehrern die Möglichkeit geben, einen Beitrag zu den internationalen Forschungsbemühungen die den Klimawandel bekämpfen zu leisten.
QTL Q.Tgw.ipk-7D increases grain size in wheat and also has positive effects on total grain mass and harvest index. By genetic methods, it was shown that a Mendelian gene inherited in recessive fashion is causing these effects. Our aim is the molecular identification and functional verification of the wheat gene underlying the QTL Q.Tgw.ipk-7D affecting grain size. The QTL interval was genetically delimited by fine mapping and synteny studies with rice and Brachypodium distachyon revealed a good synteny for the investigated region. The area of interest harbours 36 and 42 genes in rice and Brachypodium, respectively. Among them is a possible candidate gene for QTL Q.Tgw.ipk-7D encoding an AP2 domain containing protein. Further fine mapping is expected to narrow down the list of possible candidate genes for QTL Q.Tgw.ipk-7D. Therefore, the ongoing map based cloning approach is to be continued and obtained candidates are to be tested for their functionality in stably transformed wheat lines. The molecular identification of QTL Q.Tgw.ipk-7D will provide novel insight in the heritable regulators of grain size in wheat and would constitute the first cloned QTL reported in wheat.
This project aims at the improvement and testing of a modeling tool which will allow the simulation of impacts of on-going and projected changes in land use/ management on the dynamic exchange of C and N components between diversifying rice cropping systems and the atmosphere and hydrosphere. Model development is based on the modeling framework MOBILE-DNDC. Improvements of the soil biogeochemical submodule will be based on ICON data as well as on results from published studies. To improve simulation of rice growth the model ORYZA will be integrated and tested with own measurements of crop biomass development and transpiration. Model development will be continuously accompanied by uncertainty assessment of parameters. Due to the importance of soil hydrology and lateral transport of water and nutrients for exchange processes we will couple MOBILE-DNDC with the regional hydrological model CMF (SP7). The new framework will be used at field scale to demonstrate proof of concept and to study the importance of lateral transport for expectable small-scale spatial variability of crop production, soil C/N stocks and GHG fluxes. Further application of the coupled model, including scenarios of land use/ land management and climate at a wider regional scale, are scheduled for Phase II of ICON.
Im Rahmen des hier vorgeschlagenen Kooperationsprojektes werden unsere chinesischen Partner Feldversuche in drei verschiedenen Klimazonen Chinas (Peking, Nanking und Kanton (Guangzhou)) durchführen. Diese sollen durch die National Nature Science Foundation of China (NSFC) gefördert werden. Die Feldversuchsanlage wird an allen Orten identisch sein. Zusätzlich führt jede Gruppe Ergänzungsstudien gemäß der jeweiligen Arbeitsrichtung durch. Unser gemeinsames Projekt soll die relative Vorzüglichkeit von GCRPS gegenüber dem traditionellen Nassreis- bzw. Trockenreisanbau in der zweiten Reisanbausaison in der Region von Guangzhou (South China Agricultural University) untersuchen. Der Schwerpunkt wird auf den Wasserbedarf, die Stickstoffnutzungseffizienz (15N-Methode und Bilanzmethode) sowie auf N2O-, CH4 und NH3-Emissionen gelegt werden. Die Felduntersuchungen in Südchina werden durch Versuche unter kontrollierten Umweltbedingungen in Kiel unterstützt. Mit diesen Experimenten soll der Effekt von Stickstoffform und Stickstoffdüngungsrate auf die Fe-, Mn- und P-Aufnahme von Reis studiert werden. Diese Frage hat hohe Priorität, denn Ernährungsstörungen aufgrund Veränderungen des Bewässerungsmanagements wurden in verschiedenen chinesischen Provinzen im Nassreisanbau beobachtet. Weiterhin sollen die physiologische Wassernutzungseffizienz und der Effekt der Stickstoffform auf die CH4-Emissionen geprüft werden. Die kooperierenden vier chinesischen Arbeitsgruppen haben ihre jeweiligen Forschungsanträge an die NSFC eingereicht.
Arsen-kontaminiertes Grundwasser stellt eine große Gefahr für zig Millionen von Menschen dar, insbesondere in Süd- und Südost-Asien, durch seine Verwendung als Trinkwasser und für die Bewässerung von Reisfeldern. Das Hauptziel dieses Projekts ist es gemeinsam mit Wissenschaftlern der Stanford University die Menge an giftigem Arsen in den beiden wichtigsten Expositionsquellen, Wasser und Reis, zu reduzieren und zu bestimmen wie i) Arsen effizient mit Wasserfiltern aus dem Trinkwasser entfernt und ii) die Arsenaufnahme durch Reis während der Nasskultivierung reduziert werden kann. Im ersten Teilprojekt planen wir in Vietnam zu untersuchen, unter welchen Bedingungen Wasserfilter Arsen effizient entfernen, wie lange die Filter verwendet werden können und ob gesundheits-schädigende Konzentrationen von Nitrate in den Filtern gebildet werden. Wir werden einen visuell sichtbaren Indikator in den Filtern entwickeln, der es der breiten Bevölkerung erlaubt, ohne analytische Verfahren oder besonderen Bildungsstand zu bestimmen, wann die Effizienz des Filters aufgrund der Sättigung mit Arsen verschwindet und das Filtermaterial ersetzt werden muss. Darüber hinaus werden wir untersuchen, wie das Arsen-verschmutzte Filtermaterial ohne weitere Risiken entsorgt werden kann. Im zweiten Teilprojekt werden wir untersuchen, ob die Stimulation von nitrat-reduzierenden, eisenoxidierenden Bakterien in Reisfeldböden die Arsenaufnahme in Reis reduziert durch die Bindung von Arsen an die gebildeten Minerale. Wir werden bestimmen, wie die Zugabe definierter Mengen an Nitrat helfen kann, gleichzeitig die Arsenaufnahme in den Reis und die Emission des Treibhausgases N2O zu minimieren. Dieses Projekt wird für die Bevölkerung in Arsen-betroffenen Ländern praktische Lösungen bieten, um mögliche Schädigungen durch Arsen und Nitrat zu reduzieren und ihre Gesundheit und Lebenssituation zu verbessern.
Untersuchungen zur Oekosystembelastung durch Bodenerosion als Folge kulturtechnischer Massnahmen und der Neuerschliessung von Kulturland fuer den Reisanbau in Mali.
| Origin | Count |
|---|---|
| Bund | 310 |
| Kommune | 6 |
| Land | 47 |
| Wissenschaft | 12 |
| Type | Count |
|---|---|
| Chemische Verbindung | 2 |
| Daten und Messstellen | 1 |
| Ereignis | 4 |
| Förderprogramm | 273 |
| Taxon | 1 |
| Text | 31 |
| Umweltprüfung | 1 |
| unbekannt | 42 |
| License | Count |
|---|---|
| geschlossen | 38 |
| offen | 295 |
| unbekannt | 20 |
| Language | Count |
|---|---|
| Deutsch | 262 |
| Englisch | 130 |
| Resource type | Count |
|---|---|
| Archiv | 11 |
| Bild | 1 |
| Datei | 28 |
| Dokument | 38 |
| Keine | 184 |
| Unbekannt | 2 |
| Webdienst | 1 |
| Webseite | 127 |
| Topic | Count |
|---|---|
| Boden | 253 |
| Lebewesen und Lebensräume | 337 |
| Luft | 198 |
| Mensch und Umwelt | 350 |
| Wasser | 187 |
| Weitere | 320 |