Akkus schneiden am besten ab Eine Reihe von Batterien enthält zu viele Schwermetalle. Außerdem wird der Schwermetallgehalt häufig nicht gekennzeichnet. Zu diesem Ergebnis kommt eine aktuelle Studie im Auftrag des Umweltbundesamtes (UBA). UBA-Präsident Jochen Flasbarth: „Die Belastungen in vielen der untersuchten Zink-Kohle-Batterien sind besonders hoch: fast jede Zweite überschreitet den Cadmium-Grenzwert. Das Umweltbundesamt empfiehlt, stattdessen Alkali-Mangan-Batterien zu verwenden. Wo immer möglich, sollte ohnehin auf die ineffiziente Art der Energieversorgung mittels Batterien verzichtet werden. Akkus, beispielsweise Lithium-Ionen-Akkus, sind eindeutig die bessere Wahl.“ Schwermetalle sind schädlich für Menschen, Tiere und Pflanzen. In Batterien dürfen sie deshalb nur in sehr kleinen Mengen eingesetzt werden. Als Inhaltsstoff müssen sie gekennzeichnet werden, wenn sie die im Batteriegesetz vorgegebenen Schwellenwerte überschreiten. Im aktuellen Schwermetalltest wurden 300 handelsübliche Batterien und Akkus auf ihren Quecksilber (Hg)-, Cadmium (Cd)- und Blei (Pb)-Gehalt sowie deren Kennzeichnung untersucht. Die Ergebnisse der Studie wurden den zuständigen Landesbehörden für die Marktüberwachung zur Verfügung gestellt. Die geringste Menge an Schwermetallen enthielten Lithium-Ionen-Akkus, die z.B. in Handys verwendet werden, und Alkali-Mangan-Batterien. Deutlich schlechter schnitten Zink-Kohle-Rundzellen ab, die beispielsweise in Fernbedingungen oder Taschenlampen verwendet werden. Etwa die Hälfte enthielt mehr Cadmium, als der Grenzwert von 20mg/kg erlaubt. Bei einem Fabrikat wurde der Cadmium-Grenzwert und bei einem anderen der Quecksilber-Grenzwert um jeweils das Achtfache überschritten. Deutliche Mängel stellten die Tester auch bei der Kennzeichnung fest: Schwermetallhaltige Batterien und Akkus müssen die entsprechenden chemischen Symbole „Hg“, „Cd“ und „Pb“ tragen, wenn die vorgeschriebenen Schwellenwerte überschritten werden. Laut der Studie geschieht dies jedoch nur unzureichend. Bei fast der Hälfte der untersuchten Knopfzellen fehlte die Kennzeichnung „Hg“ für Quecksilber, obwohl diese nachweislich den vorgegebenen Schwellenwert überschritten. Zusätzlich ließen sich in einigen als quecksilberfrei gekennzeichneten Knopfzellen zwischen 0,4 bis 2 Prozent Quecksilber nachweisen. Auch die Hälfte der Batterien, die das Symbol „Pb“ für Blei tragen müsste, hatte keine entsprechende Kennzeichnung. Positiv hervorzuheben sind Alkali-Mangan-Batterien und Lithium-Ionen-Akkus. Deren Schwermetallgehalte lagen in allen untersuchten Fällen unterhalb der gesetzlichen Schwellenwerte, so dass keine Kennzeichnung nötig war. Grundsätzlich empfiehlt das Umweltbundesamt, Batterien durch Akkus zu ersetzen, insofern das technisch möglich ist. Zusätzlich zur Schwermetallbelastung fällt die Energiebilanz von Batterien deutlich negativ aus. So wird bei der Herstellung von Batterien 40- bis 500-mal mehr Energie eingesetzt, als in der Batterie zur Verfügung steht. Daher lohnt es sich, gezielt nach Produkten zu suchen, die ohne Batterien funktionieren. Auf solche weisen Qualitätssiegel wie „Der Blaue Engel“ hin. Wichtige Tipps zum Thema liefert außerdem der kostenlose UBA -Ratgeber „Batterien und Akkus“.
Batterien, auch Primärbatterien genannt, können nach ihrer Entladung nicht wieder aufgeladen werden. Akkus, auch Sekundärbatterien genannt, sind wiederaufladbare Batterien. Demzufolge sind Akkus auch Batterien. Um die unterschiedlichen Eigenschaften jedoch deutlich aufzuzeigen,wird in dieser Broschüre die Primärbatterie als Batterie und die Sekundärbatterie als Akku bezeichnet. Veröffentlicht in Ratgeber.
5.000 Hersteller haben sich registriert – Recycling liefert jährlich tausende Tonnen an Metallen Wer verbrauchte Batterien und Akkus vom Restmüll getrennt entsorgt – zum Beispiel in den Sammelboxen der Super- oder Baumärkte – schont die Umwelt in mehrfacher Hinsicht. So werden in Deutschland jährlich mehrere 1.000 Tonnen an wertvollen Metallen wiedergewonnen. Gleichzeitig können die Schwermetalle, die in Batterien und Akkus teilweise enthalten sind, nicht in die Umwelt gelangen. In Deutschland sind die Hersteller für die Rücknahme sowie das Recycling verbrauchter Batterien und Akkus verantwortlich. Deshalb muss jeder Hersteller seine Marktteilnahme im Melderegister für Batteriehersteller anzeigen und mitteilen – dies gibt Rückschluss, wie er seiner Entsorgungsverantwortung nachkommt. Verantwortlich für das Melderegister ist das Umweltbundesamt (UBA). Der Präsident des UBA, Jochen Flasbarth dazu: „Seit vier Jahren betreibt das Umweltbundesamt das Batteriegesetz-Melderegister, mit dem sichergestellt werden soll, dass die Hersteller von Batterien ihre abfallwirtschaftliche Produktverantwortung erfüllen.“ Inzwischen hat der 5.000ste Hersteller seine Marktteilnahme im Register erklärt. Zwar wird die gesetzliche Sammelquote für Gerätebatterien erreicht, aber nur weniger als die Hälfte aller Gerätebatterien werden am Ende in die getrennte Sammlung gegeben. In Deutschland wurden im Jahr 2010 über 1,5 Milliarden Gerätebatterien verkauft. Diese enthielten insgesamt über 8.000 Tonnen Eisen, etwa 5.000 Tonnen Zink, 2.000 Tonnen Nickel, 200 Tonnen Cadmium, sechs Tonnen Silber und rund vier Tonnen Quecksilber. Nur wenn Batterien getrennt gesammelt werden, lassen sich diese sowie weitere Leicht- und Schwermetalle wiedergewinnen. Darüber hinaus wird sichergestellt, dass Schwermetalle wie Blei, Cadmium und Quecksilber nicht in die Umwelt gelangen. Die Sammlung und das Recycling zu garantieren, ist die Aufgabe der Batteriehersteller. Will ein Hersteller die Batterien in Deutschland vertreiben, muss er sich daher im sogenannten Batteriegesetz-Melderegister (BattG-Melderegister) eintragen. Dieses Melderegister garantiert, dass die getrennt gesammelten Batterien und Akkus von den Herstellern, zum Beispiel von Produzenten oder Importeuren, zurückgenommen und recycelt werden. Das BattG-Melderegister wurde vom UBA zum 01. Dezember 2009 eingerichtet. Im Register zeigen Hersteller ihre Marktteilnahme elektronisch an. Das UBA stellt das öffentlich einsehbare Melderegister als staatliche Stelle kostenfrei bereit. Jochen Flasbarth: „Wir registrieren jetzt den 5.000sten Hersteller. Das Melderegister hat sich bei den Unternehmen als unbürokratisches Mittel bewährt. Die Hersteller und ihre Rücknahmesysteme schaffen einen großen Mehrwert für die Gesellschaft: Metalle werden in großen Mengen wiedergewonnen – Schwermetalle gelangen nicht in die Umwelt. Batterien sammeln lohnt sich also.“ Wie viele Batterien zurückgenommen und recycelt werden müssen, ist gesetzlich festgelegt. Derzeit sind die verschiedenen Rücknahmesysteme für Geräte-Altbatterien verpflichtet mindestens 35 Prozent und ab 2014 40 Prozent der gehandelten Batterien wieder einzusammeln. Ab dem Jahr 2016 liegt diese Quote bei 45 Prozent. Insgesamt erreicht Deutschland seit dem Jahr 2007 jährlich Sammelquoten von über 40 Prozent. Jochen Flasbarth: „Derzeit gelangen etwas weniger als die Hälfte aller gehandelten Batterien im Recycling. Für die Betreiber der Rücknahmesysteme ist es also wichtig, Verbraucherinnen und Verbraucher beim Batterien sammeln noch stärker zu motivieren.“ Im privaten Bereich empfiehlt das Umweltbundesamt, wenn möglich auf Batterien zu verzichten, da die Energie-Bilanz von Batterien verhältnismäßig schlecht ausfällt: Batterien verbrauchen bei ihrer Herstellung zwischen 40- bis 500-mal mehr Energie, als sie bei der Nutzung liefern. Ähnlich sieht es mit den Kosten aus: So ist elektrische Energie aus Batterien mindestens 300-mal teurer als Energie aus dem Netz. Diese ineffiziente Art der Energieversorgung wird durch die Verwendung von Akkus anstelle von nicht wiederaufladbaren Batterien in den meisten Fällen gemildert. Wenn man Batterien durch Akkus ersetzt, kann man etwa ein halbes Kilogramm klimarelevantes Kohlendioxid pro Servicestunde der Batterie sparen. Von etwa 5.000 aktiv am Markt tätigen Herstellern sind laut Batteriegesetz-Melderegister 81 Prozent Gerätebatteriehersteller, 13 Prozent Industriebatteriehersteller und sechs Prozent Fahrzeugbatteriehersteller. Die Gerätebatteriehersteller erfüllen ihre Rücknahme- und Entsorgungspflichten über das „Gemeinsame Rücknahmesystem für Geräte-Altbatterien“ (GRS Batterien) oder über eines der drei derzeit eingerichteten „herstellereigenen Rücknahmesysteme für Geräte-Altbatterien“ (REBAT, ERP Deutschland, Öcorecell). Bei einem durch das UBA durchgeführten Forschungsvorhaben zur Überprüfung der Schwermetallgehalte in handelsüblichen Batterien und Akkus wurden zahlreiche Grenzwertüberschreitungen sowie Kennzeichnungsverstöße festgestellt. Die Ergebnisse veröffentlichte das UBA im Mai 2013.
Die Batterieindustrie und der Handel verpflichten sich, Knopfzellen, Haushalts- und Starterbatterien zurückzunehmen und für die Verwertung zu sorgen. Zudem wird eine schrittweise Verminderung des Quecksilbergehaltes in Alkali-Mangan-Batterien vereinbart, die wesentlich zur Quecksilberbelastung des Hausmülls beitragen.
technologyComment of cobalt production (GLO): Cobalt, as a co-product of nickel and copper production, is obtained using a wide range of technologies. The initial life cycle stage covers the mining of the ore through underground or open cast methods. The ore is further processed in beneficiation to produce a concentrate and/or raffinate solution. Metal selection and further concentration is initiated in primary extraction, which may involve calcining, smelting, high pressure leaching, and other processes. The final product is obtained through further refining, which may involve processes such as re-leaching, selective solvent / solution extraction, selective precipitation, electrowinning, and other treatments. Transport is reported separately and consists of only the internal movements of materials / intermediates, and not the movement of final product. Due to its intrinsic value, cobalt has a high recycling rate. However, much of this recycling takes place downstream through the recycling of alloy scrap into new alloy, or goes into the cobalt chemical sector as an intermediate requiring additional refinement. Secondary production, ie production from the recycling of cobalt-containing wastes, is considered in this study in so far as it occurs as part of the participating companies’ production. This was shown to be of very limited significance (less than 1% of cobalt inputs). The secondary materials used for producing cobalt are modelled as entering the system free of environmental burden. technologyComment of natural gas production (CA-AB): Canadian data completed with german data. The uncertainty has been adjusted accordingly. Data used in original data contains no information on technology. technologyComment of natural gas production (DE): Data in environmental report contains no information on technology. technologyComment of natural gas production (RoW): The data describes an average onshore technology for natural gas to 13% out of combined oil gas production. Natural gas is assumed to 20% sour. Leakage in exploitation is estimated at 0.38% and production 0.12%. It is further assumed that about 30% of the produced water is discharged in surface water. Water emissions are differentiated between combined oil and gas production and gas production. technologyComment of natural gas production (RU): The data describes an average onshore technology for natural gas with a share of 4% out of combined oil gas production and 96% from mere natural gas production. Natural gas is assumed to 20% sour. It is assumed that about 30% of the produced water is discharged in surface water. Water emissions are differentiated between combined oil and gas production and gas production. technologyComment of natural gas production (US): US data (NREL) for emissions completed with german data. Emissions from NREL include combined production (petroleumm and gas) and off-shore production. The uncertainty has been adjusted accordingly. Data used in original data contains no information on technology. technologyComment of petroleum refinery operation (CH): Average data for the used technology. technologyComment of primary zinc production from concentrate (RoW): The technological representativeness of this dataset is considered to be high as smelting methods for zinc are consistent in all regions. Refined zinc produced pyro-metallurgically represents less than 5% of global zinc production and less than 2% of this dataset. Electrometallurgical Smelting The main unit processes for electrometallurgical zinc smelting are roasting, leaching, purification, electrolysis, and melting. In both electrometallurgical and pyro-metallurgical zinc production routes, the first step is to remove the sulfur from the concentrate. Roasting or sintering achieves this. The concentrate is heated in a furnace with operating temperature above 900 °C (exothermic, autogenous process) to convert the zinc sulfide to calcine (zinc oxide). Simultaneously, sulfur reacts with oxygen to produce sulfur dioxide, which is subsequently converted to sulfuric acid in acid plants, usually located with zinc-smelting facilities. During the leaching process, the calcine is dissolved in dilute sulfuric acid solution (re-circulated back from the electrolysis cells) to produce aqueous zinc sulfate solution. The iron impurities dissolve as well and are precipitated out as jarosite or goethite in the presence of calcine and possibly ammonia. Jarosite and goethite are usually disposed of in tailing ponds. Adding zinc dust to the zinc sulfate solution facilitates purification. The purification of leachate leads to precipitation of cadmium, copper, and cobalt as metals. In electrolysis, the purified solution is electrolyzed between lead alloy anodes and aluminum cathodes. The high-purity zinc deposited on aluminum cathodes is stripped off, dried, melted, and cast into SHG zinc ingots (99.99 % zinc). Pyro-metallurgical Smelting The pyro-metallurgical smelting process is based on the reduction of zinc and lead oxides into metal with carbon in an imperial smelting furnace. The sinter, along with pre-heated coke, is charged from the top of the furnace and injected from below with pre-heated air. This ensures that temperature in the center of the furnace remains in the range of 1000-1500 °C. The coke is converted to carbon monoxide, and zinc and lead oxides are reduced to metallic zinc and lead. The liquid lead bullion is collected at the bottom of the furnace along with other metal impurities (copper, silver, and gold). Zinc in vapor form is collected from the top of the furnace along with other gases. Zinc vapor is then condensed into liquid zinc. The lead and cadmium impurities in zinc bullion are removed through a distillation process. The imperial smelting process is an energy-intensive process and produces zinc of lower purity than the electrometallurgical process. technologyComment of rare earth oxides production, from rare earth oxide concentrate, 70% REO (CN-SC): This dataset refers to the separation (hydrochloric acid leaching) and refining (metallothermic reduction) process used in order to produce high-purity rare earth oxides (REO) from REO concentrate, 70% beneficiated. ''The concentrate is calcined at temperatures up to 600ºC to oxidize carbonaceous material. Then HCl leaching, alkaline treatment, and second HCl leaching is performed to produce a relatively pure rare earth chloride (95% REO). Hydrochloric acid leaching in Sichuan is capable of separating and recovering the majority of cerium oxide (CeO) in a short process. For this dataset, the entire quantity of Ce (50% cerium dioxide [CeO2]/REO) is assumed to be produced here as CeO2 with a grade of 98% REO. Foreground carbon dioxide CO2 emissions were calculated from chemical reactions of calcining beneficiated ores. Then metallothermic reduction produces the purest rare earth metals (99.99%) and is most common for heavy rare earths. The metals volatilize, are collected, and then condensed at temperatures of 300 to 400°C (Chinese Ministryof Environmental Protection 2009).'' Source: Lee, J. C. K., & Wen, Z. (2017). Rare Earths from Mines to Metals: Comparing Environmental Impacts from China's Main Production Pathways. Journal of Industrial Ecology, 21(5), 1277-1290. doi:10.1111/jiec.12491 technologyComment of scandium oxide production, from rare earth tailings (CN-NM): See general comment. technologyComment of sulfur production, petroleum refinery operation (Europe without Switzerland): The technology level in Europe applied here represents a weighted average of BREF types II (62%), III (29%), IV (9%) refineries; API 35; sulfur content 1.03%. technologyComment of sulfur production, petroleum refinery operation (PE): The technology represents BREF type II refinery; API 25; sulfur content 0.51% technologyComment of sulfur production, petroleum refinery operation (BR): The technology represents BREF type II refinery; API 25; sulfur content 0.57% technologyComment of sulfur production, petroleum refinery operation (ZA): The technology represents a weighted average of BREF types II and III refineries; API 35; sulfur content 0.7% technologyComment of sulfur production, petroleum refinery operation (CO): The technology represents a weighted average of BREF types II and IV refineries; API 35; sulfur content 0.56% technologyComment of sulfur production, petroleum refinery operation (IN): The technology represents a weighted average of BREF types II and IV refineries; API 35; sulfur content 1.39% technologyComment of sulfur production, petroleum refinery operation (RoW): This dataset represents the prevailing technology level in Europe, this is a weighted average of BREF complexity types II (62%), III (29%), IV (9%) refineries (see BREF document, European Commission, 2015); API 35; sulfur content 1.03%. Reference(s): European Commission (2015) Best Available Techniques (BAT) Reference Document (BREF) for the Refining of Mineral Oil and Gas, Industrial Emissions Directive 2010/75/EU Integrated Pollution Prevention and control, accessible online at http://eippcb.jrc.ec.europa.eu/reference/BREF/REF_BREF_2015.pdf, February 2019 technologyComment of synthetic fuel production, from coal, high temperature Fisher-Tropsch operations (ZA): SECUNDA SYNFUEL OPERATIONS: Secunda Synfuels Operations operates the world’s only commercial coal-based synthetic fuels manufacturing facility of its kind, producing synthesis gas (syngas) through coal gasification and natural gas reforming. They make use of their proprietary technology to convert syngas into synthetic fuel components, pipeline gas and chemical feedstock for the downstream production of solvents, polymers, comonomers and other chemicals. Primary internal customers are Sasol Chemicals Operations, Sasol Exploration and Production International and other chemical companies. Carbon is produced for the recarburiser, aluminium, electrode and cathodic production markets. Secunda Synfuels Operations receives coal from five mines in Mpumalanga (see figure attached). After being crushed, the coal is blended to obtain an even quality distribution. Electricity is generated by both steam and gas and used to gasify the coal at a temperature of 1300°C. This produces syngas from which two types of reactor - circulating fluidised bed and Sasol Advanced SynthoTM reactors – produce components for making synthetic fuels as well as a number of downstream chemicals. Gas water and tar oil streams emanating from the gasification process are refined to produce ammonia and various grades of coke respectively. imageUrlTagReplacea79dc0c2-0dda-47ec-94e0-6f076bc8cdb6 SECUNDA CHEMICAL OPERATIONS: The Secunda Chemicals Operations hub forms part of the Southern African Operations and is the consolidation of all the chemical operating facilities in Secunda, along with Site Services activities. The Secunda Chemicals hub produces a diverse range of products that include industrial explosives, fertilisers; polypropylene, ethylene and propylene; solvents (acetone, methyl ethyl ketone (MEK), ethanol, n-Propanol, iso-propanol, SABUTOL-TM, PROPYLOL-TM, mixed C3 and C4 alcohols, mixed C5 and C6 alcohols, High Purity Ethanol, and Ethyl Acetate) as well as the co-monomers, 1-hexene, 1-pentene and 1-octene and detergent alcohol (SafolTM).
technologyComment of rare earth oxides production, from rare earth oxide concentrate, 70% REO (CN-SC): This dataset refers to the separation (hydrochloric acid leaching) and refining (metallothermic reduction) process used in order to produce high-purity rare earth oxides (REO) from REO concentrate, 70% beneficiated. ''The concentrate is calcined at temperatures up to 600ºC to oxidize carbonaceous material. Then HCl leaching, alkaline treatment, and second HCl leaching is performed to produce a relatively pure rare earth chloride (95% REO). Hydrochloric acid leaching in Sichuan is capable of separating and recovering the majority of cerium oxide (CeO) in a short process. For this dataset, the entire quantity of Ce (50% cerium dioxide [CeO2]/REO) is assumed to be produced here as CeO2 with a grade of 98% REO. Foreground carbon dioxide CO2 emissions were calculated from chemical reactions of calcining beneficiated ores. Then metallothermic reduction produces the purest rare earth metals (99.99%) and is most common for heavy rare earths. The metals volatilize, are collected, and then condensed at temperatures of 300 to 400°C (Chinese Ministryof Environmental Protection 2009).'' Source: Lee, J. C. K., & Wen, Z. (2017). Rare Earths from Mines to Metals: Comparing Environmental Impacts from China's Main Production Pathways. Journal of Industrial Ecology, 21(5), 1277-1290. doi:10.1111/jiec.12491 technologyComment of sodium chloride production, powder (RER, RoW): For the production of dry salt, three different types of sodium chloride production methods can be distinguished namely, underground mining of halite deposits, solution mining with mechanical evaporation and solar evaporation. Their respective products are rock salt, evaporated salt and solar salt: - Underground mining: The main characteristic of this technique is the fact that salt is not dissolved during the whole process. Instead underground halite deposits are mined with traditional techniques like undercutting, drilling and blasting or with huge mining machines with cutting heads. In a second step, the salt is crushed and screened to the desired size and then hoisted to the surface. - Solution mining and mechanical evaporation: In this case, water is injected in a salt deposit, usually in about 150 to 500 m depth. The dissolution of the halite or salt deposits forms a cavern filled with brine. This brine is then pumped from the cavern back to the surface and transported to either an evaporation plant for the production of evaporated salt or transported directly to a chemical processing plant, e.g. a chlor-alkali plant. - Solar evaporation: In this case salt is produced with the aid of the sun and wind out of seawater or natural brine in lakes. Within a chain of ponds, water is evaporated by sun until salt crystallizes on the floor of the ponds. Due to their natural process drivers, such plants must be located in areas with only small amounts of rain and high evaporation rates - e.g. in the Mediterranean area where the rate between evaporation and rainfall is 3:1, or in Australia, where even a ratio up to 15:1 can be found. There are some impurities due to the fact that seawater contains not only sodium chloride. That leads to impurities of calcium and magnesium sulfate as well as magnesium chloride. With the aid of clean brine from dissolved fine salt, these impurities are washed out. As a fourth form on the market, the so-called 'salt in brine' may be found, which is especially used for the production of different chemicals. In this case, the solution mining technique without an evaporation step afterwards is used. This dataset represents the production of dry sodium chloride by underground mining (51%) and by solution mining (49%) with modern solution mining technology (thermo compressing technology). References: Althaus H.-J., Chudacoff M., Hischier R., Jungbluth N., Osses M. and Primas A. (2007) Life Cycle Inventories of Chemicals. ecoinvent report No. 8, v2.0. EMPA Dübendorf, Swiss Centre for Life Cycle Inventories, Dübendorf, CH.
technologyComment of ammonia production, steam reforming, liquid (RER w/o RU): This datasets corresponds to the technology used in European ammonia plants with natural gas based fuel and feedstock. The most efficient way of ammonia synthesis gas production is natural gas reforming with steam and air. The ammonia production process consists of several steps: desulphurization, primary production, secondary reforming, shift conversion, CO2 removal, methanation, synthesis gas compression and ammonia synthesis. technologyComment of ammonia production, steam reforming, liquid (RU): This datasets corresponds to the technology used in Russian ammonia plants with natural gas based fuel and feedstock. The most efficient way of ammonia synthesis gas production is natural gas reforming with steam and air. The ammonia production process consists of several steps: desulphurization, primary production, secondary reforming, shift conversion, CO2 removal, methanation, synthesis gas compression and ammonia synthesis. technologyComment of cocamide diethanolamine production (RER): Cocamide diethanolamine can be produced from different reaction of diethanolamine with methyl cocoate, coconut oil, whole coconut acids, stripped coconut fatty acids. Cocamide diethanolamine is modelled here as the 1:1 reaction of coconut oil and diethanolamine. The reaction occurs at a maximum temperature of 170 degrees Celcius with the aid of an alkaline catalyst. The catalyst in not consider significant in terms of emissions for the reaction and it is therefore not included in this dataset and it is assumed to be taken into consideration in the input of chemical factory. The production process can also be a 1:2 fatty acids reaction. This results in a lower quality product with output of free diethanolamine and ethylene glycol (Elbers 2013). Coconut oil composition varies, here it assumed an average composition CH3(CH2)12CONH2. This inventory representing production of a particular chemical compound is at least partially based on a generic model on the production of chemicals. The data generated by this model have been improved by compound-specific data when available. The model on production of chemicals is using specific industry or literature data wherever possible and more generic data on chemical production processes to fill compound-specific data gaps when necessary. The basic principles of the model have been published in literature (Hischier 2005, Establishing Life Cycle Inventories of Chemicals Based on Differing Data Availability). The model has been updated and extended with newly available data from the chemical industry. In the model, unreacted fractions are treated in a waste treatment process, and emissions reported are after a waste treatment process that is included in the scope of this dataset. For volatile reactants, a small level of evaporation is assumed. Solvents and catalysts are mostly recycled in closed-loop systems within the scope of the dataset and reported flows are for losses from this system. The main source of information for the values for heat, electricity, water (process and cooling), nitrogen, chemical factory is industry data from Gendorf. The values are a 5-year average of data (2011 - 2015) published by the Gendorf factory (Gendorf, 2016, Umwelterklärung, www.gendorf.de), (Gendorf, 2015, Umwelterklärung, www.gendorf.de), (Gendorf, 2014, Umwelterklärung, www.gendorf.de). The Gendorf factory is based in Germany, it produces a wide range of chemical substances. The factory produced 1657400 tonnes of chemical substances in the year 2015 (Gendorf, 2016, Umwelterklärung, www.gendorf.de) and 740000 tonnes of intermediate products. Reference(s): Hischier, R. (2005) Establishing Life Cycle Inventories of Chemicals Based on Differing Data Availability (9 pp). The International Journal of Life Cycle Assessment, Volume 10, Issue 1, pp 59–67. 10.1065/lca2004.10.181.7 Gendorf (2016) Umwelterklärung 2015, Werk Gendorf Industriepark, www.gendorf.de Elbers, E. 2013. Some Chemicals Present in Industrial and Consumer Products, Food and Drinking-water. In IARC MONOGRAPHS ON THE EVALUATION OF CARCINOGENIC RISKS TO HUMANS, Vol.101, pp.141-148 WHO Press, Geneva. For more information on the model please refer to the dedicate ecoinvent report, access it in the Report section of ecoQuery (http://www.ecoinvent.org/login-databases.html)
technologyComment of iron ore beneficiation (IN): Milling and mechanical sorting. Average iron yield is 65% . The process so developed basically involves crushing, classification, processing of lumps, fines and slimes separately to produce concentrate suitable as lump and sinter fines and for pellet making. The quality is essentially defined as Fe contents, Level of SiO2 and Al2O3 contamination. The process aims at maximizing Fe recovery by subjecting the rejects/tailings generated from coarser size processing to fine size reduction and subsequent processing to recover iron values. technologyComment of iron ore beneficiation (RoW): Milling and mechanical sorting. Average iron yield is 84%. technologyComment of iron ore mine operation and beneficiation (CA-QC): Milling and mechanical sorting. Average iron yield is 75%. Specific data were collected on one of the two production site in Quebec. According to the documentation available, the technologies of the 2 mines seems similar. Uncertainity has been adjusted accordingly. technologyComment of niobium mine operation and beneficiation, from pyrochlore ore (BR, RoW): Open-pit mining is applied and hydraulic excavators are used to extract the ore with different grades, which is transported to stockpiles awaiting homogenization through earth-moving equipment in order to attain the same concentration. Conveyor belts (3.5 km) are utilized to transport the homogenized ore to the concentration unit. Initially, the ore passes through a jaw crusher and moves to the ball mills, where the pyrochlore grains (1 mm average diameter) are reduced to diameters less than 0.104 mm. In the ball mills, recycled water is added in order to i) granulate the concentrate and ii) remove the gas from the sintering unit. The granulated ore undergoes i) magnetic separation, where magnetite is removed and is sold as a coproduct and ii) desliming in order to remove fractions smaller than 5μm by utilizing cyclones. Then the ore enters the flotation process - last stage of the beneficiation process – where the pyrochlore particles come into contact with flotation chemicals (hydrochloric & fluorosilic acid, triethylamene and lime), thereby removing the solid fractions and producing pyrochlore concentrate and barite as a coproduct which is also sold. The produced concentrate contains 55% Nb2O5 and 11% water and moves to the sintering unit, via tubes or is transported in bags while the separated and unused minerals enter the tailings dam. In the sintering unit, the pyrochlore concentrate undergoes pelletizing, sintering, crushing and classification. These units not only accumulate the material but are also responsible for removing sulfur and water from the concentrate. Then the concentrate enters the dephosphorization unit, where phosphorus and lead are removed from the concentrate. The removal of sulphur and phosphorus have to be executed because of the local pyrochlore ore composition. Then the concentrate undergoes a carbothermic reduction by using charcoal and petroleum coke, producing a refined concentrate, 63% Nb2O5 and tailings with high lead content that are disposed in the tailings dam again. technologyComment of rare earth element mine operation and beneficiation, bastnaesite and monazite ore (CN-NM): Firstly, open pit, mining (drilling and blasting) is performed in order to obtain the iron ore and a minor quantity of rare earth ores (5−6 % rare earth oxide equivalent). Then, a two-step beneficiation process is applied to produce the REO concentrate. In the first step, ball milling and magnetic separation is used for the isolation of the iron ore. In the second step, the resulting REO tailing (containing monazite and bastnasite), is processed to get a 50% REO equivalent concentrate via flotation. technologyComment of rare earth oxides production, from rare earth oxide concentrate, 70% REO (CN-SC): This dataset refers to the separation (hydrochloric acid leaching) and refining (metallothermic reduction) process used in order to produce high-purity rare earth oxides (REO) from REO concentrate, 70% beneficiated. ''The concentrate is calcined at temperatures up to 600ºC to oxidize carbonaceous material. Then HCl leaching, alkaline treatment, and second HCl leaching is performed to produce a relatively pure rare earth chloride (95% REO). Hydrochloric acid leaching in Sichuan is capable of separating and recovering the majority of cerium oxide (CeO) in a short process. For this dataset, the entire quantity of Ce (50% cerium dioxide [CeO2]/REO) is assumed to be produced here as CeO2 with a grade of 98% REO. Foreground carbon dioxide CO2 emissions were calculated from chemical reactions of calcining beneficiated ores. Then metallothermic reduction produces the purest rare earth metals (99.99%) and is most common for heavy rare earths. The metals volatilize, are collected, and then condensed at temperatures of 300 to 400°C (Chinese Ministryof Environmental Protection 2009).'' Source: Lee, J. C. K., & Wen, Z. (2017). Rare Earths from Mines to Metals: Comparing Environmental Impacts from China's Main Production Pathways. Journal of Industrial Ecology, 21(5), 1277-1290. doi:10.1111/jiec.12491 technologyComment of scandium oxide production, from rare earth tailings (CN-NM): See general comment. technologyComment of vanadium-titanomagnetite mine operation and beneficiation (CN): Natural rutile resources are scarce in China. For that reason, the production of titanium stems from high-grade titanium slag, the production of which includes 2 processes: i) ore mining & dressing process and ii) titanium slag smelting process. During the ore mining and dressing process, ilmenite concentrate (47.82% TiO2) is produced through high-intensity magnetic separation of the middling ore, which is previously produced as a byproduct during the magnetic separation sub-process of the vanadium titano-magnetite ore. During the titanium slag smelting process, the produced ilmenite concentrate from the ore mining & dressing process is mixed with petroleum coke as the reducing agent and pitch as the bonding agent. Afterwards it enters the electric arc furnace, where it is smelted, separating iron from the ilmenite concentrate and obtaining high-grade titanium slag.
Das Projekt "SP 1.1 A combined BaPS-13C stable isotope technique to study the interaction between C and N turnover in alkaline agricultural soils of the North China Plain" wird vom Umweltbundesamt gefördert und von Universität Hohenheim, Institut für Bodenkunde und Standortslehre, Fachgebiet Biogeophysik durchgeführt. In the intensively managed double-cropping production system of the North China Plain, the excessive use of nitrogen (N) fertilizer has resulted in adverse environmental impacts such as leaching of nitrate to shallow groundwater or gaseous losses of the greenhouse gas N2O. An understanding of N cycling in soil is essential for deriving sustainable fertilization strategies. Nitrogen transformations in soil are closely linked to the carbon (C) cycle. All heterotrophic decomposing micro organism simultaneously assimilate C and N during decomposing plant residues or soil organic matter. An understanding of this linkage is important, for example, for assessing the feedback of a changed N fertilization practice on the soil organic matter pool. To study and quantify the C and N fluxes in soil, we need a set of reliable and accurate methods. During the last decade a novel method, the Barometric Process Separation, has been used to measure gross nitrification rates in soil. Recently, it has been shown that the use of the BaPS method becomes problematic at soil pH greater than 6. At pH values above 6 the BaPS calculation is strongly affected by the CO2,aq term, i.e. the dissolution of gaseous CO2 during incubation. So far, no methods are available to accurately quantifying this term. In our study, we aim at developing a novel combined Barometric Process Separation (BaPS)-13C stable isotope technique, which allows an accurate quantification of the CO2,aq term. In parallel, we will study to which extent the incorporation of plant residues of different quality immobilises surplus soil nitrate and its potential to reduce nitrate leaching in soils with a nitrate-dominated mineral N pool. Moreover, we will study the mid- and short term interaction of C and N turnover at the process-level to get a better understanding on the feedback mechanism between both matter cycles.
Das Projekt "Study of reactions between dry rocks and heat exchange fluids" wird vom Umweltbundesamt gefördert und von Universität Karlsruhe, Mineralogisches Institut durchgeführt. Objective: To study the reaction between water and rock in order to obtain a better understanding of reactions that happen in a hot dry rock system. General information: reactions between rocks and heat exchange fluid change both the structure and chemical composition of the heated source rocks. Since the surfaces are of foremost interest, the investigations will be mainly concerned with these. The reaction mechanisms will be determined on the basis of measured reaction rates and reaction products. Major and trace elements will be measured in solution as well as surface structures and secondary minerals. Hdo will be used to study the possible replacement of metal cations by h3o+. Solids and liquids will be analysed with sims and mass spectrometry. See also contracts 0001/b, 0079/b, 0002/d, 0057/uk and 0010/f. Advancement: this contract started on 1.10.86 as a continuation of contract 0002/D. Achievements: The aim of the work has been to get closer understanding of water rock interaction at the conditions of hot dry rock energy exploitation by studying its initial reaction. Investigations have been carried out to prove the idea that during the initial phase of the reaction between feldspars and aqueous fluids an exchange between alkali and alkaline earth cations with hydronium ions takes place building a hydronium feldspar at the very outer layers of the mineral. The compositions of the reaction fluids were measured by atomic absorption spectrometry (AAS) and the investigations on the solid samples were carried out by infrared (IR) spectrometry, X-ray diffractometry (XRD), X-ray Guinier camera and secondary ion mass spectrometry (SIMS). Investigations on thin cleaved fragments with the IR method did not show any change of the absorption bands compared to the starting material. XRD investigations on powdered samples gave some evidence for the existence of (D3O) AlSi3O8 by the splitting of the (201) reflection. However these results were not unambiguous. They could not be substanciated with the X-ray Guinier method. SIMS investigations gave a clear direct indication for the incorporation of deuterium in feldspar along with simultaneous depletion of both potassium and aluminium. This result indicates an exchange reaction of deuterium oxide (D3O) for potassium and a disintegration reaction of the (Al, Si)O4 network to occur simultaneously.
Origin | Count |
---|---|
Bund | 66 |
Land | 1 |
Type | Count |
---|---|
Ereignis | 1 |
Förderprogramm | 50 |
Text | 12 |
unbekannt | 4 |
License | Count |
---|---|
closed | 8 |
open | 51 |
unknown | 8 |
Language | Count |
---|---|
Deutsch | 63 |
Englisch | 30 |
Resource type | Count |
---|---|
Archiv | 4 |
Bild | 1 |
Datei | 6 |
Dokument | 11 |
Keine | 35 |
Webseite | 26 |
Topic | Count |
---|---|
Boden | 52 |
Lebewesen & Lebensräume | 47 |
Luft | 45 |
Mensch & Umwelt | 67 |
Wasser | 42 |
Weitere | 63 |