Die Umweltindikatoren des LANUV sind Mess- und Kennzahlen, mit denen sowohl die aktuelle Umweltsituation als auch Entwicklungstrends übersichtlich dargestellt und bewertet werden können. Durch Umweltindikatoren werden komplexe Aspekte, wie z. B. die Luftqualität, die Gewässergüte , der Energie- und Rohstoffverbrauch oder die Inanspruchnahme von Freiflächen messbar. Eine Beschreibung des Umweltzustandes durch Umweltindikatoren erhebt nicht den Anspruch, ein vollständiges Bild zu zeichnen. Vielmehr sollen relevante Teilaspekte hervorgehoben werden, deren Zustand und Entwicklung von besonderem Interesse ist. Entsprechend dem Erhebungsturnus wird auf Basis der jeweils verfügbaren Daten der Indikatorensatz im Internet einmal im Jahr aktualisiert. Im Datensatz sind Zeitreihendaten zu den folgenden NRWUmweltindikatoren enthalten: -Treibhausgasemissionen -Erneuerbare Energien bei Primärenergie- und Bruttostromverbrauch -Kraft-Wärme-Kopplung bei Nettostromerzeugung -Primär- und Endenergieverbrauch -Energieproduktivität -Rohstoffverbrauch und Rohstoffproduktivität -Stickstoffoxidemissionen -Stickstoffdioxidkonzentration im städtischen Hintergrund -Ozonkonzentration im städtischen Hintergrund -Feinstaubkonzentration im städtischen Hintergrund -Lärmbelastung -Haushaltsabfälle und Verwertung -Flächenverbrauch -Schwermetalleintrag an ländlichen Stationen -Ökologischer Zustand der oberirdischen Fließgewässer -Nitratkonzentration im Grundwasser -Gefährdete Arten -Naturschutzflächen -Laub-/Nadelbaumanteil -Waldzustand -Stickstoff- und Säureeintrag -Ökologische Landwirtschaft -Landwirtschaftsflächen mit hohem Naturwert -Stickstoff-Flächenbilanz (Stickstoff-Überschuss der landwirtschaftlich genutzten Fläche)
An essential prerequisite for a sustainable energy supply and greenhouse gas neutrality in Germany and worldwide is the complete conversion of the energy supply to renewable energies. Wind and sun are the sources with the greatest supply potential. However, these energy sources have a low energy density and are not uniformly available everywhere to the same extent. Therefore, a system is needed for the temporal and spatial connection between energy provision and use, which manages the provision of primary energy from the sun and wind, its conversion into storable energy carriers and their transport to the place of use. In addition to the transition to climate and environmentally compatible energy sources and their efficient use, this connecting system must also have the lowest possible environmental effects. This research project examines such supply paths with the method of life cycle assessments and thus provides indications of which measures must be advanced in order to reduce the environmental effects of the supply, storage and transport of storable energy sources. It remains essential to use energy as sparingly and efficiently as possible in order to reduce the required amount of storable energy sources from renewable energies and thus their environmental effects as much as possible. In addition to the final report as a summary of essential methods and results and the appendix with a detailed presentation of the work carried out, the data tables with the input data for the life cycle assessment calculation, its results and the results of the cost estimates are also provided below for further work in this topic area. Final report „System comparison of storable energy carriers from renewable energies“ (2 MB) Annex to the final report „Detailed analyses of the system comparison of storable energy carriers from renewable energies“ (87 MB) Data tables: Input data for life cycle assessments (Excel file, 1 MB) Results of life cycle assessments (zip-file with Excel files, 4 MB) Results of cost estimates (zip-file with Excel files, 400 KB) Veröffentlicht in Texte | 40/2021.
Eine wesentliche Voraussetzung für eine nachhaltige Energieversorgung und Treibhausgasneutralität in Deutschland und weltweit ist die vollständige Umstellung der Energieversorgung auf erneuerbare Energien. Hierbei sind Wind und Sonne die Quellen mit dem größten Bereitstellungspotenzial. Diese Energiequellen weisen jedoch eine geringe Energiedichte auf und sind nicht gleichförmig und überall in gleichem Umfang verfügbar. Deswegen wird ein System für die zeitliche und räumliche Verbindung zwischen Energiebereitstellung und -nutzung benötigt, welches die Bereitstellung der Primärenergie aus Sonne und Wind, ihre Umwandlung in speicherbare Energieträger und deren Transport zum Nutzungsort bewerkstelligt. Neben dem Übergang zu klima- und umweltverträglichen Energiequellen und deren effizienter Nutzung muss auch dieses verbindende System möglichst geringe Umwelteffekte aufweisen. Dieses Forschungsprojekt untersucht solche Bereitstellungspfade mit der Methode der Ökobilanzen und liefert damit Hinweise, welche Maßnahmen vorangetrieben werden müssen, um die Umwelteffekte der Bereitstellung, der Speicherung und des Transports speicherbarer Energieträger zu reduzieren. Wesentlich bleibt dabei, Energie möglichst sparsam und effizient zu nutzen, um die erforderliche Menge an speicherbaren Energieträgern aus erneuerbaren Energien und damit deren Umwelteffekte so weit wie möglich zu reduzieren. Neben dem Abschlussbericht als Zusammenfassung wesentlicher Methoden und Ergebnisse und dem Anhang mit einer ausführlichen Darstellung der durchgeführten Arbeiten werden nachstehend auch die Datentabellen mit den Eingangsdaten für die Ökobilanzrechnung, deren Ergebnisse und die Ergebnisse der Kostenschätzungen für weitere Arbeiten in diesem Themenfeld bereitgestellt. Abschlussbericht „ Systemvergleich speicherbarer Energieträger aus erneuerbaren Energien “ (5 MB) Anhang zum Abschlussbericht „ Detailanalysen zum Systemvergleich speicherbarer Energieträger aus erneuerbaren Energien “ (38 MB) Datentabellen: Eingangsdaten für die Ökobilanzrechnungen (Exceldatei, 1 MB) Ergebnisse der Ökobilanzrechnungen (zip-Ordner, Exceldateien, 4 MB) Ergebnisse der Kostenschätzungen (zip-Ordner, Exceldateien, 300 KB) Veröffentlicht in Texte | 68/2020.
Eisenerz in Kanada im Tagebau. Der Erzkörper wird durch Sprengung gelockert und anschließend mechanisch abgebaut und zur Aufbereitung transportiert. Die Aufbereitung besteht aus mehrstufiges Mahlen, Sieben, magnetische Separation, Flotation und mechanisches Trocknen. Je grobkörniger das Eisenerz die Aufbereitung verläßt, desto weniger Prozeßstufen hat es durchlaufen und damit sind auch die energetischen Aufwendungen geringer. Das aufbereitete Eisenerz verläßt die Anlage mit einem Einsengehalt von ca. 65%. Allokation: keine Genese der Daten: Abbau und Aufbereitung von Eisenerz ist für jede Lagerstätte spezifisch angepaßt. Entsprechende Daten konnten jedoch nicht in Erfahrung gebracht werden. Es soll alllerdings an dieser Stelle darauf hingewiesen werden, daß Abbau und Aufbereitung von Reicherz im Tagebau (Brasilien) oder der Untertageabbau von „Armerzen" in Schweden deutlich unterschiedliche Aufwendungen bedürfen. Aus der Literatur sind folgende Daten verfügbar: Literatur Gas Öl Strom „Primärenergie" GJ / t GJ / t GJel / t GJ / t #3 0,393 0,11 0,11 0,95 #1 - 0,11 0,49 1,58 #2 - - - 0,34 GEMIS 0,1 0,1 0,4 Die Angaben in #2 enthalten keine Literaturangabe. Eine Unterscheidung der „Primärenergie" nach Herkunftsform unterbleibt. Die Angaben in #1 basieren auf Zahlenangaben von Tellus, die sich wiederum auf eine Untersuchung der Batelle Columbus Laboratories von 1975 beziehen. Abgebildet wird darin die besondere Situation der Eisenerzaufbereitung an den Oberen Seen (USA) mit der sehr aufwendigen Verarbeitung von Armerzen. Die Aufbereitung erfordert eine sehr feine Aufmahlung (Strombedarf) und wird daher zur Pelletproduktion eingesetzt. Die Angaben von Habersatter (#3) beziehen sich, soweit erkennbar, auf Arbeiten von Schäfer. Der hohe Gasanteil weist auf ein Aufarbeitung mit partieller Pelletproduktion hin, da in der Aufarbeitung selber kein Prozeß mit Gasverbrauch bekannt ist. In dieser Studie wird der Bedarf an Öl-EL zum Einsatz in Dieselmotoren mit 0,1 GJ/t und der Strombedarf zu 0,1 GJ/t abgeschätzt. Er entspricht damit ungefähr den Angaben von #3 bzw #2. Der höhere Strombedarf in #1 läßt sich durch den höheren Durchsatz an Roheisenerz (Verhältnis Armerz zu Reicherz 5:2) sowie den geringeren Anteil an feinaufgemahlten Pelleterz in der deutschen Importstruktur erklären. Als Betriebsmittel werden in #1 rd. 1,7 kg Sprengstoff angegeben. In GEMIS wird 0,7 kg Sprengstoff pro Tonne Einsenerz entsprechend dem Armerz / Reicherz - Verhältnis angesetzt. Die Wasserinanspruchnahme wird mit 1,5 m3 Prozeßwasser nach #2 angenommen. Pro t Erz werden nach Wilps (Wilps 1992) für Brasilien 1,9 t , für Australien 1,7 und für Kanada 2,6 t angenommen. Auslastung: 1h/a Brenn-/Einsatzstoff: Ressourcen Flächeninanspruchnahme: 0,0111m² gesicherte Leistung: 100% Jahr: 2030 Lebensdauer: 1a Leistung: 1t/h Nutzungsgrad: 50% Produkt: Metalle - Eisen/Stahl
Eisenerz in Kanada im Tagebau. Der Erzkörper wird durch Sprengung gelockert und anschließend mechanisch abgebaut und zur Aufbereitung transportiert. Die Aufbereitung besteht aus mehrstufiges Mahlen, Sieben, magnetische Separation, Flotation und mechanisches Trocknen. Je grobkörniger das Eisenerz die Aufbereitung verläßt, desto weniger Prozeßstufen hat es durchlaufen und damit sind auch die energetischen Aufwendungen geringer. Das aufbereitete Eisenerz verläßt die Anlage mit einem Einsengehalt von ca. 65%. Allokation: keine Genese der Daten: Abbau und Aufbereitung von Eisenerz ist für jede Lagerstätte spezifisch angepaßt. Entsprechende Daten konnten jedoch nicht in Erfahrung gebracht werden. Es soll alllerdings an dieser Stelle darauf hingewiesen werden, daß Abbau und Aufbereitung von Reicherz im Tagebau (Brasilien) oder der Untertageabbau von „Armerzen" in Schweden deutlich unterschiedliche Aufwendungen bedürfen. Aus der Literatur sind folgende Daten verfügbar: Literatur Gas Öl Strom „Primärenergie" GJ / t GJ / t GJel / t GJ / t #3 0,393 0,11 0,11 0,95 #1 - 0,11 0,49 1,58 #2 - - - 0,34 GEMIS 0,1 0,1 0,4 Die Angaben in #2 enthalten keine Literaturangabe. Eine Unterscheidung der „Primärenergie" nach Herkunftsform unterbleibt. Die Angaben in #1 basieren auf Zahlenangaben von Tellus, die sich wiederum auf eine Untersuchung der Batelle Columbus Laboratories von 1975 beziehen. Abgebildet wird darin die besondere Situation der Eisenerzaufbereitung an den Oberen Seen (USA) mit der sehr aufwendigen Verarbeitung von Armerzen. Die Aufbereitung erfordert eine sehr feine Aufmahlung (Strombedarf) und wird daher zur Pelletproduktion eingesetzt. Die Angaben von Habersatter (#3) beziehen sich, soweit erkennbar, auf Arbeiten von Schäfer. Der hohe Gasanteil weist auf ein Aufarbeitung mit partieller Pelletproduktion hin, da in der Aufarbeitung selber kein Prozeß mit Gasverbrauch bekannt ist. In dieser Studie wird der Bedarf an Öl-EL zum Einsatz in Dieselmotoren mit 0,1 GJ/t und der Strombedarf zu 0,1 GJ/t abgeschätzt. Er entspricht damit ungefähr den Angaben von #3 bzw #2. Der höhere Strombedarf in #1 läßt sich durch den höheren Durchsatz an Roheisenerz (Verhältnis Armerz zu Reicherz 5:2) sowie den geringeren Anteil an feinaufgemahlten Pelleterz in der deutschen Importstruktur erklären. Als Betriebsmittel werden in #1 rd. 1,7 kg Sprengstoff angegeben. In GEMIS wird 0,7 kg Sprengstoff pro Tonne Einsenerz entsprechend dem Armerz / Reicherz - Verhältnis angesetzt. Die Wasserinanspruchnahme wird mit 1,5 m3 Prozeßwasser nach #2 angenommen. Pro t Erz werden nach Wilps (Wilps 1992) für Brasilien 1,9 t , für Australien 1,7 und für Kanada 2,6 t angenommen. Auslastung: 1h/a Brenn-/Einsatzstoff: Ressourcen Flächeninanspruchnahme: 0,0111m² gesicherte Leistung: 100% Jahr: 2000 Lebensdauer: 1a Leistung: 1t/h Nutzungsgrad: 50% Produkt: Metalle - Eisen/Stahl
Eisenerz in Kanada im Tagebau. Der Erzkörper wird durch Sprengung gelockert und anschließend mechanisch abgebaut und zur Aufbereitung transportiert. Die Aufbereitung besteht aus mehrstufiges Mahlen, Sieben, magnetische Separation, Flotation und mechanisches Trocknen. Je grobkörniger das Eisenerz die Aufbereitung verläßt, desto weniger Prozeßstufen hat es durchlaufen und damit sind auch die energetischen Aufwendungen geringer. Das aufbereitete Eisenerz verläßt die Anlage mit einem Einsengehalt von ca. 65%. Allokation: keine Genese der Daten: Abbau und Aufbereitung von Eisenerz ist für jede Lagerstätte spezifisch angepaßt. Entsprechende Daten konnten jedoch nicht in Erfahrung gebracht werden. Es soll alllerdings an dieser Stelle darauf hingewiesen werden, daß Abbau und Aufbereitung von Reicherz im Tagebau (Brasilien) oder der Untertageabbau von „Armerzen" in Schweden deutlich unterschiedliche Aufwendungen bedürfen. Aus der Literatur sind folgende Daten verfügbar: Literatur Gas Öl Strom „Primärenergie" GJ / t GJ / t GJel / t GJ / t #3 0,393 0,11 0,11 0,95 #1 - 0,11 0,49 1,58 #2 - - - 0,34 GEMIS 0,1 0,1 0,4 Die Angaben in #2 enthalten keine Literaturangabe. Eine Unterscheidung der „Primärenergie" nach Herkunftsform unterbleibt. Die Angaben in #1 basieren auf Zahlenangaben von Tellus, die sich wiederum auf eine Untersuchung der Batelle Columbus Laboratories von 1975 beziehen. Abgebildet wird darin die besondere Situation der Eisenerzaufbereitung an den Oberen Seen (USA) mit der sehr aufwendigen Verarbeitung von Armerzen. Die Aufbereitung erfordert eine sehr feine Aufmahlung (Strombedarf) und wird daher zur Pelletproduktion eingesetzt. Die Angaben von Habersatter (#3) beziehen sich, soweit erkennbar, auf Arbeiten von Schäfer. Der hohe Gasanteil weist auf ein Aufarbeitung mit partieller Pelletproduktion hin, da in der Aufarbeitung selber kein Prozeß mit Gasverbrauch bekannt ist. In dieser Studie wird der Bedarf an Öl-EL zum Einsatz in Dieselmotoren mit 0,1 GJ/t und der Strombedarf zu 0,1 GJ/t abgeschätzt. Er entspricht damit ungefähr den Angaben von #3 bzw #2. Der höhere Strombedarf in #1 läßt sich durch den höheren Durchsatz an Roheisenerz (Verhältnis Armerz zu Reicherz 5:2) sowie den geringeren Anteil an feinaufgemahlten Pelleterz in der deutschen Importstruktur erklären. Als Betriebsmittel werden in #1 rd. 1,7 kg Sprengstoff angegeben. In GEMIS wird 0,7 kg Sprengstoff pro Tonne Einsenerz entsprechend dem Armerz / Reicherz - Verhältnis angesetzt. Die Wasserinanspruchnahme wird mit 1,5 m3 Prozeßwasser nach #2 angenommen. Pro t Erz werden nach Wilps (Wilps 1992) für Brasilien 1,9 t , für Australien 1,7 und für Kanada 2,6 t angenommen. Auslastung: 1h/a Brenn-/Einsatzstoff: Ressourcen Flächeninanspruchnahme: 0,0111m² gesicherte Leistung: 100% Jahr: 2005 Lebensdauer: 1a Leistung: 1t/h Nutzungsgrad: 50% Produkt: Metalle - Eisen/Stahl
Eisenerz in Kanada im Tagebau. Der Erzkörper wird durch Sprengung gelockert und anschließend mechanisch abgebaut und zur Aufbereitung transportiert. Die Aufbereitung besteht aus mehrstufiges Mahlen, Sieben, magnetische Separation, Flotation und mechanisches Trocknen. Je grobkörniger das Eisenerz die Aufbereitung verläßt, desto weniger Prozeßstufen hat es durchlaufen und damit sind auch die energetischen Aufwendungen geringer. Das aufbereitete Eisenerz verläßt die Anlage mit einem Einsengehalt von ca. 65%. Allokation: keine Genese der Daten: Abbau und Aufbereitung von Eisenerz ist für jede Lagerstätte spezifisch angepaßt. Entsprechende Daten konnten jedoch nicht in Erfahrung gebracht werden. Es soll alllerdings an dieser Stelle darauf hingewiesen werden, daß Abbau und Aufbereitung von Reicherz im Tagebau (Brasilien) oder der Untertageabbau von „Armerzen" in Schweden deutlich unterschiedliche Aufwendungen bedürfen. Aus der Literatur sind folgende Daten verfügbar: Literatur Gas Öl Strom „Primärenergie" GJ / t GJ / t GJel / t GJ / t #3 0,393 0,11 0,11 0,95 #1 - 0,11 0,49 1,58 #2 - - - 0,34 GEMIS 0,1 0,1 0,4 Die Angaben in #2 enthalten keine Literaturangabe. Eine Unterscheidung der „Primärenergie" nach Herkunftsform unterbleibt. Die Angaben in #1 basieren auf Zahlenangaben von Tellus, die sich wiederum auf eine Untersuchung der Batelle Columbus Laboratories von 1975 beziehen. Abgebildet wird darin die besondere Situation der Eisenerzaufbereitung an den Oberen Seen (USA) mit der sehr aufwendigen Verarbeitung von Armerzen. Die Aufbereitung erfordert eine sehr feine Aufmahlung (Strombedarf) und wird daher zur Pelletproduktion eingesetzt. Die Angaben von Habersatter (#3) beziehen sich, soweit erkennbar, auf Arbeiten von Schäfer. Der hohe Gasanteil weist auf ein Aufarbeitung mit partieller Pelletproduktion hin, da in der Aufarbeitung selber kein Prozeß mit Gasverbrauch bekannt ist. In dieser Studie wird der Bedarf an Öl-EL zum Einsatz in Dieselmotoren mit 0,1 GJ/t und der Strombedarf zu 0,1 GJ/t abgeschätzt. Er entspricht damit ungefähr den Angaben von #3 bzw #2. Der höhere Strombedarf in #1 läßt sich durch den höheren Durchsatz an Roheisenerz (Verhältnis Armerz zu Reicherz 5:2) sowie den geringeren Anteil an feinaufgemahlten Pelleterz in der deutschen Importstruktur erklären. Als Betriebsmittel werden in #1 rd. 1,7 kg Sprengstoff angegeben. In GEMIS wird 0,7 kg Sprengstoff pro Tonne Einsenerz entsprechend dem Armerz / Reicherz - Verhältnis angesetzt. Die Wasserinanspruchnahme wird mit 1,5 m3 Prozeßwasser nach #2 angenommen. Pro t Erz werden nach Wilps (Wilps 1992) für Brasilien 1,9 t , für Australien 1,7 und für Kanada 2,6 t angenommen. Auslastung: 1h/a Brenn-/Einsatzstoff: Ressourcen Flächeninanspruchnahme: 0,0111m² gesicherte Leistung: 100% Jahr: 2020 Lebensdauer: 1a Leistung: 1t/h Nutzungsgrad: 50% Produkt: Metalle - Eisen/Stahl
Eisenerz in Kanada im Tagebau. Der Erzkörper wird durch Sprengung gelockert und anschließend mechanisch abgebaut und zur Aufbereitung transportiert. Die Aufbereitung besteht aus mehrstufiges Mahlen, Sieben, magnetische Separation, Flotation und mechanisches Trocknen. Je grobkörniger das Eisenerz die Aufbereitung verläßt, desto weniger Prozeßstufen hat es durchlaufen und damit sind auch die energetischen Aufwendungen geringer. Das aufbereitete Eisenerz verläßt die Anlage mit einem Einsengehalt von ca. 65%. Allokation: keine Genese der Daten: Abbau und Aufbereitung von Eisenerz ist für jede Lagerstätte spezifisch angepaßt. Entsprechende Daten konnten jedoch nicht in Erfahrung gebracht werden. Es soll alllerdings an dieser Stelle darauf hingewiesen werden, daß Abbau und Aufbereitung von Reicherz im Tagebau (Brasilien) oder der Untertageabbau von „Armerzen" in Schweden deutlich unterschiedliche Aufwendungen bedürfen. Aus der Literatur sind folgende Daten verfügbar: Literatur Gas Öl Strom „Primärenergie" GJ / t GJ / t GJel / t GJ / t #3 0,393 0,11 0,11 0,95 #1 - 0,11 0,49 1,58 #2 - - - 0,34 GEMIS 0,1 0,1 0,4 Die Angaben in #2 enthalten keine Literaturangabe. Eine Unterscheidung der „Primärenergie" nach Herkunftsform unterbleibt. Die Angaben in #1 basieren auf Zahlenangaben von Tellus, die sich wiederum auf eine Untersuchung der Batelle Columbus Laboratories von 1975 beziehen. Abgebildet wird darin die besondere Situation der Eisenerzaufbereitung an den Oberen Seen (USA) mit der sehr aufwendigen Verarbeitung von Armerzen. Die Aufbereitung erfordert eine sehr feine Aufmahlung (Strombedarf) und wird daher zur Pelletproduktion eingesetzt. Die Angaben von Habersatter (#3) beziehen sich, soweit erkennbar, auf Arbeiten von Schäfer. Der hohe Gasanteil weist auf ein Aufarbeitung mit partieller Pelletproduktion hin, da in der Aufarbeitung selber kein Prozeß mit Gasverbrauch bekannt ist. In dieser Studie wird der Bedarf an Öl-EL zum Einsatz in Dieselmotoren mit 0,1 GJ/t und der Strombedarf zu 0,1 GJ/t abgeschätzt. Er entspricht damit ungefähr den Angaben von #3 bzw #2. Der höhere Strombedarf in #1 läßt sich durch den höheren Durchsatz an Roheisenerz (Verhältnis Armerz zu Reicherz 5:2) sowie den geringeren Anteil an feinaufgemahlten Pelleterz in der deutschen Importstruktur erklären. Als Betriebsmittel werden in #1 rd. 1,7 kg Sprengstoff angegeben. In GEMIS wird 0,7 kg Sprengstoff pro Tonne Einsenerz entsprechend dem Armerz / Reicherz - Verhältnis angesetzt. Die Wasserinanspruchnahme wird mit 1,5 m3 Prozeßwasser nach #2 angenommen. Pro t Erz werden nach Wilps (Wilps 1992) für Brasilien 1,9 t , für Australien 1,7 und für Kanada 2,6 t angenommen. Auslastung: 1h/a Brenn-/Einsatzstoff: Ressourcen Flächeninanspruchnahme: 0,0111m² gesicherte Leistung: 100% Jahr: 2010 Lebensdauer: 1a Leistung: 1t/h Nutzungsgrad: 50% Produkt: Metalle - Eisen/Stahl
Eisenerz-Abbau in Schweden in Untertagemine (in Brasilien, Australien und Kanada nur Tagebau). Der Erzkörper wird durch Sprengung gelockert und anschließend mechanisch abgebaut und zur Aufbereitung transportiert. Die Aufbereitung besteht aus mehrstufiges Mahlen, Sieben, magnetische Separation, Flotation und mechanisches Trocknen. Je grobkörniger das Eisenerz die Aufbereitung verläßt, desto weniger Prozeßstufen hat es durchlaufen und damit sind auch die energetischen Aufwendungen geringer. Das aufbereitete Eisenerz verläßt die Anlage mit einem Einsengehalt von ca. 65%. Allokation: keine Genese der Daten: Abbau und Aufbereitung von Eisenerz ist für jede Lagerstätte spezifisch angepaßt. Entsprechende Daten konnten jedoch nicht in Erfahrung gebracht werden. Es soll alllerdings an dieser Stelle darauf hingewiesen werden, daß Abbau und Aufbereitung von Reicherz im Tagebau (Brasilien) oder der Untertageabbau von „Armerzen" in Schweden deutlich unterschiedliche Aufwendungen bedürfen. Aus der Literatur sind folgende Daten verfügbar: Literatur Gas Öl Strom „Primärenergie" GJ / t GJ / t GJel / t GJ / t #3 0,393 0,11 0,11 0,95 #1 - 0,11 0,49 1,58 #2 - - - 0,34 GEMIS 0,1 0,1 0,4 Die Angaben in #2 enthalten keine Literaturangabe. Eine Unterscheidung der „Primärenergie" nach Herkunftsform unterbleibt. Die Angaben in #1 basieren auf Zahlenangaben von Tellus, die sich wiederum auf eine Untersuchung der Batelle Columbus Laboratories von 1975 beziehen. Abgebildet wird darin die besondere Situation der Eisenerzaufbereitung an den Oberen Seen (USA) mit der sehr aufwendigen Verarbeitung von Armerzen. Die Aufbereitung erfordert eine sehr feine Aufmahlung (Strombedarf) und wird daher zur Pelletproduktion eingesetzt. Die Angaben von Habersatter (#3) beziehen sich, soweit erkennbar, auf Arbeiten von Schäfer. Der hohe Gasanteil weist auf ein Aufarbeitung mit partieller Pelletproduktion hin, da in der Aufarbeitung selber kein Prozeß mit Gasverbrauch bekannt ist. In GEMIS wird der Bedarf an Öl-EL zum Einsatz in Dieselmotoren mit 0,1 GJ/t und der Strombedarf zu 0,1 GJ/t abgeschätzt. Er entspricht damit ungefähr den Angaben von #3 bzw #2. Der höhere Strombedarf in #1 läßt sich durch den höheren Durchsatz an Roheisenerz (Verhältnis Armerz zu Reicherz 5:2) sowie den geringeren Anteil an feinaufgemahlten Pelleterz in der deutschen Importstruktur erklären. Als Betriebsmittel werden in #1 rd. 1,7 kg Sprengstoff angegeben. In GEMIS wird 0,7 kg Sprengstoff pro Tonne Einsenerz entsprechend dem Armerz / Reicherz - Verhältnis angesetzt. Die Wasserinanspruchnahme wird mit 1,5 m3 Prozeßwasser nach #2 angenommen. Pro t Erz werden nach Wilps (Wilps 1992) für Brasilien 1,9 t , für Australien 1,7 und für Kanada 2,6 t angenommen. Für Schweden wird wegen des Tiefbaus eine Abraum-Menge von 0,5 t/t abgeschätzt. Auslastung: 1h/a Brenn-/Einsatzstoff: Ressourcen Flächeninanspruchnahme: 0,0111m² gesicherte Leistung: 100% Jahr: 2005 Lebensdauer: 1a Leistung: 1t/h Nutzungsgrad: 50% Produkt: Metalle - Eisen/Stahl
Eisenerz-Abbau in Schweden in Untertagemine (in Brasilien, Australien und Kanada nur Tagebau). Der Erzkörper wird durch Sprengung gelockert und anschließend mechanisch abgebaut und zur Aufbereitung transportiert. Die Aufbereitung besteht aus mehrstufiges Mahlen, Sieben, magnetische Separation, Flotation und mechanisches Trocknen. Je grobkörniger das Eisenerz die Aufbereitung verläßt, desto weniger Prozeßstufen hat es durchlaufen und damit sind auch die energetischen Aufwendungen geringer. Das aufbereitete Eisenerz verläßt die Anlage mit einem Einsengehalt von ca. 65%. Allokation: keine Genese der Daten: Abbau und Aufbereitung von Eisenerz ist für jede Lagerstätte spezifisch angepaßt. Entsprechende Daten konnten jedoch nicht in Erfahrung gebracht werden. Es soll alllerdings an dieser Stelle darauf hingewiesen werden, daß Abbau und Aufbereitung von Reicherz im Tagebau (Brasilien) oder der Untertageabbau von „Armerzen" in Schweden deutlich unterschiedliche Aufwendungen bedürfen. Aus der Literatur sind folgende Daten verfügbar: Literatur Gas Öl Strom „Primärenergie" GJ / t GJ / t GJel / t GJ / t #3 0,393 0,11 0,11 0,95 #1 - 0,11 0,49 1,58 #2 - - - 0,34 GEMIS 0,1 0,1 0,4 Die Angaben in #2 enthalten keine Literaturangabe. Eine Unterscheidung der „Primärenergie" nach Herkunftsform unterbleibt. Die Angaben in #1 basieren auf Zahlenangaben von Tellus, die sich wiederum auf eine Untersuchung der Batelle Columbus Laboratories von 1975 beziehen. Abgebildet wird darin die besondere Situation der Eisenerzaufbereitung an den Oberen Seen (USA) mit der sehr aufwendigen Verarbeitung von Armerzen. Die Aufbereitung erfordert eine sehr feine Aufmahlung (Strombedarf) und wird daher zur Pelletproduktion eingesetzt. Die Angaben von Habersatter (#3) beziehen sich, soweit erkennbar, auf Arbeiten von Schäfer. Der hohe Gasanteil weist auf ein Aufarbeitung mit partieller Pelletproduktion hin, da in der Aufarbeitung selber kein Prozeß mit Gasverbrauch bekannt ist. In GEMIS wird der Bedarf an Öl-EL zum Einsatz in Dieselmotoren mit 0,1 GJ/t und der Strombedarf zu 0,1 GJ/t abgeschätzt. Er entspricht damit ungefähr den Angaben von #3 bzw #2. Der höhere Strombedarf in #1 läßt sich durch den höheren Durchsatz an Roheisenerz (Verhältnis Armerz zu Reicherz 5:2) sowie den geringeren Anteil an feinaufgemahlten Pelleterz in der deutschen Importstruktur erklären. Als Betriebsmittel werden in #1 rd. 1,7 kg Sprengstoff angegeben. In GEMIS wird 0,7 kg Sprengstoff pro Tonne Einsenerz entsprechend dem Armerz / Reicherz - Verhältnis angesetzt. Die Wasserinanspruchnahme wird mit 1,5 m3 Prozeßwasser nach #2 angenommen. Pro t Erz werden nach Wilps (Wilps 1992) für Brasilien 1,9 t , für Australien 1,7 und für Kanada 2,6 t angenommen. Für Schweden wird wegen des Tiefbaus eine Abraum-Menge von 0,5 t/t abgeschätzt. Auslastung: 1h/a Brenn-/Einsatzstoff: Ressourcen Flächeninanspruchnahme: 0,0111m² gesicherte Leistung: 100% Jahr: 2000 Lebensdauer: 1a Leistung: 1t/h Nutzungsgrad: 50% Produkt: Metalle - Eisen/Stahl
Origin | Count |
---|---|
Bund | 676 |
Land | 11 |
Type | Count |
---|---|
Förderprogramm | 640 |
Text | 38 |
unbekannt | 8 |
License | Count |
---|---|
closed | 31 |
open | 636 |
unknown | 19 |
Language | Count |
---|---|
Deutsch | 685 |
Englisch | 88 |
Resource type | Count |
---|---|
Archiv | 16 |
Bild | 1 |
Datei | 20 |
Dokument | 26 |
Keine | 398 |
Unbekannt | 1 |
Webseite | 265 |
Topic | Count |
---|---|
Boden | 531 |
Lebewesen & Lebensräume | 455 |
Luft | 421 |
Mensch & Umwelt | 686 |
Wasser | 363 |
Weitere | 677 |