Progress to targets for energy efficiency is a dataset under the National Energy and Climate Progress Reports (NECPRs), which is reported every second year (starting in 2023) by EU Member States. The dataset provides information regarding Member State's energy efficiency contributions and progress in achieving them. The EEA collects and quality checks this data. The dataset links to data from Eurostat regarding Primary Energy Consumption (PEC) and Final Energy Consumption (FEC) in the period of 2020-2030. This reporting obligation comes from the Governance Regulation 2018/1999, Implementing Regulation (EU) 2022/2299 (Annex IV).
Progress to targets for energy efficiency is a dataset under the National Energy and Climate Progress Reports (NECPRs), which is reported every second year (starting in 2023) by EU Member States. The dataset provides information regarding Member State's energy efficiency contributions and progress in achieving them. The EEA collects and quality checks this data. The dataset links to data from Eurostat regarding Primary Energy Consumption (PEC) and Final Energy Consumption (FEC) in the period of 2020-2030. This reporting obligation comes from the Governance Regulation 2018/1999, Implementing Regulation (EU) 2022/2299 (Annex IV).
Indikator: Primärenergieverbrauch Die wichtigsten Fakten Der Primärenergieverbrauch (PEV) in Deutschland ist seit Ende der 2000er Jahre deutlich rückläufig. Er ist von 2008 bis 2023 um 26 % zurückgegangen. Gemäß dem Energieeffizienzgesetz von 2023 soll der PEV bis 2030 gegenüber 2008 um 39 % sinken. Der „Projektionsbericht 2023“ des Umweltbundesamtes zeigt, dass die bislang dafür ergriffenen Maßnahmen voraussichtlich nicht ausreichen werden, um diese Ziele zu erreichen. Der Indikator „Primärenergieverbrauch“ wird methodisch durch die steigenden Anteile erneuerbarer Energien verzerrt: Steigt der Anteil der Erneuerbaren, sinkt der Primärenergieverbrauch, auch wenn der Endenergieverbrauch konstant bleibt. Welche Bedeutung hat der Indikator? Mit dem Einsatz und der Erzeugung von Energie sind eine Vielzahl an Umweltbelastungen verbunden: Durch den Abbau von Rohstoffen wie Kohle oder Erdöl werden Ökosysteme teilweise deutlich geschädigt. Beim Transport der Rohstoffe wird Energie verbraucht, Treibhausgase und gesundheitsgefährdende Luftschadstoffe werden ausgestoßen. Auch bei der Umwandlung und Bereitstellung von Energie kommt es zu Umweltbelastungen. Die Senkung des PEV ist neben dem Umstieg auf alternative und erneuerbare Energien daher ein wichtiger Baustein der Energiewende. Allerdings unterliegt der Indikator „Primärenergieverbrauch“ methodenbedingten Verzerrungen: Steigt der Anteil der Erneuerbaren, sinkt der Primärenergieverbrauch , auch wenn der Endenergieverbrauch konstant bleibt (siehe Abschnitt „Wie wird der Indikator berechnet?“ am Ende des Artikels sowie die Ausführungen im Artikel „ Primärenergieverbrauch “). Die Kenngröße „ Endenergieverbrauch “ ist hinsichtlich des Energieverbrauchs einer Volkswirtschaft aussagekräftiger. Wie ist die Entwicklung zu bewerten? 2023 wurde in Deutschland 29 % weniger Primärenergie verbraucht als 1990. Noch 2006 lag der Verbrauch fast so hoch wie 1990. Seitdem ist er deutlich gesunken. Das liegt einerseits am sinkenden Endenergieverbrauch . Auch die Umstellung auf erneuerbare Energieträger geht mit einem überproportional sinkenden PEV einher. Russlands Krieg gegen die Ukraine verursachte eine Energiepreiskrise, die zu einer reduzierten Produktion energieintensiver Güter in Deutschland führte. Dies trug im Jahr 2023 zum niedrigsten Energieverbrauch seit 1990 bei. Im 2023 verabschiedeten Energieeffizienzgesetz (EnEfG) ist das Ziel festgeschrieben, dass der PEV bis 2030 um 39 % unter den PEV des Jahres 2008 sinken soll. Im „ Projektionsbericht 2023 für Deutschland “ wurde auf der Basis von Szenarioanalysen untersucht, ob Deutschland seine Energie- und Klimaziele im Jahr 2030 erreichen kann: Wenn alle von der Regierungskoalition geplanten Maßnahmen umgesetzt werden, ist im Jahr 2030 mit einem Rückgang des PEV von etwa 30 % gegenüber dem Jahr 2008 zu rechnen (Mit-Maßnahmen-Szenario). Damit wäre das Ziel des EnEfG eines Rückgangs um 39 % bis 2030 deutlich verfehlt. Weitere Maßnahmen zur Senkung des PEV sind also erforderlich, um die Ziele des EnEfG zu erreichen. Wie wird der Indikator berechnet? Der Primärenergieverbrauch wird von der Arbeitsgemeinschaft Energiebilanzen (AGEB) über das Wirkungsgradprinzip ermittelt. Die in Kraftwerken und anderen Feuerungsanlagen verbrannten Energieträger werden mit ihrem Heizwert multipliziert. Wird Strom aus Wind, Wasserkraft oder Photovoltaik erzeugt, so ist der Wirkungsgrad vereinbarungsgemäß 100 %. Bei der Geothermie beträgt er 10 % und bei der Kernenergie 33 %. Methodische Hinweise zur Berechnung veröffentlicht die AGEB in den Erläuterungen zu den Energiebilanzen . Ausführliche Informationen zum Thema finden Sie im Daten-Artikel „Primärenergieverbrauch“ .
Eine wichtige Rolle bei der Erreichung der im Berliner Klimaschutz- und Energiewendegesetz (EWG Bln) festgelegten Klimaschutzziele spielt die öffentliche Hand und dort insbesondere der öffentliche Gebäudebestand. Aus diesem Grund ist im EWG Bln vorgesehen, dass für alle Gebäude der Haupt- und Bezirksverwaltungen Sanierungsfahrpläne aufzustellen sind, da Berlin eine umfassende energetische Sanierung der öffentlichen Gebäude bis 2045 anstrebt. Ziel dieser Sanierungen ist eine 80-prozentige Reduzierung des Primärenergieverbrauchs der landeseigenen Gebäude gegenüber dem Stand von 2010. Als Grundlage für eine einheitliche Vorgehensweise bei der Aufstellung von Sanierungsfahrplänen und damit für eine Vergleichbarkeit der Ergebnisse wurde von der Senatsverwaltung für Umwelt, Verkehr und Klimaschutz in Zusammenarbeit mit den Bezirken und der Berliner Immobilienmanagement GmbH (BIM) zunächst ein Gesamtkonzept erarbeitet, welches neben den im EWG Bln vorgegebenen Sanierungszielen u.a. Kriterien für die Auswahl der Gebäude beinhaltet. Nach Beschluss des Konzeptes durch den Senat im Jahr 2016 wurden durch die liegenschaftsverwaltenden Stellen die erforderlichen Basisdaten erhoben. Im Anschluss erstellten Bezirke und BIM für ihre Gebäudeportfolien einen entsprechenden Sanierungsfahrplan. Dieser Prozess sowie die Fortschreibung der Sanierungsfahrpläne wird durch einen von der Senatsverwaltung für Mobilität, Verkehr, Klimaschutz und Umwelt koordinierten regelmäßigen Erfahrungsaustausch begleitet. Der Sanierungsfahrplan, der eine zielorientierte Abarbeitungsreihenfolge der erforderlichen Gebäudesanierungen aufzeigt, dient den Bezirken und der BIM als strategisches Instrument bei der Sanierungsplanung. Die Umsetzung erfolgt in eigener Verantwortung und soll einen entsprechenden Beitrag zur Erfüllung der Ziele des EWG Bln leisten. Um die Vorbildwirkung der öffentlichen Hand zu unterstreichen, werden die Fahrpläne von Bezirken und BIM im Internet veröffentlicht. Eine Übersicht mit den jeweiligen Veröffentlichungsstellen steht hier als Download zur Verfügung. Die Erstellung und Veröffentlichung eines Sanierungsfahrplanes erfolgt durch die Bezirke und die Berliner Immobilienmanagement GmbH in eigener Verantwortung. Unter den nachfolgend aufgeführten Verlinkungen sind die jeweiligen Fahrpläne einsehbar.
The recast Energy Efficiency Directive (EU) 2023/1791 sets a binding target for 2030 of 763 million tonnes of oil equivalent (Mtoe) for final energy consumption (FEC), and an indicative target of 992.5Mtoe for primary energy consumption (PEC). Since early access to the most recent information on energy consumption is relevant for all stakeholders, the EEA and its European Topic Centre for Climate Change Mitigation and Energy (ETC/CME) produce each year a set of early estimates concerning the consumption of primary and final energy in the previous year, across the EU as a whole and in each Member State. These estimates are compatible with the scope of the energy efficiency targets for 2020 and 2030, and they correspond to the indicator codes PEC2020-2030 and FEC2020-2030 from Eurostat. The current data set covers the EEA 2023 approximated data on primary and final energy consumption (PEC2020-2030; FEC2020-2030).
Energie als Ressource Im letzten Jahrhundert ist der globale Energieverbrauch extrem angestiegen. Auch wenn dieser Trend gebrochen scheint, so haben insbesondere Industrieländer weiterhin einen besonders hohen Pro-Kopf-Verbrauch, zu ihnen zählt auch Deutschland. In Deutschland hat der Energieverbrauch vor dem wirtschaftlichen Krisenjahr 2009 seinen Höhepunkt erreicht. Der damalige Wert wurde in den Folgejahren nicht mehr erreicht, obwohl sich die Konjunktur wieder erholte. Der Primärenergieverbrauch ist seitdem deutlich gesunken, in geringerem Maße auch der Endenergieverbrauch . Mit der Nutzung von Energie sind eine Reihe schädlicher Auswirkungen für die Umwelt verbunden. Werden fossile Energieträger gefördert, kommt es häufig zu massiven Eingriffen in Ökosysteme. Doch auch wenn erneuerbare Energien genutzt werden, wird die Umwelt belastet werden. Die Umwandlung von Primärenergie in End- und Nutzenergie ist für einen wesentlichen Teil des Treibhauseffektes verantwortlich, beispielsweise durch die Verbrennung von Kohle in Kraftwerken oder die von fossilen Kraftstoffen in Autos. Um die negativen Auswirkungen der Energienutzung zu verringern, sind zwei Strategien möglich: Einerseits kann der gesamte Energieverbrauch gesenkt werden, hierfür kommen vor allem Energieeffizienzmaßnahmen oder absolute Verbrauchssenkungen in Frage. Andererseits ist es möglich, das Energiesystem auf alternative Energieformen wie erneuerbare Energien umzustellen. In Deutschland und der EU werden beide Strategien verfolgt. Im Energieeffizienzgesetz von 2023 wurde festgelegt, dass der Endenergieverbrauch bis 2030 um 26,5 % unter dem Wert von 2008 liegen soll. Bis 2045 soll er 45 % unter dem 2008er-Wert liegen. Auch der Anteil Erneuerbarer Energien am Bruttoendenergieverbrauch soll in den kommenden Jahrzehnten deutlich steigen. Bis 2030 soll er laut dem aktuellen „Nationalen Energie- und Klimaplan“ (NECP) bei 41 % liegen (Stand August 2024) und damit den EU-weiten Zielkorridor von 42,5 bis 45,0% untermauern. Ausführliche Informationen zur Herkunft und Verwendung konventioneller und erneuerbarer Energieträger finden sich im Daten-Bereich „Energie“ sowie auf der Themen-Seite „ Erneuerbare Energien in Zahlen “.
Primärenergiegewinnung und -importe Deutschland besitzt außer Kohle keine bedeutenden weiteren konventionellen Energieressourcen. Knapp 70 Prozent des Energieaufkommens wird deshalb durch Importe diverser Energieträger gedeckt. Um die Versorgung auch zukünftig zu sichern, sollte die Importabhängigkeit verringert und die Vielfalt an Lieferländern und Transportstrukturen erhöht werden. Entwicklung der Primärenergiegewinnung Seit dem Jahr 1990 ging die Gewinnung von konventionellen Energierohstoffen in Deutschland um mehr als drei Viertel zurück und konnte auch durch einen Zuwachs bei den erneuerbaren Energien nicht kompensiert werden. Im Jahr 2023 wurden etwa 3.400 Petajoule (PJ) inländisch gewonnen (siehe Abb. „Primärenergiegewinnung in Deutschland“). Das entspricht etwa 32 % des gesamten Primärenergieverbrauchs dieses Jahres. Der Anteil der inländischen Gewinnung am Primärenergieverbrauch schwankt seit Mitte der 2000er Jahre zwischen 28 und 32 %. Heute sind die wichtigsten im Inland gewonnenen Energieträger die erneuerbaren Energien wie Windkraft, Sonnenenergie, Wasserkraft und Biomasse . Sie machen inzwischen etwa 62% der im Inland gewonnenen Energie aus. Biomasse und der erneuerbare Teil des Siedlungsabfalls tragen zu etwa einem Drittel zur inländischen Primärenergiegewinnung bei. Neben den erneuerbaren Energien ist noch immer die Braunkohle der bedeutendste inländische Energieträger und machte im Jahr 2023 27 % der im Inland gewonnenen Primärenergie aus. Dabei wird seit dem Jahr 2003 in Deutschland regelmäßig etwas mehr Braunkohle gefördert, als im Inland verbraucht wird. Darüber hinaus stammten 2023 etwa 5 % des in Deutschland verbrauchten Erdgases und etwa 2 % des Inlandsverbrauchs an Mineralöl aus deutschen Quellen. Die Förderung von Steinkohle wurde in Deutschland 2019 eingestellt. Importabhängigkeit verringern Importiert werden somit vor allem die fossilen Energieträger Mineralöl, Gas und Steinkohle. Bis zur Stilllegung der letzten Atomkraftwerke wurden seit 1991 ferner 100% des benötigten Urans eingeführt (siehe Tab. „Primärenergieimporte“). In den kommenden Jahren wird Deutschland weiterhin auch bei Erdöl und Erdgas auf Importe angewiesen sein. Die Risiken dieser hohen Importabhängigkeit wurden im Jahr 2022 im Zuge des russischen Überfalls auf die Ukraine sichtbar. Deutlich verringerte Einfuhren von Erdgas aus Russland führten zu stark steigenden Erdgas-Preisen für Verbraucher und in der Folge zu erheblichen volkswirtschaftlichen Effekten. Um die Abhängigkeit von Energieimporten weiter zu verringern, sollten heimische erneuerbare Energien weiter ausgebaut und Lieferländer und Transportstrukturen diversifiziert werden. Auch das Einsparen von Energie hilft, die Importabhängigkeit zu verringern.
Primärenergieverbrauch Der Primärenergieverbrauch ist seit Beginn der 1990er Jahre rückläufig. Bis auf Erdgas ist der Einsatz aller konventionellen Primärenergieträger seither zurückgegangen. Dagegen hat die Nutzung erneuerbarer Energien zugenommen. Ihr Anteil ist kontinuierlich angestiegen, besonders seit dem Jahr 2000. Definition und Einflussfaktoren Der Primärenergieverbrauch (PEV) bezeichnet den Energiegehalt aller im Inland eingesetzten Energieträger. Der Begriff umfasst sogenannte Primärenergieträger, wie zum Beispiel Braun- und Steinkohle, Mineralöl oder Erdgas, die entweder direkt genutzt oder in sogenannte Sekundärenergieträger wie zum Beispiel Kohlebriketts, Benzin und Diesel, Strom oder Fernwärme umgewandelt werden. Berechnet wird er als Summe aller im Inland gewonnenen Energieträger zuzüglich des Saldos der importierten und exportierten Mengen sowie der Lagerbestandsveränderungen abzüglich der auf Hochsee gebunkerten Vorräte. Statistisch wird der Primärenergieverbrauch über das Wirkungsgradprinzip ermittelt. Dabei werden die Einsatzmengen der in Feuerungsanlagen verbrannten Energieträger mit ihrem Heizwert multipliziert. Für Strom aus Wind, Wasserkraft oder Photovoltaik wird dabei ein Wirkungsgrad von 100 %, für die Geothermie von 10 % und für die Kernenergie von 33 % angenommen. Im Ergebnis wird durch diese internationale Festlegung für die erneuerbaren Energien ein erheblich niedrigerer PEV errechnet als für fossil-nukleare Brennstoffe. Dies hat in Zeiten der Energiewende methodenbedingte Verzerrungen bei der Trendbetrachtung zur Folge: Der Primärenergieverbrauch sinkt bei fortschreitender Substitution von fossil-nuklearen Brennstoffen durch erneuerbare Energien, selbst wenn die gleiche Menge an Strom zur Nutzung bereitgestellt wird. Dieser rein statistische Effekt überzeichnet den tatsächlichen Verbrauchsrückgang, wie die Entwicklung des Bruttoendenergieverbrauchs zeigt. Der Anteil erneuerbarer Energien am gesamten Primärenergieverbrauch steigt dagegen unterproportional (siehe Abb. „Primärenergieverbrauch“). Es wird – rechnerisch bedingt – ein langsamerer Anstieg des Erneuerbaren-Anteils am PEV wahrgenommen. Dies kann einen geringeren Ausbaueffekt suggerieren. Diese Effekte werden umso größer, je mehr Stromproduktion aus beispielsweise Kohlekraftwerken durch erneuerbare Energien und/oder Stromimporte (ebenfalls mit Wirkungsgrad von 100 % bewertet) ersetzt werden, weil immer weniger Umwandlungsverluste in die Primärenergiebilanzierung einfließen. Der Primärenergieverbrauch wird in erheblichem Maße durch die wirtschaftliche Konjunktur und Struktur, Preise für Rohstoffe und technische Entwicklungen beeinflusst. Auch die Witterungsverhältnisse und damit verbunden der Bedarf an Raumwärme spielen eine wichtige Rolle. Entwicklung und Ziele Der Primärenergieverbrauch in Deutschland ist seit Beginn der 1990er Jahre rückläufig (siehe Abb. „Primärenergieverbrauch“). Das ergibt sich zum einen aus methodischen Gründen beim Umstieg auf erneuerbare Energien (siehe Abschnitt „Primärenergieverbrauch erklärt“). Zum anderen konnten aber auch Effizienzsteigerungen beobachtet werden, zum Beispiel durch bessere Ausnutzung der in Energieträgern gespeicherten Energie (Brennstoffnutzungsgrad) in Kraftwerken , Motoren oder Heizkesseln. Im Energieeffizienzgesetz 2023 (EnEfG) hat der Gesetzgeber festgelegt, dass der Primärenergieverbrauch bis zum Jahr 2030 um 39,3 % unter dem Wert des Jahres 2008 liegen soll. Im „ Projektionsbericht 2023 für Deutschland “ wurde auf der Basis von Szenarioanalysen untersucht, ob Deutschland seine Klimaziele im Jahr 2030 erreichen kann. Wichtig ist dabei auch die Frage nach der zu erwartenden Entwicklung des Primärenergieverbrauchs. Das Ergebnis der Untersuchung: Wenn alle von der Regierungskoalition geplanten Maßnahmen umgesetzt werden, ist im Jahr 2030 mit einem PEV von etwa 10.000 Petajoule (PJ) zu rechnen (Mit-Maßnahmen- Szenario ). Das wäre gegenüber dem Jahr 2008 ein Rückgang von lediglich etwa 30 %. Weitere Maßnahmen zur Senkung des PEV sind also erforderlich, um die Ziele des EnEfG zu erreichen. Primärenergieverbrauch nach Energieträgern Seit 1990 hat sich der Energieträgermix stark verändert. Der Verbrauch von Primärenergie auf Basis von Braunkohle lag im Jahr 2023 um 72 %, der von Steinkohle um etwa 63 % unter dem des Jahres 1990. Der Energieverbrauch auf Basis von Erdgas stieg an: Noch im Jahr 2021 lag das Plus gegenüber dem Jahr 1990 bei 44 %. In der Folge des Krieges in der Ukraine und den daraus erwachsenden Versorgungsengpässen und der wirtschaftlichen Rezession sank der Gasverbrauch in den Jahren 2022 und 2023 gegenüber dem Jahr 2021 jedoch deutlich. Im Jahr 2023 lag der Energieverbrauch für Erdgas 14 % über dem des Jahres 1990. Der Einsatz erneuerbarer Energieträger hat sich seit 1990 mehr als verzehnfacht (siehe Abb. „Primärenergieverbrauch nach Energieträgern“).
Energie- und CO2-Bilanzierung 2021 Die Stadt Aachen erstellt seit 2010 jährlich eine Energie- und CO2-Bilanz (Daten und Berechnungen von 1990 bis 2021 liegen vor). Als Basisjahr wurde das Jahr 1990 (gemäß Kyoto-Protokoll 1997) ausgewählt. Die Bilanz wird mit dem vom Klimabündnis (Climate Alliance) empfohlenen Berechnungstool ECORegion auf Basis tatsächlicher Verbräuche sowie zusätzlicher statistischer Daten ermittelt. Die Endenergiebilanz umfasst zunächst den Energiebedarf der Verbraucher innerhalb der Stadtgrenzen. Die Primärenergiebilanz (Methode LCA: Life Cycle Assessment) umfasst darüber hinaus den Energiebedarf zur Produktion, Umwandlung und Transport der Energieträger (Vorkettenanteile) und erstreckt sich somit über den Bilanzierungsraum der Stadt hinaus.
Altpapier Die Papierindustrie setzte im Jahr 1990 knapp 49 Prozent Altpapier ein, 2015 74 Prozent und im Jahr 2023 rund 83 Prozent. Diese Steigerung senkte den Holz-, Wasser- und Primärenergieverbrauch pro Tonne Papier. Das Mehr an Papierkonsum relativierte jedoch den Effizienzgewinn. Zudem gefährden Verunreinigungen aus Druckfarben, Kleb- und Papierhilfsstoffen inzwischen das Altpapierrecycling. Vom Papier zum Altpapier Im Jahr 2023 wurden rechnerisch in Deutschland 175,6 Kilogramm (kg) Pappe, Papier und Karton pro Kopf verbraucht. Diese Zahl bezieht neben dem Verbrauch in den privaten Haushalten auch den gesamten Verbrauch an Papier in Wirtschaft, Medien und Verwaltungen mit ein. In privaten Haushalten beträgt die jährlich verbrauchte Papiermenge ca. 105 kg pro Kopf ( INTECUS GmbH ). Dies entspricht einem rechnerischen Gesamtverbrauch von 14,9 Millionen Tonnen (Mio. t). Im gleichen Jahr haben private und kommunale Entsorger 12,7 Mio. t Altpapier gesammelt. Dies ergibt eine Altpapierrücklaufquote von 85 % (siehe Tab. „Papiererzeugung, Papierverbrauch und Altpapierverbrauch“). Die deutsche Papierindustrie Die deutsche Papierindustrie stellte im Jahr 2023 rund 18,6 Mio. t Papier, Pappe und Kartonagen her. Sie setzte dafür rund 15,5 Mio. t Altpapier ein. Die Altpapiereinsatzquote – also der Altpapieranteil an der gesamten inländischen Papierproduktion – lag damit bei rund 83 %. Diese Quote stieg seit dem Jahr 2000 um 23 Prozentpunkte (siehe Tab. „Altpapiereinsatzquoten in Prozent“). Der deutschen Papierindustrie gelang es auf diese Weise, ihre spezifischen Umweltbelastungen zu verringern. Die hohe Altpapiereinsatzquote von 83 % lässt sich kaum noch erhöhen. Dennoch ist es technisch etwa möglich, mehr Altpapier bei der Herstellung von Zeitschriften-, Büro- und Administrationspapieren und vor allem bei der Herstellung von Hygienepapieren zu nutzen. Eine Nachfragesteigerung seitens Verbraucherinnen und Verbraucher würde dies befördern. Der Altpapiereinsatz bei der Herstellung von Hygienepapieren fällt erneut auf nunmehr 40 %. Dies liegt an der Abnahme weißer Altpapiere im Markt durch den Rückgang der graphischen Papiere, bedingt durch die fortschreitende Digitalisierung, bei gleichzeitiger Zunahme von Verpackungspapieren. Der Rohstoff Altpapier ist knapp. Der Einsatz von Altpapier ist vorteilhaft, da Fasern aus Hygienepapieren nach der Nutzung nicht für ein weiteres Recycling zur Verfügung stehen. Bei der Herstellung von Zeitungsdruck- und Wellpappenrohpapieren wurde im Jahr 2023 statistisch gesehen mehr als 100 % Altpapier eingesetzt. Der Grund ist, dass bei der Aufbereitung von Altpapier Sortierreste und alle Verunreinigungen, welche die Qualität des Neupapiers beeinträchtigen, abgeschieden werden. Dabei gehen auch in geringem Umfang Papierfasern verloren, deshalb wird in der Produktion bis zu 20 % mehr Rohstoff, der aber auch papierfremde Bestandteile enthält, eingesetzt. Die Altpapierverwertungsquote, also der Altpapierverbrauch im Verhältnis zum gesamten Papierverbrauch, lag 2023 bei über 100 % (siehe Abb. „Altpapierverwertungsquoten“). Es wurde mehr Altpapier für die Herstellung von Recyclingpapier verbraucht als Papier in Deutschland verbraucht wurde. Das liegt daran, dass mehr Papier für den Export produziert wurde und weniger im Inland verbraucht wurde. Tab: Altpapiereinsatzquoten in Prozent Quelle: DIE PAPIERINDUSTRIE e. V. Diagramm als PDF Diagramm als Excel mit Daten Altpapierverwertungsquote Quelle: DIE PAPIERINDUSTRIE e. V. Diagramm als PDF Diagramm als Excel mit Daten Energieeffiziente Papierherstellung Papier, Pappe und Kartonagen wurden im Jahr 2023 energieeffizienter hergestellt als im Jahr 1990. Der mittlere Energieeinsatz bezogen auf eine Tonne erzeugtes Papier sank in diesem Zeitraum von 3,413 auf 2,789 Megawattstunden (MWh). Diese Effizienzsteigerung wurde durch die erhöhte Produktion im selben Zeitraum überkompensiert. So stellte die deutsche Papierindustrie im Jahr 2023 rund 32 % mehr Papier, Pappe und Kartonagen her als im Jahr 1990. Die Emissionen an fossilem Kohlendioxid pro Tonne Papier konnten trotzdem seit 1990 um etwa ein Drittel gesenkt werden. Sie liegen jetzt bei 526 kg Kohlendioxid pro Tonne produzierten Papiers. Das liegt vor allem am zunehmenden Einsatz von alternativen Brennstoffen und dem steigenden Anteil an erneuerbaren Strom im deutschen Strommix. Die Papierbranche bemüht sich einerseits, den Energieverbrauch weiter zu senken. Gleichzeitig investieren viele Unternehmen in zusätzliche Prozessstufen, um aus dem Rohstoff Altpapier Papiere mit höheren Weißgraden und glatterer Oberfläche herzustellen. Dafür benötigen sie mehr Energie, da mehr Fasern aussortiert und diese stärker gereinigt und gebleicht werden. Der Gesamtenergieeinsatz stieg daher von 157 Petajoule (PJ) im Jahr 1990 um gut 20 % auf 188 PJ im Jahr 2023 (Leistungsbericht Papier 2024). Tipp zum Weiterlesen: DIE PAPIERINDUSTRIE e. V., Leistungsbericht PAPIER 2024. Der Bericht kann beim Verband DIE PAPIERINDUSTRIE e. V. unter https://www.papierindustrie.de/papierindustrie/statistik bestellt werden Grafische Papiere Die grafischen Papiere sind nach den Verpackungspapieren das mengenmäßig wichtigste Papiersegment. Darunter fallen alle Papiere, die für Zeitungen, Zeitschriften, Schreib- oder Kopierpapiere verwendet werden. Für diese grafischen Papiere hat das Umweltbundesamt 2020 in einer Ökobilanz erneut überprüfen lassen, welche Umweltwirkungen während des gesamten Lebensweges der Papiere entstehen und welche Umweltentlastungspotenziale der Einsatz von Altpapieren im Produktionsprozess bietet. Demnach besitzt Recyclingpapier deutliche ökologische Vorteile gegenüber Frischfaserpapieren (Primärfaserpapieren). Der Holzverbrauch verringert sich und steht für langlebigere Nutzungen zur Verfügung. Recyclingpapier muss nicht so intensiv gebleicht werden, wie es bei der Herstellung von Frischfaserpapier der Fall ist. Für die Gewinnung von Recyclingpapier wird damit nur die Hälfte an Energie benötigt und zwischen einem Siebtel bis zu einem Drittel der Wassermenge, die bei Frischfaserpapier eingesetzt wird. Auch die Treibhausgas -Emissionen sind bei Recyclingpapieren auf dem deutschen Markt durchschnittlich 15 % geringer als bei Frischfaserpapieren, auch wenn integrierte Zellstoff- und Papierfabriken aus Frischfaser bessere Treibhausgasbilanzen aufweisen können. Die Wälder werden durch die Verwendung von Recyclingpapier geschont und damit Verlust an Biodiversität durch intensive Forst- und Plantagenwirtschaft und deren soziale und ökologische Folgen weltweit verringert. Ein höheres Altpapierrecycling ist für praktisch alle betrachteten Wirkungskategorien günstiger zu bewerten: Dies betrifft die Knappheit fossiler Energieträger, Treibhauspotenzial, Sommersmog, Versauerungspotenzial und Überdüngung von Böden und Gewässern. Das heißt konkret: Wer beim Kauf von einem Paket Papier mit 500 Blatt, das etwa 2,5 Kilogramm (kg) wiegt, zu Recyclingqualität greift, spart 5,5 kg Holz. Mit den 7,5 Kilowattstunden Energie, die man bei Kauf eines Paketes Recyclingkopierpapier zusätzlich spart, kann man 525 Tassen Kaffee kochen. Der Wald wird geschont. Tipp zum Weiterlesen: Broschüre „Papier. Wald und Klima schützen“ Mögliche Schadstoffanreicherung im Papier Das Schließen von globalen Stoffkreisläufen und die hohe Zahl an Recyclingzyklen kann jedoch auch einen negativen Aspekt haben: So treten immer wieder erhöhte Gehalte unerwünschter Stoffe in den Altpapierkreisläufen auf. Es handelt sich dabei um Chemikalien, die an Papierfasern gut haften und wasserlöslich sind. Beispiele hierfür sind bestimmte Mineralölbestandteile in Druckfarben, per- und polyfluorierte Verbindungen ( PFAS ), Bisphenol S aus Kassenzetteln und gewisse Phthalate aus Klebstoffen. Diese Chemikalien können Altpapier verunreinigen, wenn etwa neue Papierprodukte wie Thermopapier oder neue Druckverfahren mit den dazugehörige Druckfarben, Bindungen, oder Verbundmaterialien entwickelt werden, die nicht auf ihre Auswirkungen auf die Recyclingkreisläufe geprüft werden. Dabei kommt erschwerend hinzu, dass auch Stoffe, die in Deutschland schon seit Jahren nicht mehr eingesetzt werden, wie z.B. Phthalate in Klebstoffen, in anderen Ländern noch im Einsatz sind und hier in Deutschland über den Recyclingkreislauf wieder in das Papier eingetragen werden. Diese Verunreinigungen gefährden den Einsatz von Altpapier etwa als Verpackung für Cerealien, Mehl oder Reis und anderen Lebensmittelkontaktpapieren. Denn sowohl die Bedarfsgegenständeverordnung als auch die Empfehlung „XXXVI. Papiere, Kartons und Pappen für den Lebensmittelkontakt“ des Bundesinstitutes für Risikobewertung geben für den Gehalt an Schadstoffen in Papier, Pappe und Kartons Obergrenzen vor. Einige dieser Verunreinigungen gelangen nicht bei der Papierherstellung in den Kreislauf, sondern wenn etwa Wellpappenhersteller, Drucker und Verpacker Papier nutzen und weiter verarbeiten. Diese Unternehmen sind mitunter nicht ausreichend sensibilisiert oder motiviert, nur Stoffe einzusetzen, die für das Recycling unkritisch sind. Hier gilt es, durch ein vernetztes Denken und Handeln bei allen Beteiligten die erforderliche Sensibilität zu schaffen, damit das erreichte hohe Verwertungsniveau bei Altpapier nicht gefährdet wird und durch die Verwertung von Altpapier auch zukünftig ein wichtiger Beitrag zum ressourceneffizienten Umgang mit Rohstoffen geleistet werden kann. Das Umweltbundesamt setzt sich für eine Vermeidung von Verunreinigungen möglichst an der Quelle ein.
Origin | Count |
---|---|
Bund | 326 |
Europa | 5 |
Land | 19 |
Type | Count |
---|---|
Ereignis | 4 |
Förderprogramm | 285 |
Text | 44 |
unbekannt | 16 |
License | Count |
---|---|
geschlossen | 56 |
offen | 288 |
unbekannt | 5 |
Language | Count |
---|---|
Deutsch | 329 |
Englisch | 52 |
Resource type | Count |
---|---|
Bild | 1 |
Datei | 8 |
Dokument | 29 |
Keine | 195 |
Unbekannt | 1 |
Webseite | 142 |
Topic | Count |
---|---|
Boden | 289 |
Lebewesen & Lebensräume | 251 |
Luft | 229 |
Mensch & Umwelt | 349 |
Wasser | 194 |
Weitere | 348 |