Das Projekt "Auswirkung des Oberflächenwassermanagement auf die Grundwassermischung in alpinen Einzugsgebieten" wird vom Umweltbundesamt gefördert und von Technische Universität München, Institut für Wasser und Umwelt, Lehrstuhl für Hydrologie und Flussgebietsmanagement durchgeführt. Geophysikalische Strömungen sind gewöhnlich durch komplexes räumliches und zeitliches dynamisches Verhalten charakterisiert, das die Ausbreitung von gelösten Stoffen, deren Verdünnung und reaktives Vermischen bestimmt. Ineffizientes Vermischen, charakteristisch für Strömungen mit geringer Reynoldszahl wie bei Grundwasserströmungen, kann die effektive Reaktionsrate im System wesentlich verringern. Das Vermischen ist insbesondere im Zusammenhang mit der Verschmutzung von Grundwasserkörpern relevant, da es hierbei den Schadstoffabbau hemmen kann. In Anbetracht von geringer Vermischung spielen die Topologie der Strömung und kinetische Prozesse wie das Ausdehnen und Falten bei zahlreichen räumlichen und zeitlichen Skalen eine zentrale Rolle in der Quantifizierung und im Verständnis von Verbleib und Verhalten der Schadstoffe. Unsere Hypothese dieses Projektes ist, dass die dynamische Interaktion zwischen Oberflächen- und Grundwasser eine zentrale Bedeutung für die exakte Quantifizierung der Vermischung in porösen Grundwasserleitern hat. Insbesondere beabsichtigen wir zu untersuchen, wie das Oberflächenwassermanagement in alpinen Einzugsgebieten, welche von starken anthropogenen Einflüssen beeinträchtigt sind (Schwall-/ Sunkbetrieb bei Wasserkraftwerken), Mischungsprozesse bei zahlreichen zeitlichen Skalen (mehrstündlich, täglich, wöchentlich, saisonal) steuert. Das Projekt zielt darauf ab, geeignete topologische und kinematische Maße zu entwickeln und anzuwenden. Diese können als Prädiktoren für Mischungen, für die Entwicklung von neuen numerischen Ansätzen zur Lösung inverser Probleme unter solch komplexen und transienten Bedingungen und für das Abschätzen von Parameterunsicherheiten verwendet werden. Neben numerischen Simulationen werden die in diesem Projekt entwickelten Methoden in einer echten Fallstudie (Etsch-Grundwasserleiter in Trient, Italien) geprüft. Die Neuheit des beabsichtigten Forschungsvorhabens liegt in der Untersuchung i) des Einflusses von Oberflächenmanagement in alpinen Einzugsgebieten auf Grundwasserströmung in alluvialen Grundwasserleitern (d.h. jenseits der hyporheischen Zone); ii) des Einflusses von stark transienten Grenzflächenübertragungsbedingungen auf die Topologie von zweidimensionalen und dreidimensionalen Grundwasserströmungen; iii) der Entwicklung von präzisen numerischen Inversion-Algorithmen zur Lösung von Grundwasserströmung unten stark transienten Randbedingungen; iv) der Quantifizierung der Unsicherheit im Zusammenhang mit Modellvorhersagen unter Berücksichtigung von hydrogeologischen Parameterunsicherheiten sowie Unsicherheiten, die die transienten Grenzflächenbedingungen betreffen.
Das Projekt "Teilprojekt MGK Z05: Integriertes Graduiertenkolleg" wird vom Umweltbundesamt gefördert und von Universität Köln, Institut für Geophysik und Meteorologie, Bereich Meteorologie, Arbeitsgruppe Integrierte Fernerkundung durchgeführt. Das Integrierte Graduiertenkolleg bereitet seine ca. 30 Doktorandinnen und Doktoranden darauf vor, selbständig in Wissenschaft oder Industrie zu arbeiten, und bietet an, Fähigkeiten und Fertigkeiten für die Lösungen interdisziplinärer wissenschaftlicher und angewandter Probleme zu erlernen. Qualifizierungsmaßnahmen, Organisation und Betreuungskonzepte bleiben im TR32 eingebettet, um eine international anerkannte Ausbildung und einen Abschluss zu gewährleisten. Wir werden mit den bestehenden lokalen Graduiertenschulen an den Hochschulen zusammen arbeiten, um die positiven Erfahrungen und etablierten Strukturen auch nach seiner Lebensdauer fortzusetzen.
Das Projekt "Teilvorhaben: Physikalische Modellierung mit invertierbaren neuronalen Netzen" wird vom Umweltbundesamt gefördert und von Universität Heidelberg, Interdisziplinäres Zentrum für Wissenschaftliches Rechnen durchgeführt. Das virtuelle Design von neuen Batterien ist eines der Ziele des langfristigen Forschungsplans BATTERY 2030+ der Europäischen Kommission. Ein wesentlicher Teil hiervon ist das Design neuer Elektroden, das bereits jetzt durch Modellierung und Simulation unterstützt wird, aber der experimentelle Teil ist immer noch dominierend in Bezug auf Zeit und Kosten. Um die Kosten und den Zeitaufwand für die Entwicklung neuer Elektrodengenerationen zu reduzieren, muss das virtuelle Design insbesondere auf der Ebene der Elektrodenmikrostruktur noch prädiktiver werden. Um also das Design neuer Elektroden durch Modellierung und Simulation besser zu unterstützen, muss ein neues Niveau der Modellgenauigkeit erreicht und ein neues Analysewerkzeug entwickelt werden, das die gesamte Erkenntniskette der Elektrodenforschung abdeckt und auf geeignete Weise experimentelle und simulierte Daten angemessen miteinander kombinieren kann. Das vorliegende Teilvorhaben adressiert diese Aufgabenstellung mit Hilfe invertierbarer neuronaler Netze. Diese Netze können sowohl vorwärts als auch rückwärts betrieben werden und eignen sich daher besonders zur Lösung inverser Probleme. Solche Probleme sind beim Batteriedesign zentral, weil man häufig aus dem beobachteten Verhalten auf die unterliegenden physikalischen Eigenschaften zurückschließen muss. Außerdem ermöglichen sie eine effiziente Bayesianische Analyse der Unsicherheit der Ergebnisse und lassen sich gut mit physikalischem Vorwissen zu hybriden Modellen verbinden. In Verbindung mit den fortgeschrittenen Simulations- und Analysemethoden der anderen Teilvorhaben wird dies dazu beitragen, das gezielte Elektrodendesign auf ein neues Level zu heben.
Das Projekt "Teilvorhaben: Laminierbarer Shunt" wird vom Umweltbundesamt gefördert und von Isabellenhütte Heusler GmbH & Co. KG durchgeführt. Leistungselektronische Module sind Schlüsselkomponenten für die Energieerzeugung, Energieverteilung und Energieanwendung und spielen in der Elektromobilität eine bedeutende Rolle zur Bereitstellung der Energie im Fahrzeug und am Fahrzeugantrieb. Die Lebensdauer und Energieeffizienz dieser Baugruppen bestimmen wesentlich den Wirkungsgrad und den wirtschaftlichen Erfolg des Prozesses in dem die Baugruppe ihre Funktion erfüllt. Modernste Aufbau- und Verbindungstechnik ist die Lösung für heutige Probleme in der Fertigung und Anwendung von leistungselektronischen Baugruppen. Doch gerade diese Aufbau- und Verbindungstechnik ist sowohl für KMU als auch für Großunternehmen, die in die Fertigung neu einsteigen, schwer zu implementieren, weil erhebliche Ressourcen in die Prozessentwicklung investiert werden müssen. Ziel des Vorhabens ProMuPower ist die Entwicklung eines neuartigen Schaltungsträgers samt flexiblem Fertigungsverfahren. Auf diese Weise wird die Eintrittshürde für die Nutzer gesenkt und die Funktionalität erhöht. Die neuartige innovative Aufbau- und Verbindungstechnologie ermöglicht großflächige, temperaturbeständige, niederinduktive und temperaturleitfähige Verbindungen von elektronischen Leistungsbaugruppen für E-Antriebe. Der im Vorhaben entwickelte 48-Volt-Demonstrator zeigt diese Vorteile besonders deutlich. Sein Einsatzfeld sind milde Hybridantriebe in Straßenfahrzeugen aber auch Antriebe von Flurförderfahrzeugen und Servoantriebe. Den zukünftigen Kunden dieser Lösung wird nicht nur eine Komponente, sondern auf Wunsch der gesamte Fertigungsfluss bestehend aus Verbindungswerkstoff, Pick & Place-Bauteilpositionierung, Fügemaschine, Prozessvorschrift sowie Validierungsmethode angeboten.
Das Projekt "Teilvorhaben: GreifZuGUI" wird vom Umweltbundesamt gefördert und von Tresky GmbH durchgeführt. Leistungselektronische Module sind Schlüsselkomponenten für die Energieerzeugung, Energieverteilung und Energieanwendung und spielen in der Elektromobilität eine bedeutende Rolle zur Bereitstellung der Energie im Fahrzeug und am Fahrzeugantrieb. Die Lebensdauer und Energieeffizienz dieser Baugruppen bestimmen wesentlich den Wirkungsgrad und den wirtschaftlichen Erfolg des Prozesses in dem die Baugruppe ihre Funktion erfüllt. Modernste Aufbau- und Verbindungstechnik ist die Lösung für heutige Probleme in der Fertigung und Anwendung von leistungselektronischen Baugruppen. Doch gerade diese Aufbau- und Verbindungstechnik ist sowohl für KMU als auch für Großunternehmen, die in die Fertigung neu einsteigen, schwer zu implementieren, weil erhebliche Ressourcen in die Prozessentwicklung investiert werden müssen. Ziel des Vorhabens ProMuPower ist die Entwicklung eines neuartigen Schaltungsträgers samt flexiblem Fertigungsverfahren. Auf diese Weise wird die Eintrittshürde für die Nutzer gesenkt und die Funktionalität erhöht. Die neuartige innovative Aufbau- und Verbindungstechnologie ermöglicht großflächige, temperaturbeständige, niederinduktive und temperaturleitfähige Verbindungen von elektronischen Leistungsbaugruppen für E-Antriebe. Der im Vorhaben entwickelte 48-Volt-Demonstrator zeigt diese Vorteile besonders deutlich. Sein Einsatzfeld sind milde Hybridantriebe in Straßenfahrzeugen aber auch Antriebe von Flurförderfahrzeugen und Servoantriebe. Den zukünftigen Kunden dieser Lösung wird nicht nur eine Komponente, sondern auf Wunsch der gesamte Fertigungsfluss bestehend aus Verbindungswerkstoff, Pick & Place-Bauteilpositionierung, Fügemaschine, Prozessvorschrift sowie Validierungsmethode angeboten.
Das Projekt "Teilvorhaben: Temperatursensor" wird vom Umweltbundesamt gefördert und von VISHAY BCcomponents BEYSCHLAG GmbH durchgeführt. Leistungselektronische Module sind Schlüsselkomponenten für die Energieerzeugung, Energieverteilung und Energieanwendung und spielen in der Elektromobilität eine bedeutende Rolle zur Bereitstellung der Energie im Fahrzeug und am Fahrzeugantrieb. Die Lebensdauer und Energieeffizienz dieser Baugruppen bestimmen wesentlich den Wirkungsgrad und den wirtschaftlichen Erfolg des Prozesses in dem die Baugruppe ihre Funktion erfüllt. Modernste Aufbau- und Verbindungstechnik ist die Lösung für heutige Probleme in der Fertigung und Anwendung von leistungselektronischen Baugruppen. Doch gerade diese Aufbau- und Verbindungstechnik ist sowohl für KMU als auch für Großunternehmen, die in die Fertigung neu einsteigen, schwer zu implementieren, weil erhebliche Ressourcen in die Prozessentwicklung investiert werden müssen. Ziel des Vorhabens ProMuPower ist die Entwicklung eines neuartigen Schaltungsträgers samt flexiblem Fertigungsverfahren. Auf diese Weise wird die Eintrittshürde für die Nutzer gesenkt und die Funktionalität erhöht. Die neuartige innovative Aufbau- und Verbindungstechnologie ermöglicht großflächige, temperaturbeständige, niederinduktive und temperaturleitfähige Verbindungen von elektronischen Leistungsbaugruppen für E-Antriebe. Der im Vorhaben entwickelte 48-Volt-Demonstrator zeigt diese Vorteile besonders deutlich. Sein Einsatzfeld sind milde Hybridantriebe in Straßenfahrzeugen aber auch Antriebe von Flurförderfahrzeugen und Servoantriebe. Den zukünftigen Kunden dieser Lösung wird nicht nur eine Komponente, sondern auf Wunsch der gesamte Fertigungsfluss bestehend aus Verbindungswerkstoff, Pick & Place-Bauteilpositionierung, Fügemaschine, Prozessvorschrift sowie Validierungsmethode angeboten.
Das Projekt "Teilvorhaben: Entwicklung und Herstellung isolierender TIM-Folien" wird vom Umweltbundesamt gefördert und von tesa SE durchgeführt. Leistungselektronische Module sind Schlüsselkomponenten für die Energieerzeugung, Energieverteilung und Energieanwendung und spielen in der Elektromobilität eine bedeutende Rolle zur Bereitstellung der Energie im Fahrzeug und am Fahrzeugantrieb. Die Lebensdauer und Energieeffizienz dieser Baugruppen bestimmen wesentlich den Wirkungsgrad und den wirtschaftlichen Erfolg des Prozesses in dem die Baugruppe ihre Funktion erfüllt. Modernste Aufbau- und Verbindungstechnik ist die Lösung für heutige Probleme in der Fertigung und Anwendung von leistungselektronischen Baugruppen. Doch gerade diese Aufbau- und Verbindungstechnik ist sowohl für KMU als auch für Großunternehmen, die in die Fertigung neu einsteigen, schwer zu implementieren, weil erhebliche Ressourcen in die Prozessentwicklung investiert werden müssen. Ziel des Vorhabens ProMuPower ist die Entwicklung eines neuartigen Schaltungsträgers samt flexiblem Fertigungsverfahren. Auf diese Weise wird die Eintrittshürde für die Nutzer gesenkt und die Funktionalität erhöht. Die neuartige innovative Aufbau- und Verbindungstechnologie ermöglicht großflächige, temperaturbeständige, niederinduktive und temperaturleitfähige Verbindungen von elektronischen Leistungsbaugruppen für E-Antriebe. Der im Vorhaben entwickelte 48-Volt-Demonstrator zeigt diese Vorteile besonders deutlich. Sein Einsatzfeld sind milde Hybridantriebe in Straßenfahrzeugen aber auch Antriebe von Flurförderfahrzeugen und Servoantriebe. Den zukünftigen Kunden dieser Lösung wird nicht nur eine Komponente, sondern auf Wunsch der gesamte Fertigungsfluss bestehend aus Verbindungswerkstoff, Pick & Place-Bauteilpositionierung, Fügemaschine, Prozessvorschrift sowie Validierungsmethode angeboten. In der Wertschöpfungskette wird tesa den innovativen organischen Verbindungswerkstoff (TIM-Folie) und ein Verbindungsverfahren (Laminieren) für die Fertigung der Module entwickeln.
Das Projekt "Teilvorhaben: Konzeption und Entwicklung einer innovativen Aufbau- und Verbindungstechnologie" wird vom Umweltbundesamt gefördert und von Forschungs- und Entwicklungszentrum Fachhochschule Kiel GmbH durchgeführt. Leistungselektronische Module sind Schlüsselkomponenten für die Energieerzeugung, Energieverteilung und Energieanwendung und spielen in der Elektromobilität eine bedeutende Rolle zur Bereitstellung der Energie im Fahrzeug und am Fahrzeugantrieb. Die Lebensdauer und Energieeffizienz dieser Baugruppen bestimmen wesentlich den Wirkungsgrad und den wirtschaftlichen Erfolg des Prozesses in dem die Baugruppe ihre Funktion erfüllt. Modernste Aufbau- und Verbindungstechnik ist die Lösung für heutige Probleme in der Fertigung und Anwendung von leistungselektronischen Baugruppen. Doch gerade diese Aufbau- und Verbindungstechnik ist sowohl für KMU als auch für Großunternehmen, die in die Fertigung neu einsteigen, schwer zu implementieren, weil erhebliche Ressourcen in die Prozessentwicklung investiert werden müssen. Ziel des Vorhabens ProMuPower ist die Entwicklung eines neuartigen Schaltungsträgers samt flexiblem Fertigungsverfahren. Auf diese Weise wird die Eintrittshürde für die Nutzer gesenkt und die Funktionalität erhöht. Die neuartige innovative Aufbau- und Verbindungstechnologie ermöglicht großflächige, temperaturbeständige, niederinduktive und temperaturleitfähige Verbindungen von elektronischen Leistungsbaugruppen für E-Antriebe. Der im Vorhaben entwickelte 48-Volt-Demonstrator zeigt diese Vorteile besonders deutlich. Sein Einsatzfeld sind milde Hybridantriebe in Straßenfahrzeugen aber auch Antriebe von Flurförderfahrzeugen und Servoantriebe. Den zukünftigen Kunden dieser Lösung wird nicht nur eine Komponente, sondern auf Wunsch der gesamte Fertigungsfluss bestehend aus Verbindungswerkstoff, Pick & Place-Bauteilpositionierung, Fügemaschine, Prozessvorschrift sowie Validierungsmethode angeboten.
Das Projekt "Teilprojekt A" wird vom Umweltbundesamt gefördert und von Fenntec GmbH durchgeführt. Der Einsatz von Herbiziden zur Unkrautbekämpfung kann eine Gefahr für die Gesundheit von Menschen darstellen und die Umwelt belasten. Außerdem entwickeln Unkräuter zunehmend Resistenzen gegen Herbizide. Leider sind die vorhandenen Methoden zur ökologischen Unkrautbekämpfung weniger effektiv oder sehr zeitaufwändig. Besonders im Anbau von Bio-Gemüse kann häufig nicht auf Handarbeit verzichtet werden. Zur Lösung dieser Probleme soll ein automatisches System zur mechanischen Unkrautbekämpfung im Gemüseanbau entwickelt werden. Das System soll über Kameras Unkräuter von Kulturpflanzen unterscheiden können und mit einem speziell entwickeltem Jätewerkzeug einzelne Unkräuter bekämpfen. Das Jätewerkzeug soll klein und präzise genug sein, um insbesondere auch die Unkräuter in den Pflanzenreihen zu bekämpfen, welche von den derzeit verfügbaren maschinellen Jätesystemen nicht bekämpft werden können. Mit der Entwicklung sollen Kosten und Risiken in der ökologischen Unkrautbekämpfung reduziert werden, was die Umstellung von konventioneller auf ökologische Landwirtschaft und den Anbau von Bio-Gemüse in Regionen mit hohen Lohnkosten erleichtert. Mit Steigerung der Kosteneffizienz durch Weiterentwicklung könnte die Methode langfristig auch als Alternative für Herbizide in der konventionellen Landwirtschaft eingesetzt werden, besonders in Situationen, in denen das Ausbringen von Herbiziden nicht wirksam oder nicht in der notwendigen Menge zulässig wäre.
Das Projekt "Teilprojekt B" wird vom Umweltbundesamt gefördert und von Leibniz Universität Hannover, Institut für Mechatronische Systeme durchgeführt. Der Einsatz von Herbiziden zur Unkrautbekämpfung kann eine Gefahr für die Gesundheit von Menschen darstellen und die Umwelt belasten. Außerdem entwickeln Unkräuter zunehmend Resistenzen gegen Herbizide. Leider sind die vorhandenen Methoden zur ökologischen Unkrautbekämpfung weniger effektiv oder sehr zeitaufwändig. Besonders im Anbau von Bio-Gemüse kann häufig nicht auf Handarbeit verzichtet werden. Zur Lösung dieser Probleme soll ein automatisches System zur mechanischen Unkrautbekämpfung im Gemüseanbau entwickelt werden. Das System soll über Kameras Unkräuter von Kulturpflanzen unterscheiden können und mit einem speziell entwickeltem Jätewerkzeug einzelne Unkräuter bekämpfen. Das Jätewerkzeug soll klein und präzise genug sein, um insbesondere auch die Unkräuter in den Pflanzenreihen zu bekämpfen, welche von den derzeit verfügbaren maschinellen Jätesystemen nicht bekämpft werden können. Mit der Entwicklung sollen Kosten und Risiken in der ökologischen Unkrautbekämpfung reduziert werden, was die Umstellung von konventioneller auf ökologische Landwirtschaft und den Anbau von Bio-Gemüse in Regionen mit hohen Lohnkosten erleichtert. Mit Steigerung der Kosteneffizienz durch Weiterentwicklung könnte die Methode langfristig auch als Alternative für Herbizide in der konventionellen Landwirtschaft eingesetzt werden, besonders in Situationen, in denen das Ausbringen von Herbiziden nicht wirksam oder nicht in der notwendigen Menge zulässig wäre.
Origin | Count |
---|---|
Bund | 58 |
Type | Count |
---|---|
Förderprogramm | 58 |
License | Count |
---|---|
offen | 58 |
Language | Count |
---|---|
Deutsch | 56 |
Englisch | 7 |
Resource type | Count |
---|---|
Keine | 53 |
Webseite | 5 |
Topic | Count |
---|---|
Boden | 36 |
Lebewesen & Lebensräume | 44 |
Luft | 39 |
Mensch & Umwelt | 58 |
Wasser | 21 |
Weitere | 58 |