API src

Found 29 results.

Baltic Atlas of Long-Term Inventory and Climatology (BALTIC)

Das Projekt "Baltic Atlas of Long-Term Inventory and Climatology (BALTIC)" wird vom Umweltbundesamt gefördert und von Leibniz-Institut für Ostseeforschung durchgeführt. The project 'Baltic Atlas of Long-Term Inventory and Climatology' (BALTIC) of the Baltic Sea Research Institute Warnemünde (IOW) was first announced on the meeting of the ICES Working Group on Marine Data Management in April 2000 in Hamburg and to the ICES Baltic Committee Meeting in September 2000. With the aim to support e.g. climate-related investigations, interdisciplinary studies, numerical modelling and regular monitoring, BALTIC is intended to provide the research community with a comprehensive 'climate atlas' for the Baltic Sea, inspired by famous paradigms like the COADS (Woodruff et al. 1987) or the Levitus (1982) global oceanographic data sets, going beyond the well-known data collections of Bock (1971), Lenz (1971) or Janssen et al. (1999) in terms of a significantly more extensive observational data basis involved, but remaining pristine and unbiased by refraining from the incorporation of any numerical model data. In the past years, a lot of historical CTD and bottle data had been reconstructed in the 'Historical Data Rescue' (HDR) framework of the marine research institutes around the Baltic Sea. Starting from the data already available in the data banks of IOW, the Federal Maritime and Hydrographic Agency (BSH), and the International Council for the Exploration of the Sea (ICES), the final goal is to build a collection of virtually all accessible oceanographic observation data of the Baltic Sea. In a preceding study, it had been found that indeed much more data than presently stored in the ICES database are available to be included into this project. In a first stage, the atlas is only based on oceanographic temperature/salinity/pressure and oxygen/hydrogen sulphide/nutrient measurements with highest possible spatial and temporal resolution. In subsequent future steps, the intended additional quantities will be those immediately derived thereof, like e.g. density, sound speed, entropy, enthalpy, pycnocline depth, or halocline depth. In further stages of development, data like density anomaly, alkalinity, biological abundances, or pollution may be added.

Improving and Applying Methods for the Calculation of Natural and Biogenic Emissions and Assessment of Impacts on Air Quality (NATAIR)

Das Projekt "Improving and Applying Methods for the Calculation of Natural and Biogenic Emissions and Assessment of Impacts on Air Quality (NATAIR)" wird vom Umweltbundesamt gefördert und von Universität Stuttgart, Institut für Energiewirtschaft und Rationelle Energieanwendung durchgeführt. This project aims to improve methods for the calculation of natural and biogenic emissions from various sources and the assessment of impacts on air quality policy implementation. Air pollutants from natural und biogenic sources contribute to ambient air concentrations in the same way as anthropogenic emissions, however, the uncertainty of the estimation of these natural and biogenic emissions is much higher than for anthropogenic emissions. At the same time, with anthropogenic emissions currently decreasing due to emission control activities in many sectors, the relative importance of other sources increases. Thus, it is essential to develop new and improve existing methods for the quantification of emissions from natural and biogenic sources and to use new and improved input data. The project takes into account the latest research results on air pollutant emissions and their impacts, covering all relevant substances (NOx, SOx, NH3, PM, NMVOC; CH4, CO, DMS) from natural and biogenic sources in Europe, e.g. the results from the 'Nature Panel' within the UNECE Task Force Emission Inventories and Projection, and includes anthropogenic emissions officially reported to EMEP by countries. Furthermore, the National Reports for the NEC directive for SOx, NOx, NH3 and NMVOC will be taken into account, as well as the results of EU research projects such as NOFRETETE or the results from the EUROTRAC Subproject GENEMIS. Satellite data will be used e.g. for the improvement of calculations from forests in general as well as forest fires in particular. In order to assess the impacts of emissions from natural and biogenic sources on air quality policy implementation, the project is designed to advance the current state-of-the-art in methodology for the calculation of natural and biogenic emissions. This includes the analysis of temporal and spatial variabilitys and the assessment of uncertainties and sensitivities. In addition, the influence of the improved natural and biogenic emissions on the concentration of pollutants calculated with atmospheric models will be analysed using the model CHIMERE. Finally, policy strategies that are currently under discussion within the EC CAFÉ programme and in the frame of the UNECE CLRTAP to reduce anthropogenic emissions will be analysed in the view of these new results.

Climate Change and Variability: Impact on Central and Eastern Europe (CLAVIER)

Das Projekt "Climate Change and Variability: Impact on Central and Eastern Europe (CLAVIER)" wird vom Umweltbundesamt gefördert und von Max-Planck-Institut für Meteorologie durchgeführt. Observational records show that the global climate is changing and ongoing changes are also visible in Central Eastern Europe. About 64 percent of all catastrophic events in Europe since 1980 can directly be attributed to weather and climate extremes. Climate change projections show even an increasing likelihood of extremes. Certainly negative impacts of climate change will involve significant economic losses in several regions of Europe, while others may bring health or welfare problems somewhere else. Within CLAVIER three representative Central and Eastern European Countries (CEEC) will be studied in detail: Hungary, Romania, and Bulgaria. Researches from 6 countries and different disciplines, will identify linkages between climate change and its impact on weather patterns with consequences on air pollution, extreme events, and on water resources. Furthermore, an evaluation of the economic impact on agriculture, tourism, energy supply and the public sector will be conducted. This is of increasing importance for CEEC, which are currently facing a rapid economic development, but also for the European Union as e.g. Romanias and Bulgarias high vulnerability from extreme events such as floods will impact not only the respective economic goals for joining the EU but also the EU solidarity fund. CLAVIER will focus on ongoing and future climate changes in Central and Eastern European Countries using measurements and existing regional scenarios to determine possible developments of the climate and to address related uncertainty. In addition, climate projections with very high detail will be carried out for CEEC to fulfill the need for a large amount of detail in time and space which is inherent in local and regional impact assessment. CLAVIER will establish a large data base, tools and methodologies, which contribute to reasonable planning for a successful development of society and economy in Central and Eastern European countries under climate change conditions.

European and Russian Extreme events: Mechanisms, Variability and Future Climate Change

Das Projekt "European and Russian Extreme events: Mechanisms, Variability and Future Climate Change" wird vom Umweltbundesamt gefördert und von Helmholtz-Zentrum für Ozeanforschung Kiel (GEOMAR) durchgeführt. Over the last century, a considerable increase in global, hemispheric and regional average surface temperatures has been observed, along with trends in temperature and precipitation extremes. The first decade of the 21st century was globally the warmest in the instrumental temperature record and has brought a number of remarkable weather and climate extremes to European countries and Russia which had considerable impacts on society and ecosystems. Among the most recent of these extreme events are the cold winter of 2009/2010, the Russian heat wave of 2010 and the flooding in Central Europe in 2010. Further extreme events affecting Europe and Russia are extreme air pollution, strong marine storms and wind waves and fast permafrost thawing. In this project, we shall investigate if these extremes are already affected by and in which way they will change in the future in response to global warming. Third, we shall assess the representation of extreme events in climate models, in particular as a function of model resolution, and on regional scales. Fourth, we shall develop future scenarios of extreme events in Europe and Russia including the associated uncertainties. To address these questions, we shall carry out case study simulations, sensitivity integrations and future projections with global and very high-resolution regional climate models in different forcing and coupling settings. These experiments and additional millennial-long control runs will be validated against observational data by means of modern statistical methods, in particular extreme value theory, vector-generalised regression models and cyclone tracking algorithms. The regional climate model projections will be bias-corrected with a special focus on correcting the magnitudes of extreme events. The project will extend the existing collaboration between the participating institutes on largescale climate phenomena towards extreme events on a regional scale. By bringing together expertise in regional climate, global climate as well as statistical modelling and data analysis, a unique research team will be created capable to address a wide range of scientific questions regarding extreme events under climate change. The project will lead to a direct knowledge transfer from the IFM-GEOMAR to the Russian teams in global climate modelling and extreme value theory, and vice versa in regional climate modelling. The anticipated results will improve the understanding of the mechanisms underlying extreme events and their variability and can be used to better predict potential future events. The improved predictability on decadal to multi-decadal time scales and the provision of biascorrected scenarios of future climate extremes and their associated uncertainties will help end users and stake holders to implement adaptation measures to changes in the statistics of extreme events, and will help policy makers to assess the required degree of climate change mitigation. (abridged text)

Stratospheric ozone: halogen impacts in a varying atmosphere (SHIVA)

Das Projekt "Stratospheric ozone: halogen impacts in a varying atmosphere (SHIVA)" wird vom Umweltbundesamt gefördert und von Universität Heidelberg, Institut für Umweltphysik durchgeführt. Objective: SHIVA aims to reduce uncertainties in present and future stratospheric halogen loading and ozone depletion resulting from climate feedbacks between emissions and transport of ozone depleting substances (ODS). Of particular relevance will be studies of short and very short-lived substances (VSLS) with climate-sensitive natural emissions. We will perform field studies of ODS production, emission and transport in understudied, but critical, regions of the tropics using ship, aircraft and ground-based instrumentation. We will parameterize potential climate sensitivities of emissions based on inter-dependencies derived from our own field studies, and surveys of ongoing work in this area. We will study the chemical transformation of ODS during transport from the surface to the tropical tropopause layer (TTL), and in the stratosphere, using a combination of aircraft and balloon observations together with process-oriented meso-scale modelling. These investigations will be corroborated by space-based remote sensing of marine phytoplankton biomass as a possible proxy for the ocean-atmosphere flux of ODS. From this a systematic emission inventory of VSLS ODS will be established to allow construction of future-climate scenarios. The impact of climate-sensitive feedbacks between transport and the delivery of ODS to the stratosphere, and their lifetime within it, will be studied using tracer observations and modelling. Further global modelling will assess the contribution of all ODS, including VSLS (which have hitherto normally been excluded from such models) to past, present and future ozone loss. Here, the sensitivity of natural ODS emissions to climate change parameters will be used in combination with standard IPCC climate model scenarios in order to drive measurement-calibrated chemical transport model (CTM) simulations for present and future stratospheric ozone; to better predict the rate, timing and climate-sensitivity of ozone-layer recovery.

Programme for Integrated Earth System Modelling (PRISM)

Das Projekt "Programme for Integrated Earth System Modelling (PRISM)" wird vom Umweltbundesamt gefördert und von Max-Planck-Institut für Meteorologie durchgeführt. Following the recommendations of the European climate research community (Euroclivar, November 1998), it is proposed to undertake a Programme for Integrated earth System Modelling as a pilot infrastructure project for the establishment of a climate research network. The work plan foresees the creation of a European management structure for developing, coordinating and executing a long-term programme of European-wide, multi-institutional climate simulations; the development of a set of portable climate community models and associated diagnostic software under standardised coding conventions that can be accessed by all European scientists; the execution of a first suite of joint simulations. PRISM will greatly enhance the efficiency of earth system modelling in Europe and it will pave the way for the establishment of a European Climate Computing Facility. The expected product will be a flexible, efficient, portable, and user friendly community infrastructure for earth system modelling and climate prediction.

Assessing and forward planning of the Geodetic And Geohazard Observing Systems for GMES applications (GAGOS)

Das Projekt "Assessing and forward planning of the Geodetic And Geohazard Observing Systems for GMES applications (GAGOS)" wird vom Umweltbundesamt gefördert und von Helmholtz-Zentrum Potsdam Deutsches GeoForschungsZentrum durchgeführt. Substantial improvement of our present knowledge of Earth System dynamics is paramount for the development of reliable strategies for actions vital to the human society in terms of achieving sustainable development and ensuring security. This requires for the various system components long-term integrated global data series from a large variety of sensors and networks combined with high performance rapid computing and a uniform and efficient access to distributed data archives and data information systems. The SSA proposed here aims (1) at assessing the status quo situation of two major components of the Earth observing system, namely the global geodetic and global geohazards observing systems as indispensable prerequisites for the consistent global monitoring of the Earth system environment and security aspects of population and (2) identifying deficiencies and gaps in both components and providing advice for the implementation of necessary adaptations and potential new developments in network-, shared computing-, and information/data management task for the observing techniques involved.

Simulation von Extremereignissen mit dem regionalen Klimamodell CLM (CCLM)

Das Projekt "Simulation von Extremereignissen mit dem regionalen Klimamodell CLM (CCLM)" wird vom Umweltbundesamt gefördert und von Potsdam-Institut für Klimafolgenforschung e.V. durchgeführt. Ziel dieses Projekts ist die Entwicklung einer Modellierungsstrategie für extreme regionale Klimaereignisse und von Konzepten zu deren qualitativer und quantitativer Analyse. Unter einem extremen regionalen Klimaereignis verstehen wir hier einen klimatischen Vorgang, der eine Region von mehreren hundert Kilometern Abmessung beeinflusst, und mit statistisch seltenen Kombinationen von Witterungsparametern wie Temperatur, Niederschlag, etc. einhergeht. Derzeit im Einsatz befindliche regionale Klimamodelle werden über Simulationszeiträume von einigen Jahren bis Jahrzehnten mit dem Ziel betrieben, die Klimastatistik einer Region abzubilden. Im Zusammenhang mit Extremereignissen ist diese Strategie nicht effizient, da sie (i) zu lange Zeithorizonte erfordert, um eine für die Statistik ausreichende Anzahl von Extremereignissen darzustellen, und (ii) aus eben diesem Grunde keine hinreichenden hohen räumlichen Auflösungen zulässt. Die Grundidee unseres Ansatzes besteht darin, extreme Witterungsepisoden als Raum-Zeit-Fenster in den Ergebnissen großskaliger Klimamodelle zu identifizieren, aus deren Variablen Anfangs- und Randwerte für ein genestetes Regionalmodell zu gewinnen, hochaufgelöste multiple Simulationen dieser Ereignisse durchzuführen, die Resultate visuell und quantitativ zu analysieren und verbleibende Modellunsicherheiten zu bewerten.

MiKlip: Verifizierung von Ensemblen und Initialisierungsfeldern für Dekadische Klimavorhersagen über Ozean Beobachtungs-Systeme (OCEANOBS), Modul E

Das Projekt "MiKlip: Verifizierung von Ensemblen und Initialisierungsfeldern für Dekadische Klimavorhersagen über Ozean Beobachtungs-Systeme (OCEANOBS), Modul E" wird vom Umweltbundesamt gefördert und von Helmholtz-Zentrum für Ozeanforschung Kiel (GEOMAR) durchgeführt. Zeitreihen von Ozean-Beobachtungssystemen sollen zur Verifizierung des MIKLIP Vorhersagesystems verwendet werden. Zum einen werden die Ozeanbedingungen der Initialisierung überprüft (Modul A) und zum Abgleich mit den dekadischen Vorhersagen im 'hindcast mode' des MiKlip Systems herangezogen (Modul D). Der Vergleich basiert auf einer Anzahl von Ozean-Klima-Indizes mit dem Fokus auf den Atlantischen Ozean, die aus räumlich-zeitlich integrierten Beobachtungen stammen. Die Ergebnisse werden zum einen die dekadische Vorhersagbarkeit der Ozeaneigenschaften überprüfen. Zum anderen lassen sie aber auch darauf schließen, welche Art von Ozean-Observatorien für eine Analyse der dekadischen Variabilität und deren möglichen Vorhersage benötigt werden. Eine gezielte Analyse der Zeitreihen soll mit dem Anspruch realisiert werden, die Qualität der dekadischen MIKLIP Vorhersagemodelle bewerten zu können. Zwei Aspekte werden hier hervorgehoben: 1. die Qualität der Initialisierung und 2. die Qualität der Modelle im Verlauf der Vorhersage. Die Methodik verlangt nach der Entwicklung einer Serie von räumlich-zeitlich integrierten Klima-Indizes. Einige werden aus globalen Datensätzen wie dem Argo-Projekt gebildet, während andere aus verankerten Zeitreihen für drei klimarelevante Regionen des Nordatlantiks entwickelt werden: R1) die Konvektionszonen des subpolaren Nordatlantiks; R2) die Basin-integrierenden meridionalen Transporte bei 16 N (MOVE) und 26 N (RAPID); R3) die zonalen Transporte im oberflächennahen äquatorialen Atlantik.

Kurzfristige Klimaschwankungen und deren Antriebsmechanismen in ehemaligen Eisrandgebieten im Spätglazial und Holozän

Das Projekt "Kurzfristige Klimaschwankungen und deren Antriebsmechanismen in ehemaligen Eisrandgebieten im Spätglazial und Holozän" wird vom Umweltbundesamt gefördert und von Leibniz-Institut für Ostseeforschung durchgeführt. Im Rahmen dieses Projektes sollen an hochauflösenden Sedimentkernen aus dem westlichen Ostseeraum, einem Fjord der Faroer Inseln, dem Scoresby-Sund auf Grönland und aus zwei Hochakkumulationsgebieten des Nordatlantiks einerseits kurzfristige spätglaziale und holozäne Klimaschwankungen rekonstruiert und andererseits Rückschlüsse auf deren Antriebsmechanismen gezogen werden. Den Untersuchungen liegt die Annahme zugrunde, dass besonders Randbereiche der Eiskappen rasch auf atmosphärische Temperaturschwankungen u.a. mit variierendem Schmelzwasserausstoß reagieren und damit auch die Zirkulation im Nordatlantik und das Klima der Nordhemisphäre steuern.

1 2 3