API src

Found 26 results.

Seasonal-to-decadal climate Prediction for the improvement of European Climate Services (SPECS)

Das Projekt "Seasonal-to-decadal climate Prediction for the improvement of European Climate Services (SPECS)" wird vom Umweltbundesamt gefördert und von Fundacio Institut Català de Ciències del Clima durchgeführt. Objective: The World Meteorological Organization (WMO) sponsored the Global Framework on Climate Services (GFCS) where the need for actionable climate information for periods from several months up to several years for economic, industrial and political planning has been expressed. However, progress in seasonal forecasting has been slow and decadal forecasting is still incipient. At the same time, new model components to address the role of sea ice, land surface, stratosphere, ocean and their resolution in global models are now available from the climate change and weather forecasting communities. Methods for sophisticated downscaling and calibration for local, reliable climate predictions are scarce in Europe. In this context, SPECS aims to identify the main problems in climate prediction and investigate a battery of solutions from a seamless perspective. SPECS will undertake research and dissemination activities to deliver a new generation of European climate forecast systems, with improved forecast quality and efficient regionalisation tools to produce reliable, local climate information over land at seasonal-to-decadal time scales, and provide an enhanced communication protocol and services to satisfy the climate information needs of a wide range of public and private stakeholders.

MiKlip: Verifizierung von Ensemblen und Initialisierungsfeldern für Dekadische Klimavorhersagen über Ozean Beobachtungs-Systeme (OCEANOBS), Modul E

Das Projekt "MiKlip: Verifizierung von Ensemblen und Initialisierungsfeldern für Dekadische Klimavorhersagen über Ozean Beobachtungs-Systeme (OCEANOBS), Modul E" wird vom Umweltbundesamt gefördert und von Helmholtz-Zentrum für Ozeanforschung Kiel (GEOMAR) durchgeführt. Zeitreihen von Ozean-Beobachtungssystemen sollen zur Verifizierung des MIKLIP Vorhersagesystems verwendet werden. Zum einen werden die Ozeanbedingungen der Initialisierung überprüft (Modul A) und zum Abgleich mit den dekadischen Vorhersagen im 'hindcast mode' des MiKlip Systems herangezogen (Modul D). Der Vergleich basiert auf einer Anzahl von Ozean-Klima-Indizes mit dem Fokus auf den Atlantischen Ozean, die aus räumlich-zeitlich integrierten Beobachtungen stammen. Die Ergebnisse werden zum einen die dekadische Vorhersagbarkeit der Ozeaneigenschaften überprüfen. Zum anderen lassen sie aber auch darauf schließen, welche Art von Ozean-Observatorien für eine Analyse der dekadischen Variabilität und deren möglichen Vorhersage benötigt werden. Eine gezielte Analyse der Zeitreihen soll mit dem Anspruch realisiert werden, die Qualität der dekadischen MIKLIP Vorhersagemodelle bewerten zu können. Zwei Aspekte werden hier hervorgehoben: 1. die Qualität der Initialisierung und 2. die Qualität der Modelle im Verlauf der Vorhersage. Die Methodik verlangt nach der Entwicklung einer Serie von räumlich-zeitlich integrierten Klima-Indizes. Einige werden aus globalen Datensätzen wie dem Argo-Projekt gebildet, während andere aus verankerten Zeitreihen für drei klimarelevante Regionen des Nordatlantiks entwickelt werden: R1) die Konvektionszonen des subpolaren Nordatlantiks; R2) die Basin-integrierenden meridionalen Transporte bei 16 N (MOVE) und 26 N (RAPID); R3) die zonalen Transporte im oberflächennahen äquatorialen Atlantik.

European and Russian Extreme events: Mechanisms, Variability and Future Climate Change

Das Projekt "European and Russian Extreme events: Mechanisms, Variability and Future Climate Change" wird vom Umweltbundesamt gefördert und von Helmholtz-Zentrum für Ozeanforschung Kiel (GEOMAR) durchgeführt. Over the last century, a considerable increase in global, hemispheric and regional average surface temperatures has been observed, along with trends in temperature and precipitation extremes. The first decade of the 21st century was globally the warmest in the instrumental temperature record and has brought a number of remarkable weather and climate extremes to European countries and Russia which had considerable impacts on society and ecosystems. Among the most recent of these extreme events are the cold winter of 2009/2010, the Russian heat wave of 2010 and the flooding in Central Europe in 2010. Further extreme events affecting Europe and Russia are extreme air pollution, strong marine storms and wind waves and fast permafrost thawing. In this project, we shall investigate if these extremes are already affected by and in which way they will change in the future in response to global warming. Third, we shall assess the representation of extreme events in climate models, in particular as a function of model resolution, and on regional scales. Fourth, we shall develop future scenarios of extreme events in Europe and Russia including the associated uncertainties. To address these questions, we shall carry out case study simulations, sensitivity integrations and future projections with global and very high-resolution regional climate models in different forcing and coupling settings. These experiments and additional millennial-long control runs will be validated against observational data by means of modern statistical methods, in particular extreme value theory, vector-generalised regression models and cyclone tracking algorithms. The regional climate model projections will be bias-corrected with a special focus on correcting the magnitudes of extreme events. The project will extend the existing collaboration between the participating institutes on largescale climate phenomena towards extreme events on a regional scale. By bringing together expertise in regional climate, global climate as well as statistical modelling and data analysis, a unique research team will be created capable to address a wide range of scientific questions regarding extreme events under climate change. The project will lead to a direct knowledge transfer from the IFM-GEOMAR to the Russian teams in global climate modelling and extreme value theory, and vice versa in regional climate modelling. The anticipated results will improve the understanding of the mechanisms underlying extreme events and their variability and can be used to better predict potential future events. The improved predictability on decadal to multi-decadal time scales and the provision of biascorrected scenarios of future climate extremes and their associated uncertainties will help end users and stake holders to implement adaptation measures to changes in the statistics of extreme events, and will help policy makers to assess the required degree of climate change mitigation. (abridged text)

Changes in carbon uptake and emissions by oceans in a changing climate (CARBOCHANGE)

Das Projekt "Changes in carbon uptake and emissions by oceans in a changing climate (CARBOCHANGE)" wird vom Umweltbundesamt gefördert und von Universität Bergen durchgeführt. Objective: CARBOCHANGE will provide the best possible process-based quantification of net ocean carbon uptake under changing climate conditions using past and present ocean carbon cycle changes for a better prediction of future ocean carbon uptake. We will improve the quantitative understanding of key biogeochemical and physical processes through a combination of observations and models. We will upscale new process understanding to large-scale integrative feedbacks of the ocean carbon cycle to climate change and rising carbon dioxide concentrations. We will quantify the vulnerability of the ocean carbon sources and sinks in a probabilistic sense using cutting edge coupled Earth system models under a spectrum of emission scenarios including climate stabilisation scenarios as required for the 5th IPCC assessment report. The drivers for the vulnerabilities will be identified. The most actual observations of the changing ocean carbon sink will be systematically integrated with the newest ocean carbon models, a coupled land-ocean model, an Earth system model of intermediate complexity, and fully fledged Earth system models through a spectrum of data assimilation methods as well as advanced performance assessment tools. Results will be optimal process descriptions and most realistic error margins for future ocean carbon uptake quantifications with models under the presently available observational evidence. The project will deliver calibrated future evolutions of ocean pH and carbonate saturation as required by the research community on ocean acidification in the EU project EPOCA and further projects in this field. The time history of atmosphere-ocean carbon fluxes past, present, and future will be synthesised globally as well as regionally for the transcontinental RECCAP project. Observations and model results will merge into GEOSS/GEO through links with the European coordination action COCOS and will prepare the marine branch of the European Research Infrastructure ICOS.

Climate change - Learning from the past climate (Past4Future)

Das Projekt "Climate change - Learning from the past climate (Past4Future)" wird vom Umweltbundesamt gefördert und von Universitet Köbenhavn durchgeführt. Objective: Past4Future will combine multidisciplinary paleoclimate records from ice cores, marine cores, speleothems, pollen and other records, concentrating on a global distribution of the records, to reconstruct climate change and variability during the present interglacial (the Holocene) and the last interglacial (known as the Eemian in northwestern Europe and as marine isotope stage 5e in the marine sediment records). The records will be combined in integrated analyses aided by proxy modeling and assimilation, to gain understanding of the climate processes involved in the dynamics of interglacial climates. Earth system models (ESM) including physical and biogeochemical processes will be applied to simulate the past and present interglacial climate, and to confront and intercompare the simulations with climate changes as observed from the palaeodata; this will both advance the models and our understanding of the dynamics and predictability of the climate system. Focus will be on the most recent two interglacial periods, as these provide the highest-resolved most comprehensive data records. Moreover the last interglacial represents a situation where the mean state was warmer than at present in large regions due to orbital forcing, thereby allowing tests of climate system sensitivity to constrain projections of potential future ice sheet, sea-level, circulation and biogeochemical changes. The data and Earth system model results will be used improve our capabilities to project future global and regional warming from a better understanding of relevant paleoclimates, especially in relation to sea level changes, sea ice changes and thermohaline circulation changes. The Past4Future program will draw together a world leading team of European and international partners in a concerted effort to advance our knowledge on the causes, processes and risks of abrupt changes in warm periods, such as those projected for the current and the next century. The program will inform the international debate on climate system stability and the dissemination of results will be targeted to both citizens and governmental and non-governmental stakeholders. It will leave a legacy of improved understanding of past drivers of sea level changes, changes of sea ice, and of greenhouse gas concentrations, and it will train a new generation of young climate researchers to further advance research and improved future predictions for the benefit of society and our capacity to mitigate and adapt to climate changes.

Africa at a meso-scale: Adaptive and integrated tools and strategies for natural resources management (AFROMAISON)

Das Projekt "Africa at a meso-scale: Adaptive and integrated tools and strategies for natural resources management (AFROMAISON)" wird vom Umweltbundesamt gefördert und von Soresma NV durchgeführt. Threats to the environment and natural resources, coupled with poor management, have serious implications for both poverty reduction and sustainable economic development. Degrading natural resources in Africa therefore result in an inreased vulnerability of the poor as a result of ecosystem stress, competition for space, soaring food and energy prices, climate change and demographic growth. Nowadays, it is widely accepted that reversing these trends asks for integrated management frameworks. Despite the availability of many tools, expertise, strategies, local practices and indigenous knowledge, the concept of INRM has hardly been brought into practice and the building blocks of INRM (see description acronym) in many cases still need to be integrated. AFROMAISON will make use of what is available regarding INRM and will contribute to a better integration of the components of INRM. In view of the decentralization policy in Africa, we aim to focus on the operational requirements of INRM for sub-national (or meso-scale) authorities and communities. The main outputs of AFROMAISON are a toolbox, short-term to long-term strategies, quick wins (much gains with little effort) and operational strategies for adaptation to global change. In order to enhance the potential impact, we will put strong efforts in integrated capacity building and a solid dissemination strategy. In order to do so, we will integrate tools, frameworks, strategies and processes for landscape functioning, livelihood & socio-economic development (incl. vulnerability to global change), local knowledge, institutional strenghtening and improved interaction between sectors, scales and communities. For the development of concrete operational strategies for adaptation to global change, AFROMAISON will focus on the three groups of tools: strategies for restoration and adaptation (including sustainable landscape intensification), economic tools and incentives for INRM and tools for spatial planning.

Stratospheric ozone: halogen impacts in a varying atmosphere (SHIVA)

Das Projekt "Stratospheric ozone: halogen impacts in a varying atmosphere (SHIVA)" wird vom Umweltbundesamt gefördert und von Universität Heidelberg, Institut für Umweltphysik durchgeführt. Objective: SHIVA aims to reduce uncertainties in present and future stratospheric halogen loading and ozone depletion resulting from climate feedbacks between emissions and transport of ozone depleting substances (ODS). Of particular relevance will be studies of short and very short-lived substances (VSLS) with climate-sensitive natural emissions. We will perform field studies of ODS production, emission and transport in understudied, but critical, regions of the tropics using ship, aircraft and ground-based instrumentation. We will parameterize potential climate sensitivities of emissions based on inter-dependencies derived from our own field studies, and surveys of ongoing work in this area. We will study the chemical transformation of ODS during transport from the surface to the tropical tropopause layer (TTL), and in the stratosphere, using a combination of aircraft and balloon observations together with process-oriented meso-scale modelling. These investigations will be corroborated by space-based remote sensing of marine phytoplankton biomass as a possible proxy for the ocean-atmosphere flux of ODS. From this a systematic emission inventory of VSLS ODS will be established to allow construction of future-climate scenarios. The impact of climate-sensitive feedbacks between transport and the delivery of ODS to the stratosphere, and their lifetime within it, will be studied using tracer observations and modelling. Further global modelling will assess the contribution of all ODS, including VSLS (which have hitherto normally been excluded from such models) to past, present and future ozone loss. Here, the sensitivity of natural ODS emissions to climate change parameters will be used in combination with standard IPCC climate model scenarios in order to drive measurement-calibrated chemical transport model (CTM) simulations for present and future stratospheric ozone; to better predict the rate, timing and climate-sensitivity of ozone-layer recovery.

InfraStructure for the European Network for Earth System Modelling (IS-ENES)

Das Projekt "InfraStructure for the European Network for Earth System Modelling (IS-ENES)" wird vom Umweltbundesamt gefördert und von Centre National de la Recherche Scientifique durchgeführt. IS-ENES will develop a Virtual Earth System Modelling Resource Centre (V.E.R.C.), integrating the European Earth system models (ESMs) and their hardware, software, and data environments. The overarching goal of this e-infrastructure is to further integrate the European climate modelling community, to help the definition of a common future strategy, to ease the development of full ESMs, to foster the execution and exploitation of high-end simulations, and to support the dissemination of model results and the interaction with the climate change impact community. The V.E.R.C. encompasses models, the tools to prepare, evaluate, run, store and exploit model simulations, the access to model results and to the European high-performance computing ecosystem in particular the EU large infrastructures DEISA2 and PRACE. The V.E.R.C. developed by IS-ENES is based on generic ICT, Grid technology and subject-specific simulation codes and software environments. The European Network for Earth System Modelling (ENES) leads IS-ENES. This network gathers the European climate and Earth system modelling community working on understanding and prediction of future climate change. This community is strongly involved in the assessments of the Intergovernmental Panel on Climate Change and provides the predictions on which EU mitigation and adaptation policies are elaborated. IS-ENES combines expertise in Earth system modelling, in computational science, and in studies of climate change impacts. IS-ENES will provide a service on models and model results both to modelling groups and to the users of model results, especially the impact community. Joint research activities will improve the efficient use of high-performance computers, model evaluation tool sets, access to model results, and prototype climate services for the impact community. Networking activities will increase the cohesion of the European ESM community and advance a coherent European Network for Earth System modelling.

Simulation von Extremereignissen mit dem regionalen Klimamodell CLM (CCLM)

Das Projekt "Simulation von Extremereignissen mit dem regionalen Klimamodell CLM (CCLM)" wird vom Umweltbundesamt gefördert und von Potsdam-Institut für Klimafolgenforschung e.V. durchgeführt. Ziel dieses Projekts ist die Entwicklung einer Modellierungsstrategie für extreme regionale Klimaereignisse und von Konzepten zu deren qualitativer und quantitativer Analyse. Unter einem extremen regionalen Klimaereignis verstehen wir hier einen klimatischen Vorgang, der eine Region von mehreren hundert Kilometern Abmessung beeinflusst, und mit statistisch seltenen Kombinationen von Witterungsparametern wie Temperatur, Niederschlag, etc. einhergeht. Derzeit im Einsatz befindliche regionale Klimamodelle werden über Simulationszeiträume von einigen Jahren bis Jahrzehnten mit dem Ziel betrieben, die Klimastatistik einer Region abzubilden. Im Zusammenhang mit Extremereignissen ist diese Strategie nicht effizient, da sie (i) zu lange Zeithorizonte erfordert, um eine für die Statistik ausreichende Anzahl von Extremereignissen darzustellen, und (ii) aus eben diesem Grunde keine hinreichenden hohen räumlichen Auflösungen zulässt. Die Grundidee unseres Ansatzes besteht darin, extreme Witterungsepisoden als Raum-Zeit-Fenster in den Ergebnissen großskaliger Klimamodelle zu identifizieren, aus deren Variablen Anfangs- und Randwerte für ein genestetes Regionalmodell zu gewinnen, hochaufgelöste multiple Simulationen dieser Ereignisse durchzuführen, die Resultate visuell und quantitativ zu analysieren und verbleibende Modellunsicherheiten zu bewerten.

Verbundprojekt ScalES: Entwickeln von Methoden und Softwaremodulen mit dem Ziel einer hohen und effizienten Skalierung komplexer gekoppelter Simulationsmodelle auf modernen Parallelrechnern

Das Projekt "Verbundprojekt ScalES: Entwickeln von Methoden und Softwaremodulen mit dem Ziel einer hohen und effizienten Skalierung komplexer gekoppelter Simulationsmodelle auf modernen Parallelrechnern" wird vom Umweltbundesamt gefördert und von Deutsches Klimarechenzentrum GmbH durchgeführt. Im Rahmen der Ausschreibung 'HPC-Software für skalierbare Parallelrecher' koordiniert das DKRZ das vom BmbF geförderte Projekt ScalES ('Scalable Earth System Models') welches sich mit Problemen der effizienten Nutzung hochparalleler Rechnerarchitekturen für gekoppelte Klimamodelle beschäftigt

1 2 3