API src

Found 255 results.

PV-H2-Boot Solgenia

Das Projekt "PV-H2-Boot Solgenia" wird vom Umweltbundesamt gefördert und von Hochschule Konstanz Technik, Wirtschaft und Gestaltung, HTGW, Institut für Angewandte Forschung , Energiewandlung in Solarsystemen (IAF,EWIS) durchgeführt. 1. Introduction: In view of the increasing problem of energy supply, the University of Applied Sciences Konstanz developed a research boat powered by photovoltaic and fuel cells. The core question of the research project is, if such a combination represents a viable option for recreational and commercial boating. To answer this question, long-time performance-studies of each component by itself and in combination with others in marine environment are necessary. An Information-Management-System (IMS) interfacing to about ninety parameters was developed, providing the basis for analysis. 2. Energy Supply System: The energy supply system consists of two energy conversion units (PV-generator and fuel cell) and two energy storage units (battery and hydrogen tank). A DC/AC-inverter together with an asynchronous motor converts the electrical energy into mechanical energy for the propeller. The voltages between the three fuel cell modules as well as the PV-generator and the battery are adjusted by DC/DC-converters (see figure 1). The hydrogen will be provided by an electrolysis unit within the laboratory driven by a PV-generator and stored on land. One of the research aims is to adapt the hydrogen production depending on solar radiation to the hydrogen demand by the stationary fuel cells (in the laboratory) and the mobile fuel cells (in the boat). 3. Information management system (IMS): The requirements which the IMS has to fulfil are quite complex: 1. a real-time control-system has to operate the boat and process the parameters, 2. a graphical user interface has to provide meaningful and clear information for skipper as well as service and scientist, 3.measured data has to be periodically transmitted to a data bank at the institute for further processing. Use of the Internet gives independence of location. 4. Energy management: Energy management is one of the main tasks of the IMS. One of the research aims is to develop and optimize the management rules. The energy system itself consists of one controllable (fuel cell) and one not controllable energy converter (PV-generator) as well as of two energy storage devices (battery and H2-tank). Parameters affecting the energy management are among others: speed of boat, distance to travel, battery capacity and solar radiation. These parameters are either measured directly or calculated by the IMS. The Solgenia additionally will be used as laboratory unit in teaching: The students shall become familiar with the fundamental problems of managing renewable energies. 5. Graphical user interface: An industrial touch panel PC serves as man-machine-interface. The graphical user interface was divided into two basic groups: skipper and service/scientist. The menu for the latter group was protected by password to prevent an inexperienced skipper from creating any mischief. etc.

Die Bildung von Methan in marinen Algen

Das Projekt "Die Bildung von Methan in marinen Algen" wird vom Umweltbundesamt gefördert und von Universität Heidelberg, Institut für Geowissenschaften durchgeführt. Methan (CH4), das zweitwichtigste anthropogene Treibhausgas nach CO2, ist die häufigste reduzierte organische Verbindung in der Atmosphäre und spielt eine zentrale Rolle in der Atmosphärenchemie. Das globale atmosphärische Methanbudget wird von vielen natürlichen und anthropogenen terrestrischen und aquatischen Quellen bestimmt. Bis vor kurzem wurden alle biologischen Methanquellen der Tätigkeit von Mikroben zugeschrieben, die unter Sauerstoffausschluss (anaerob) beim Abbau von organischem Material CH4 produzieren wie z.B. in Feuchtgebieten, im Verdauungstrakt von Termiten und bei Wiederkäuern, und beim Abbau menschlicher und landwirtschaftliche Abfälle. Allerdings zeigen neuere Studien, dass die terrestrische Vegetation, Pilze und Säugetiere auch CH4 produzieren, und das ohne die Hilfe von Mikroben (Archaeen) und unter aeroben Bedingungen. Die Ozeane werden als Quellen von atmosphärischen CH4 betrachtet, obwohl der Betrag der Gesamtnettoemissionen sehr unsicher ist und die Quellen bisher nur unzureichend beschrieben sind. Um die Quelle des CH4 in den sauerstoffreichen oberen Wasserschichten zu erklären, wurde bisher meist vorgeschlagen, dass die CH4-Bildung in anoxischen Mikroumgebungen abläuft. In der Vergangenheit wurden aber auch schon andere Quellen genannt, wie die direkte in-situ-Bildung von CH4 in Algen. Allerdings steht ein direkter Nachweis einer CH4-Bildung aus Algen in Laborexperimenten mit axenischen Algenkulturen bisher noch aus, weshalb die direkte CH4-Bildung in Algen bisher nicht als ernsthafte Erklärung für die erhöhten Methankonzentrationen in den oberen Wasserschichten herangezogen wurde. Das Gesamtziel des Forschungsvorhabens ist der Nachweis (proof of principle) und die Quantifizierung der CH4-Bildung durch verschiedene Arten von Meeresalgen wie Kalkalgen (z.B. Emiliania huxleyi). Potentielle Vorläufersubstanzen, wie z. B. Methyl Sulfide und Methyl Sulfoxide, die im Metabolismus der Algen eine wichtige Rolle spielen, sollen mittels stabiler Isotopen-Techniken identifiziert werden. Verschiedene Umweltfaktoren wie z.B. Temperatur, Sauerstoffgehalt und Nährstoffverfügbarkeit werden im Hinblick auf ihren Einfluss auf die Methanbildung in marinen Algen untersucht. Zusätzlich werden verschiedene mikrobiologische Tests durchgeführt um die Beteiligung von Archaeen an der CH4-Bildung zu ermitteln (ein- oder auszuschließen). Ein interdisziplinärer biogeochemischer Ansatz (u.a. Kooperation mit mehreren Forschungsinstitutionen) ist erforderlich um die Ziele des Projekts zu realisieren. Die Ergebnisse sollen dazu beitragen unser Verständnis bezüglich des biogeochemischen Kreislaufs von CH4 in den Meeren zu verbessern und einen besseren Ansatz zur Lösung des so genannten 'ozeanisches Methan Paradox' zu liefern.

TIMES-HEAT

Das Projekt "TIMES-HEAT" wird vom Umweltbundesamt gefördert und von Karlsruher Institut für Technologie (KIT), Institut für Industriebetriebslehre und Industrielle Produktion durchgeführt. Das Projekt TIMES-HEAT ist eine Zusammenarbeit zwischen dem IIP und dem Europäischen Institut für Energieforschung im Bereich modellgestützte Energiesystemanalyse des deutschen Energiesystems mit besonderem Fokus auf den Wärmemarkt und Potenzialen für Mikro-KWK im Wohnsektor. Dafür müssen die Wechselwirkungen zwischen dezentraler objektbezogener Wärmeversorgung (Kessel, Klein-BHKW) und zentraler, leitungsgebundener Wärmeversorgung ebenso in Betracht gezogen werden wie die zeitliche und räumliche Verteilung des Wärmebedarfs sowie der Wärmeerzeugung. Dazu wird Deutschland in mehrere Subregionen unterteilt, der Gebäudebestand analysiert, klassifiziert und fortgeschrieben und die Abhängigkeit der Investitionsentscheidung bei Wärmeversorgungssystemen von der vorhandenen internen und externen Infrastruktur untersucht und abgebildet. Technologien an der Schnittstelle von Wärme- und Strommärkten wie KWK und Wärmepumpen haben einen besonderen Stellenwert im Modell. Das Optimierungsmodell wird in der TIMES-Umgebung entwickelt, die vom ETSAP -Konsortium der IEA herausgegeben wird, was beiden Projektpartnern zusätzlich die Möglichkeit bietet, die Kenntnisse im Umgang mit dieser Software zu vertiefen.

The Atmosphere-Ocean Dynamics Project under the Quest Umbrella (AO-Quest)

Das Projekt "The Atmosphere-Ocean Dynamics Project under the Quest Umbrella (AO-Quest)" wird vom Umweltbundesamt gefördert und von Potsdam-Institut für Klimafolgenforschung e.V. durchgeführt. The PIK-project AO-Quest is concerned with the study of mechanisms of atmosphere-ocean dynamics in climate changes in past and future. It thus complements the carbon cycle (C-Quest) and continental ice (Ice-Quest) components of the Quest group of projects. Areas of study include climate variations in the past (glacial, holocene, paleocene-eocene thermal maximum, etc.) as well as future anthropogenic climate changes which estabilshes a natural link to the Integration project of TOPIK 2. The main tools used in AO-Quest are the CLIMBER model family (2, 3a, 3) and simple conceptual models.

Sub project: Marine Isotope Stage 11 in the eastern Mediterranean Sea: Nearest analog to the present day?

Das Projekt "Sub project: Marine Isotope Stage 11 in the eastern Mediterranean Sea: Nearest analog to the present day?" wird vom Umweltbundesamt gefördert und von Universität Bremen, Zentrum für marine Umweltwissenschaften durchgeführt. Marine isotopic Stage 11 (MIS11), some 400,000 years ago, provides the closest analog to the Holocene in terms of the configuration of the Earth s orbit around the Sun and the resulting strength and variability of solar insolation. Understanding the climate of MIS11 will thus aid in assessment of human impact on global climate and of the future of the present warm period. The Mediterranean acts as an amplifier of climate signals, responding to forcing from both the North, via the North Atlantic Oscillation and from the South, through shifts of the Intertropical Convergence Zone. This unique potential of the region to record different facets of MIS11 climate has never been explored. In this project, we will generate the first high-resolution multi-proxy records from eastern Mediterranean OOP cores, reconstructing the hydrography, climate and ecosystems of the region across the MIS11. We specifically aim to study the pattern of climate fluctuation during MIS11 as an analog of what might have been expected during the Holocene (MIS1) without human overprint. We will also determine when and how this Holocene-like interglacial ended and whether the plunge into a new ice age could have been predicted from precursor signals or events. Our results will help in evaluating scenarios of future climate change in this densely populated region, with obvious benefits to society in Mediterranean countries.

Exzellenzcluster 80 (EXC): Ozean der Zukunft

Das Projekt "Exzellenzcluster 80 (EXC): Ozean der Zukunft" wird vom Umweltbundesamt gefördert und von tian-Albrechts-Universität zu Universität zu Kiel, Forschungs- und Technologie-Zentrum Westküste durchgeführt. Although several predictions of sea-level rise and climate change have been proposed, little is known about their long-term effects on coastal evolution over the next 100 years. The objective of the proposed research project is to develop a new strategy, in which process-based models are applied for the simulation of long-term morphodynamics. The results might be extended to similar coastal areas. The focal point of the investigation is to assess the impact of sea-level rise and of hydrodynamic effects of climate change on future morphodynamic behaviour. It is proposed to extend a two-dimensional process-based model in order to carry out simulations covering periods of about 100 years. The area of investigation is a coastal region between the Elbe and Eider estuaries in the German Bight. Simulations covering a wide range of representative scenarios regarding sea-level, effects of climate change (i.e. wind, waves, currents) and their morphological response will be carried out. The results obtained are intended to provide valuable information on the nature and extent of coastal evolution, thereby enhancing coastal zone management in the study area.

The Demonstration of Waste Biomass to Synthetic Fuels and Green Hydrogen (TO-SYN-FUEL)

Das Projekt "The Demonstration of Waste Biomass to Synthetic Fuels and Green Hydrogen (TO-SYN-FUEL)" wird vom Umweltbundesamt gefördert und von Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung eingetragener Verein durchgeführt. TO-SYN-FUEL will demonstrate the conversion of organic waste biomass (Sewage Sludge) into biofuels. The project implements a new integrated process combining Thermo-Catalytic Reforming (TCR©), with hydrogen separation through pressure swing adsorption (PSA), and hydro deoxygenation (HDO), to produce a fully equivalent gasoline and diesel substitute (compliant with EN228 and EN590 European Standards) and green hydrogen for use in transport . The TO-SYN-FUEL project consortium has undoubtedly bought together the leading researchers, industrial technology providers and renewable energy experts from across Europe, in a combined, committed and dedicated research effort to deliver the overarching ambition. Building and extending from previous framework funding this project is designed to set the benchmark for future sustainable development and growth within Europe and will provide a real example to the rest of the world of how sustainable energy, economic, social and environmental needs can successfully be addressed. This project will be the platform for deployment of a subsequent commercial scale facility. This will be the first of its kind to be built anywhere in the world, processing organic industrial wastes directly into transportation grade biofuels fuels which will be a demonstration showcase for future sustainable investment and economic growth across Europe. This project will mark the first pre-commercial scale deployment of the technology processing up to 2100 tonnes per year of dried sewage sludge into 210,000 litres per year of liquid biofuels and up to 30,000 kg of green hydrogen. The scale up of 100 of such plants installed throughout Europe would be sufficient to convert up to 32 million tonnes per year of organic wastes into sustainable biofuels, contributing towards 35 million tonnes of GHG savings and diversion of organic wastes from landfill. This proposal is responding to the European Innovation Call LCE-19.

Sub project: Fluid injection test of the SE2-fault system at the KTB-VB (operation, co-ordination, seismic and hydraulic signals in KTB-HB)

Das Projekt "Sub project: Fluid injection test of the SE2-fault system at the KTB-VB (operation, co-ordination, seismic and hydraulic signals in KTB-HB)" wird vom Umweltbundesamt gefördert und von Helmholtz-Zentrum Potsdam Deutsches GeoForschungsZentrum durchgeführt. The Kontinentale Tiefbohrprogramm der Bundesrepublik Deutschland (KTB) was enormously successful. It has revealed a wealth of geoscientific data and new results of unrivalled quality and broadness. However, several of the main objectives have only been marginally investigated, and the scientific potential of the two KTB boreholes, the 4.0 km deep pilot hole (KTB-VB) and the 9.1 km deep main hole (KTB-HB) has by no means fully exploited. The general aim of this and accompanying projects is to study energy and fluid transport processes in continental fault systems at the KTB drill site. For that purpose it is proposed to carry out a fluid production test during a period of 12 months in the KTB-VB. During the test various geophysical, hydraulic and geochemical parameters will be monitored in real-time. Samples of uncontaminated deep seated crustal fluids and gases will be taken regularly for further detailed geochemical, geobiological and isotopic investigations. Data and samples will be provided to several research groups from different institutions for further detailed evaluation. Within this project, the operational work, and tasks of the science team will be co-ordinated, also geochemistry and isotopic composition of crustal gases will be investigated in detail.

Joint-SoRUs; Sub project: TU Dresden

Das Projekt "Joint-SoRUs; Sub project: TU Dresden" wird vom Umweltbundesamt gefördert und von Technische Universität Dresden, Institut für Energietechnik, Professur für thermische Energiemaschinen und -anlagen durchgeführt. Kernziel des Projekts ist es, den Austausch deutscher und usbekischer Wissenschaftler zu fördern und darüber den Aufbau wissenschaftlicher Kapazitäten im Bereich der solaren Kraftwerkstechnik in Usbekistan zu unterstützen. Für die erfolgreiche Implementierung solarthermischer Konzepte im Land sind die lokalen Kapazitäten für die Beratung bei der politischen Entscheidungsfindung und Unterstützung der beteiligten Unternehmen von entscheidender Bedeutung. Neben der Weiterqualifizierung des vorhandenen Personals sollen auch Maßnahmen zur Förderung des wissenschaftlichen Nachwuchses auf beiden Seiten sowie die engere Einbindung der usbekischen Partner in wissenschaftlich-technische Netzwerke initiiert werden. Dafür werden 3 Workshops organisiert. Das Vorhaben umfasst 3 Arbeitspakete (AP). AP 1 beinhaltet die Analyse des vorhandenen Kraftwerksparks hinsichtlich technischer Möglichkeiten zur Einkopplung von Solarthermie und die Aufbereitung der technischen und sozioökonomischen Randbedingungen. Die Ergebnisse werden in einem gemeinsamen Workshop vorgestellt. AP2 umfasst die Entwicklung eines Referenzkonzepts für die Solareinkopplung anhand eines in AP 1 identifizierten Kraftwerks. Es wird eine Referenzschaltung für die Einbindung eines DSG-Solarfeldes in ein bestehendes fossiles Kraftwerk erarbeitet und anschließend technisch und ökonomisch bewertet (Workshop) sowie publiziert. AP 3 umfasst alle Aktivitäten zur Intensivierung des internationalen Erfahrungsaustausches.

Long-term Driving Factors & Land Use Policies in Europe

Das Projekt "Long-term Driving Factors & Land Use Policies in Europe" wird vom Umweltbundesamt gefördert und von Forstliche Versuchs- und Forschungsanstalt Baden-Württemberg durchgeführt. The basic and unifying question of this project is to what extent and how ecosystems maintain their resilience towards the different impacting factors (i.e. climate change). This again impinges on biodiversity conservation strategies. Of special interest hereby is how different/similar ecosystems and species react in different vegetation zones and eco-regions under different climatic conditions and disturbance/driving factors? What are the thresholds of the resilience of ecosystems under increasing temperatures due to climatic change, and what will be the response of communities that have not experienced such disturbances in the past? This project will cover the whole northern boreal region using pristine Russian forests as a reference. It would provide a careful evaluation of this long geographical, political and historical gradient of different land-use politics and their biodiversity effects from Russia via the Baltic countries to central Europa. This would be helpful in understanding and predicting the future changes and choosing management strategies. Although there is a great deal of interest in the biological diversity in species/ecosystem and genetic level, it is only recently that researchers have started to investigate the processes that exert parallel influences on these different levels of biodiversity. Policy aimed at conserving biodiversity has focused on species diversity. Loss of genetic diversity, however, can affect population resistance, evolutionary genetic potential, and population fitness. Species diversity and genetic diversity may be correlated as a result of processes acting in parallel at the two levels. However, no intensive studies have been conducted so far to predict the conditions under which different relationships between species diversity and genetic diversity might arise and therefore when one level of diversity may be predicted using the other. In this project all these levels of biodiversity will be included in a interdisciplinated study. This project will address the integration of data depicting long-term landscape history with present day data (such as statistical, GIS and Remote Sensing data, etc.) and models predicting future developments.

1 2 3 4 524 25 26