API src

Found 37 results.

Seen/Messprogramm Biologie (StALU MS Neubrandenburg)

Erfassung biologischer Parameter an stehenden Gewässern.

Seen/Meßprogramm Biologie (StALU VP Stralsund)

Erfassung biologischer Parameter an stehenden Gewässern.

Lebensgemeinschaft des Seebodens

Die Lebensgemeinschaft am Seeboden gibt in ihrer Artenzusammensetzung Auskunft über den Zustand sowohl des Gewässers als auch des Sediments. Ihre Untersuchung ist daher ein wichtiger Teil der Seenüberwachung. Gegenüber der frei beweglichen Lebensform der Freiwasserlebensgemeinschaften leben alle Bewohner des Seebodens mehr oder weniger ortsgebunden. Ihre Zusammensetzung ist daher vorwiegend ein Spiegel lokaler Umweltbedingungen. Am Seeboden ändern sich die Lebensbedingungen oft sehr kleinräumig. Daher sind für die Bewertung des Seezustandes aufwändigere und flächendeckendere Beprobungen als beim Freiwasser erforderlich. Vor allem aus diesem Grund waren bislang umfassendere Bestandsaufnahmen der Lebensgemeinschaften des Seebodens auf den Bodensee beschränkt. Dabei wurden sowohl Makrophyten und Aufwuchsalgen aus auch heterotrophe Benthosorganismen (Makro-, Meio-, Mikrobenthos) berücksichtigt. Makrophyten und Aufwuchsalgen tragen als pflanzliche Organsimen zur Primärproduktion und damit zur Nahrungsversorgung der heterotrophen tierischen und mikrobiellen Lebensgemeinschaften des Seebodens bei. Da ihr Wachstum wie bei allen Pflanzen lichtabhängig ist, ist ihre Verbreitung auf die durchlichteten flachen Bereiche des Seebodens beschränkt. Neben ihrer Bedeutung als Nahrungsquelle bilden sie aber auch wichtige strukturelle Elemente der Flachwasserzone, die einerseits lokale Strömungs- und Sedimentationsmuster beeinflussen und andererseits für viele Organismen Bedeutung für Schutz und Nachwuchssicherung haben. Bei Makrophyten handelt es sich um makroskopische, also mit bloßem Auge sichtbare Wasserpflanzen, die unter und an der Wasseroberfläche leben und bis mehrere Meter lang werden können. Dazu gehören Armleuchteralgen (Charophyta), Moose, Farne sowie Samenpflanzen (z.B. Laichkräuter, Seerosen und Teichrosen). Die meist mikroskopisch kleinen Aufwuchsalgen besiedeln Steine, Sedimente und setzen sich insbesondere aus Kiesel- und Goldalgen zusammen, in stärker belasteten Gewässern nimmt der Anteil von Blau- und Grünalgen zu, die dann oft fädig-zottige Beläge bilden. Makrophyten und Aufwuchsalgen können - vergleichbar mit Planktonalgen - als Zeigerorganismen (so genannte Indikatoren) für die Nährstoffbelastung herangezogen werden. Aufgrund ihres Wachstums in Ufernähe sind sie vor allem als Anzeiger punktueller Belastung geeignet (z.B. Abwassereinleitungen, hohe Bestände an Wasservögeln). Fotos: See mit Wasserpflanzen (links) sowie Armleuchteralgen unter Wasser (rechts). Fotograf: Humberg. Der Seeboden ist auch Lebensraum für heterotrophe tierische und mikrobielle Lebensgemeinschaften. Deren Nahrungsversorgung erfolgt in den durchlichteten Flachwasserbereichen vor allem über die vor Ort entstandene pflanzliche Produktion von Makrophyten und Aufwuchsalgen, in den lichtlosen Tiefenwasserbereichen dagegen ausschließlich über absedimentierende, im See selbst produzierte organische Substanz oder über organische Sinkstoffe aus Zuflüssen. Entsprechend der Größe der Organismen unterscheidet man das Makrobenthos (mit bloßem Auge sichtbar > 200 µm), Meiobenthos (200 – 40 µm) und Mikrobenthos (< 40 µm). Das Makrobenthos zeigt große Unterschiede mit der Wassertiefe: Im Flachwasserbereich dominieren Wasserinsekten, Egel, Schnecken, Muscheln und Kleinkrebse, im Tiefenwasserbereich Schlammröhrenwürmer, Zuckmückenlarven und Strudelwürmer. Manche dieser Organismen können durch ihre Wühltätigkeit im Schlamm den Sediment-Wasser-Austausch intensivieren (Bioturbation) . Das bislang nicht so intensiv untersuchte Meiobenthos wird von Fadenwürmern (Nematoden) dominiert. Zusätzlich werden Rädertiere, Bärtierchen und Kleinkrebse regelmässig gefunden. Aufgrund der festgestellen Biomassen und hohen Wachstumsgeschwindigkeiten kann davon ausgegangen werden, dass diese Organismen wesentlich an den biologischen Stoffumsetzungen im Seeboden beteiligt sind. Das Mikrobenthos setzt sich aus Bakterien und einzelligen Urtierchen (Protozoen) zusammen. Deren Funktion ist wie im überstehenden Wasser insbesondere der Abbau organischer Substanz. Damit verursachen sie auch die in der Regel steilen Gradienten für Sauerstoff und Redoxpotential in der Sediment-Wasser-Grenzschicht und beeinflussen auf diese Weise auch die Stoffflüsse zwischen Sediment und Wasser. Fotos: Flohkrebs (oben); Zuckmückenlarve (unten).

Lebensgemeinschaft des Freiwassers

Da bei vielen Seen der Freiwasserraum den vorherrschenden Anteil am Wasserkörper bildet, wird im allgemeinen auch der Schwerpunkt der hydrobiologischen Untersuchungen auf die Lebensgemeinschaft des Freiwassers gelegt. Diese besteht einerseits aus dem passiv mit dem Wasserkörper driftenden Plankton mit Phytoplankton als Primärproduzenten, Zooplankton als Konsumenten und den heterotrophen Mikroorganismen als Destruenten, und andererseits aus dem aktiv gerichtet schwimmenden Nekton, wozu insbesondere die Fische zählen. Plankton und Nekton sind die Akteure im ständigen Stoffkreislauf des Sees. Die im Plankton vorkommenden Arten werden laufend vom Institut für Seenforschung meistens an einer Station (Seemitte) in regelmäßigen Zeitabständen überwacht (14 täglich bis monatlich). Beim Phytoplankton handelt es sich um mikroskopisch kleine, im Wasser schwebende phototrophe Organismen, die einerseits zur Pflanzengruppe der Algen und andererseits zur Bakteriengruppe der Cyanobakterien gehören. Als photoautrophe Planktonorganismen bauen sie aus im Wasser gelösten Nährsalzen und Kohlensäure mit Hilfe des Sonnenlichts ihre Körpersubstanz auf. Sie stellen daher als „Primärproduzenten“ die Basis der Nahrungskette dar, die direkt oder indirekt als Energie- und Kohlenstoffquelle für alle anderen Organismen in einem Gewässer dient. Sowohl die Biomasse als auch die Artenzusammensetzung des Phytoplanktons sind wichtige Hinweise auf den Zustand eines Gewässers: eine niedrige Biomasse zeigt im Allgemeinen an, dass im Gewässer ein niedriges Nährstoffniveau herrscht, ein hohes Nährstoffniveau wird zu einer hohen Biomasse führen. Bestimmte Arten sind typisch für höhere Nährstoffkonzentrationen, andere Arten werden nur bei niedrigeren Konzentrationen gefunden, wieder andere Arten sind von der Nährstoffkonzentration weitgehend unabhängig. Das Phytoplankton wird nach Zusammensetzung und Biomasse erfasst. Dabei werden die Großgruppen der Cyanobakterien (Blaualgen) und der eukaryontischen Algen mit Euglenophyta (Augenflagellaten) Chromophyta (Kieselalgen u. Goldalgen), Dinophyta (Panzerflagellaten), Cryptophyta (Schlundalgen) und Chlorophyta (Grünalgen) durch Zählung der jeweils zugehörigen Einzelarten erfasst. Eine Abschätzung der Biomasse und der Gruppenzusammensetzung kann auch über die chemische Bestimmung der Algenpigmente erfolgen. Fotos: Diverse Phytoplankton-Arten unter dem Mikroskop. Von links nach rechts: Scenedesmus, Phacus, Ceratium, Cryptomonas, Microcystis. Die wichtigsten Gruppen des Zooplanktons sind die Kleinkrebse mit Cladoceren („Wasserflöhe“) und Copepoden („Hüpferlinge“), die Rotatorien („Rädertiere“), die Protozoen (Urtiere) mit Flagellaten und Ciliaten. Die meisten Arten ernähren sich von Algen, einige auch von Bakterien, wieder andere räuberisch durch Fressen anderer Zooplankter. Die Produktion des Zooplanktons (Wachstum und Fortpflanzung) ist im Wesentlichen abhängig von der Art und der Menge der vorhandenen Futteralgen sowie von der Temperatur. Daher ist in der Regel die Produktion im Sommer beschleunigt und im Winter verlangsamt. Die Art, Größe und Form der Algen bestimmt ihre Fressbarkeit. Die Menge der fressbaren Algen beeinflusst insbesondere bei hohen sommerlichen Temperaturen die Wachstums- und Fortpflanzungsgeschwindigkeit des algenfressenden Zooplanktons. Die Konkurrenz der einzelnen Zooplanktonarten um die gemeinsame Nahrungsgrundlage ist sehr komplex und von zahlreichen artspezifischen Faktoren abhängig. Durch den Fraß von einzelnen „bevorzugten“ Phytoplanktonarten ändern sich die Wachstumsbedingungen der verbleibenden Phytoplanktonarten. Die resultierenden Änderungen in Qualität und Quantität des „Phytoplanktons“ wirken sich wiederum auf das "Zooplankton" aus. Das „Zooplankton“ seinerseits dient als Nahrungsgrundlage für räuberische Zooplanktonarten und für Fische. Auch hier gibt es komplexe Wechselwirkungen. Menge und Zusammensetzung des Zooplanktons geben daher insbesondere Auskunft über die Struktur des Nahrungsnetzes in einem Gewässer und stellen somit neben der Trophie eine weitere wichtige Informationsquelle zur Zustands-Bewertung eines Gewässers dar. Das Zooplankton wird entweder durch Netzfänge (Crustaceen und Rotatorien) oder durch Schöpfproben (Protozoen) aus unterschiedlichen Tiefen erfasst und mikroskopisch ausgewertet. Fotos: Diverse Zooplankton-Vertreter unter dem Mikroskop. Ruderfußkrebs (links); Wasserfloh (mittig); Rädertierchen (rechts). Neben den pflanzlichen (Produzenten) und tierischen Vertretern des Planktons (Konsumenten) bilden die mikroskopisch kleinen heterotrophen Mikroorganismen (Destruenten) sowohl im Hinblick auf Biomasse als auch für die Stoffkreisläufe eine dritte wichtige funktionelle Gruppe der Lebensgemeinschaft des Freiwassers. Zu dieser zählen einerseits die heterotrophen Bakterien, andererseits einzellige bakterienfressende Urtierchen (Protozoen), darunter vor allem Geißeltierchen (Flagellaten) und Wimpertierchen (Ciliaten). Die Bakterien erfüllen zusammen mit den bakterienfressenden Urtieren über die sogenannte Detritus-Nahrungskette (microbial loop) vorrangig die Funktion des Abbaus der organischen Substanz und damit der Regeneration von Nährstoffen. Über die so ermöglichten kurzgeschlossenen Stoffkreisläufe in der Freiwasserzone können die heterotrophen Mikroorganismen maßgeblich die Produktivität eines Gewässers mitbestimmen. Im Vergleich zum klassischen Plankton ist die Kenntnis der Artzusammensetzung der heterotrophen Mikroorganismen bislang noch sehr unzureichend, was vor allem auf methodischen Schwierigkeiten beruhte. Daher wurden bis jetzt Indikationsansätze, die auf der Artzusammensetzung beruhen, für diese Gruppe kaum entwickelt. Eine Ausnahme bilden die relativ leicht nachweisbaren Fäkal-Indikatoren (v.a. E. coli), die als Darmbakterien üblicherweise in natürlichen Gewässern nicht vorkommen. Deren Nachweis zeigt somit sehr sicher und hochempfindlich eine Verunreinigung mit fäkalbelastetem Abwasser an. Da inzwischen zusätzliche Bestimmungsmöglichkeiten über die Analyse artspezifischer molekularer Bestandteile (insbesondere der Nukleinsäuren) der Mikroorganismen zur Verfügung stehen, ist für die Zukunft mit einer erheblich verbesserten Nutzung des Indikationspotenzials weiterer heterotropher Mikroorganismen zu rechnen. Foto: Bakterienplankton nach Anfärbung mit Fluoreszenzfarbstoff unter dem Mikroskop. Fische stehen, wie einige Kleinkrebse, als Folgekonsumenten am Ende der Nahrungskette im Freiwasser. Zu den vorherrschenden Planktonfressern zählen in großen tiefen Seen die Felchen, in kleineren Seen Barsche und Weißfische (z. B. Rotfedern, Brachsen). Als Raubfische sind Hechte, Zander und erwachsene Barsche unterwegs. Über ihre Fresstätigkeit beeinflussen die Fische die Zusammensetzung der Lebensgemeinschaft im Freiwasser. Aktuell werden Fragen nach den Reaktionen der Fischbestände auf die Reoligotrophierung im Bodensee untersucht. Hierzu erfolgen Erhebungen über Bestandsverteilung, Altersstruktur und Laicherfolg mit Hilfe von Ultraschall-Techniken, Stichproben aus Netzfängen unterschiedlicher Maschenweiten und durch Erfassung von Menge und Anteil befruchteter Eier am Seeboden. Weitere Informationen zur Fischerei finden sie auch auf der Internetseite der Fischereiforschungsstelle .

Teilprojekt: Metabarcoding alter eukaryotischer DNA aus Chew Bahir, Ethiopia: Rekonstruktion der Folgen drastischer Umweltänderungen für die Biodiversität

Das Projekt "Teilprojekt: Metabarcoding alter eukaryotischer DNA aus Chew Bahir, Ethiopia: Rekonstruktion der Folgen drastischer Umweltänderungen für die Biodiversität" wird vom Umweltbundesamt gefördert und von Universität Potsdam, Institut für Biochemie und Biologie durchgeführt. Das Chew Bahir Drilling Projekt (CBDP) erbrachte tropische Sedimente aus den letzten 650000 Jahren. DNA-Metabarcoding an diesen Proben erschließt ein einzigartiges paläolimnologisches Archiv bezüglich Zeitspanne und zeitlicher Auflösung. In einer Pilotstudie konnten wir mittels Hybridization-Capture-basiertem Metabarcoding eukaryotische DNA aus den ca. 280 m langen Chew Bahir-Kernen in Sedimenten bis 70m Tiefe (ca. 150000 Jahren) analysieren. Dabei werden Sedimentproben einer Taxon- und Gen-spezifischen DNA-Anreicherung mit spezifischen Sonden ('baits') unterzogen und mittels Next-Generation-Sequencing analysiert. Wir wollen das Potenzial des DNA-Metabarcodings in den langen CBDP-Kernen weiter untersuchen. Unsere grundlegenden wissenschaftlichen Fragen sind: (1) Wie reagiert das Ökosystem auf kurze, aber signifikante Störungen, z.B. Dürren oder erhöhte Feuchtigkeit? Wir testen die Hypothese, dass einzelne Störungen das Ökosystem dauerhaft verändern, indem wichtige Komponenten des Ökosystems ausgetauscht werden. Da wir die Gesamtheit der Eukaryoten erfassen, können wir die Effekte für die Biodiversität quantifizieren und Folgen für Ökosystemfunktionen ableiten. (2) Was sind die Folgen globaler und lokaler Klimaveränderung, z.B. an Kipppunkten (tipping points)? Hier untersuchen wir, ob und wie ein Ökosystem infolge einer Störung von einem stabilen Zustand in einen anderen übergeht. Ein spezieller Fokus ist, ob ökologische Nischen nach einer Störung von den gleichen Taxa wiederbesiedelt werden oder ob sie durch andere Taxa ersetzt werden, wodurch sich Eigenschaften des Ökosystems verändern können. (3) Welche Langzeit-Trends finden sich in den Lebensgemeinschaften in Chew Bahir und anderen afrikanischen Sedimentkernen? Wir werden zeitliche Trends unserer Ziel-Eukaryotentaxa ermitteln, sowohl bezüglich der Artzugehörigkeit als auch bezüglich kryptischer genetischer Variation und (halbquantitativ) relativer Abundanz. Dies umfasst als Proxies etablierte Planktonorganismen (Ostracoda, Cladocera, Rotatoria, Diatomeen), aber auch wichtige terrestrische Arten (Insekten, Nagetiere, Huftiere, höhere Pflanzen). (4) Wie lange zurück in der Zeit können DNA-Reste im Chew Bahir und anderen HSPDP-Kernen extrahiert und analysiert werden? Hier werden wir Möglichkeiten DNA-basierter Detektion von Organismen in tieferen Schichten der Kerne (unter 70m) evaluieren. Weiterhin werden wir unsere Analyseprotokolle optimieren, um die DNA-Ausbeute unserer Zieltaxa zu maximieren und methodische Verzerrungen zu minimieren. Darüberhinaus werden wir Möglichkeiten und Grenzen halbquantitativer Abundanzschätzungen mittels NGS und qPCR zwischen Kernschichten und Taxa evaluieren. Wir analysieren gezielt Sedimente vor, während und nach drastischen Umweltveränderungen (vor allem Transitionen zwischen Dürren und Feuchtperioden), die in lithologischen Untersuchungen unserer Kooperationspartner identifiziert werden.

Populationsoekologie von Rotatorien

Das Projekt "Populationsoekologie von Rotatorien" wird vom Umweltbundesamt gefördert und von Universität Frankfurt, Fachbereich 15 Biologie und Informatik, Abteilung Ökologie und Evolution durchgeführt. Die Mechanismen der Regulation der Populationsdichte werden anhand von Rotatorien als Modellobjekten im Freiland, in kontrollierten Laborexperimenten und mittels deterministischer und stochastischer Computer-Simulationen verglichen. Dabei werden die Ursachen der Dichteschwankungen kausal auf die Lebensdaten zurueckgefuehrt. Der Vergleich empirischer Populationen mit den Simulationen erlaubt nicht nur Einsichten in das Wirkgefuege, sondern auch Prognosen, was insbesondere bei anthropogenen Manipulationen (z.B. als Bio-Indikator) bedeutungsvoll ist.

Indikatororganismen und Gewaesserbelastung

Das Projekt "Indikatororganismen und Gewaesserbelastung" wird vom Umweltbundesamt gefördert und von Universität Münster, Zoologisches Institut, Abteilung Physiologie und Ökologie durchgeführt. Rotatorien und Crustaceen in ihrem sich gegenwaertig aendernden Verbreitungsmuster sollen als Indikatororganismen fuer Gewaesserzustand und dessen Aenderung durch anthropogene Einfluesse erfasst werden.

Untersuchung von Reinigungsvorgaengen in einer Klaeranlage

Das Projekt "Untersuchung von Reinigungsvorgaengen in einer Klaeranlage" wird vom Umweltbundesamt gefördert und von Universität für Bodenkultur Wien, Institut für Wasserwirtschaft, Abteilung Hydrobiologie und Fischereiwirtschaft durchgeführt. Ermittlung von Bakteriengruppen und Phagen sowie Protozoen und Raedertierchen in den einzelnen Stufen einer Klaeranlage. Untersuchung der biochemischen Aktivitaet in den einzelnen Stufen mittels INT-Test.

Teilprojekt 3

Das Projekt "Teilprojekt 3" wird vom Umweltbundesamt gefördert und von Universität Potsdam, Institut für Biochemie und Biologie, Arbeitsgebiet Ökologie, Ökosystemmodellierung durchgeführt. Plastik in Binnengewässern ist ein zunehmendes Problem, dessen genaues Ausmaß und Bedeutung aktuell noch nicht abgeschätzt werden kann. Das Verbundprojekt hat das Ziel die Besiedlung auf Plastik sowie die Wirkung auf planktische und sedimentäre Kompartimente zu untersuchen. Der Focus dieses Teilprojektes liegt auf der Analyse der Wirkung von Mikroplastik auf Zooplankton. Es werden direkte öko-toxikologische und sub-letale Effekte von Mikroplastik unterschiedlicher Form, Größe und chemischer Zusammensetzung auf Rotatorien und Crustaceen analysiert. Darüber hinaus wird die potenzielle trophische Weitergabe von bereits ingestiertem Mikroplastik untersucht. Ferner werden indirekte Effekte auf Lebensgemeinschaften und die Rolle der Besiedlung und der Aggregation auf Mikroplastikpartikel untersucht. Im ersten Schritt werden die bereits angewendeten Methoden zur Untersuchung der direkten Effekte weiter verfeinert und angepasst, um dann die öko-toxikologischen und sub-letalen Effekte zu untersuchen. 2020 wird schwerpunktmäßig die trophische Weitergabe untersucht sowie bis zum Ende der Laufzeit der Effekt der Besiedlung der Partikel auf potenzielle Konsumenten sowie die Analyse des Phytoplanktons aus den Mesokosmen.

Teilprojekt: Merkmalsheterogenität (Trait heterogeneity), trophische Interaktionen und die Bedeutung von essentiellen Nährstoffen

Das Projekt "Teilprojekt: Merkmalsheterogenität (Trait heterogeneity), trophische Interaktionen und die Bedeutung von essentiellen Nährstoffen" wird vom Umweltbundesamt gefördert und von Universität Konstanz, Limnologisches Institut durchgeführt. Futterqualität hängt von der Verfügbarkeit von essentiellen Ressourcen in der Beute ab und hat eine große Wirkung auf Merkmale/Charakterzüge (Traits) der Physiologie, des Verhaltens und des Lebenszyklus eines Räubers. Das Ziel des Projekts ist die Integration solcher Futterqualitätseffekte in aktuelle Forschungsansätze der Trait-Variation. Wir wollen die Rolle der Futterqualität und assoziierte Rückkopplungsmechanismen untersuchen, die die Heterogenität von Traits und die komplexen und dynamischen Interaktionen zwischen Räuber und Beute formen. Populationsdynamiken und Artenkoexistenz sollen mithilfe von Untersuchungen der interspezifischen Trait-Variation in bi-trophischen Modellsystemen und Intra-guild Prädation in tri-trophischen Modellsystemen abgeschätzt werden. Wir verwenden einen kombinierten Ansatz aus Experimenten und mathematischer Modellbildung und untersuchen einfache, manuell zusammengestellte und daher kontrollierbare Nahrungsnetze in Chemostatsystemen, die aus einem Rotatorium (Räuber) und zwei Beutearten bestehen. Die Beutearten unterscheiden sich aufgrund ihrer Lipidzusammensetzung (essentielle Lipide) substantiell in ihrer Futterqualität. Wir nehmen an, dass eine Limitation durch biochemische Nährstoffe (essentielle Lipide) in erster Linie die Nutzbarkeit der Beute durch den Räuber beeinflusst (d.h. die numerische Reaktion und Wachstumsrate des letzteren). Hierbei wird die Beute jedoch direkt nicht vor Fraß geschützt wie das bei einer schlechteren Freßbarkeit wäre. Die Nutzbarkeit der Beute schlechter Qualität hängt von der Verfügbarkeit der Beute guter Qualität und der physiologischen Antwort des Räubers ab. Daher können die trophischen Interaktionen und Populationsdichten hochdynamisch sein und auch wichtige Rückkoppelungsmechanismen zwischen den trophischen Ebenen entstehen. In weiteren Schritten werden Nahrungsnetze von etwas höherer Komplexität untersucht und z.B. potentielle Unterschiede zwischen Verteidigungsstrategien der Beute und der Anwesenheit eines intermediären Räubers (Intra-guild-Prädation) berücksichtigt. Bei der Untersuchung der Populationsdynamiken werden mathematische Modelle und Experimente eng miteinander verknüpft. Das Verständnis wie essentielle Nährstoffe Populationsdynamiken beeinflussen ist nötig um in Zukunft vorherzusagen wie Populationen und Nahrungsnetze auf sich ändernde Umweltbedingungen reagieren.

1 2 3 4