Das Projekt "Phase 1: Earth and Space Based Power Generation Systems" wird vom Umweltbundesamt gefördert und von Deutsches Zentrum für Luft- und Raumfahrt, Institut für Technische Thermodynamik, Abteilung Systemanalyse und Technikbewertung durchgeführt. This study has to be understood in the frame of the global Energy Policy. A great part of world energy production is currently based on non-renewable sources: oil, gas and coal. Global warming and restricted fossil energy sources force a strong demand for another climate compatible energy supply. Therefore, fossil energy sources will nearly disappear until the end of this century. The question is to find a viable replacement. By using viable' it is meant a low-cost and environmental friendly energy. In other words, the question is to find an alternative to nuclear energy among all proposed but still not mature renewable energies. One of the solutions proposed is solar energy. Yet, two major concerns slow down its development as an alternative: first, it lacks of technological maturity and secondly it suffers from alternating supply during days and nights, winters and summers. The idea proposed by Glaser in the sixties to bypass this inconvenient is to take the energy at the source (or at least, as near as possible): in other words, to put a solar station on orbit that captures the energy without problems of climatic conditions and to redirect it through a beam to the ground. That is the concept of Solar Power Satellites. Its principal feasibility was shown by DOE / NASA in 1970 years studies (5 GW SPS in GEO). Project objectives: This phase 1 study activity is to be seen as the initial step of a series of investigations on the viability of power generation in space facing towards an European strategy on renewable, CO2 free energy generation, including a technology development roadmap pacing the way to establish in a step-wise approach on energy generation capabilities in space. The entire activity has to be embedded in an international network of competent, experienced partners. As part of this, an interrelationship to and incorporation of activities targeting the aims of the EU 6th FP ESSPERANS should be maintained. In particular, the activities related to following objectives are described: The generation of scientifically sound and objective results on terrestrial CO2 emission free power generation solutions in comparison with state-of-the-art space based solar power solutions The detailed comparison and trades between the terrestrial and the space based solutions in terms of cost, reliability and risk The identification of possible synergies between ground and space based power generation solutions The assessment on terrestrial energy storage needs by combining ground based with space based energy generation solutions The investigation of the viability of concepts in terms of energy balance of the complete systems and payback times.
Das Projekt "AURORa - Investigation of the Radar Backscatter of Rain Impinging on the Ocean Surface" wird vom Umweltbundesamt gefördert und von Universität Hamburg, Zentrum für Meeres- und Klimaforschung, Institut für Meereskunde (IfM) durchgeführt. Over land, observations of rain rates are more or less operational. To obtain information about precipitation at the coastal zones, weather radars are used. However, over the oceans, especially away from the main shipping routes, no direct precipitation measurements are performed. In these regions, satellite data can provide information about precipitation events. Satellites deploying passive and active microwave sensors can operate independently of cloud cover and time of day. Passive microwave sensors give crude estimates of rain rates over large areas but cannot resolve small-scale rain events of short duration as are often observed in the tropics, for example. Active microwave sensors with high resolutions, such as synthetic aperture radars can provide more reliable information. Though the effect of rain on the atmosphere is a very topical area of research, the radar backscattering mechanisms at the water surface during rain events combined with wind are still not well understood. The purpose of this project is to investigate the radar backscattering from the water surface in the presence of rain and wind in order to interpret satellite radar data produced by active microwave sensors. Furthermore, the results should be embedded into models of the radar backscattering from the water surface to allow for estimating rain rates by using satellite data. Research topics: Rain impinging on a water surfaces generates splash products including crowns, cavities, stalks and secondary drops, which do not propagate, and ring waves and subsurface turbulence. We are investigating this phenomena at the wind-wave tank of the University of Hamburg. The tank is fitted with an artificial rain simulator of 2.3 m2 area mounted 4.5 m over the water surface. Rain drops of 2.1 and 2.9 mm in diameter with rain rates up to 100 mm/h have been produced. Wind with speeds 10 m/s and monomolecular slicks act on the water surface. The influence of the rain on the water surface is measured with a resistance type wire gauge, a two dimensional laser slope gauge and an coherent 9.8 GHz (x band) continuous wave scatterometer operating at VV-, HH- and HV-polarization. The influence of rain below the water surface is measured with colored raindrops which are observed with a video camera to investigate the turbulent motion and the depth of the mixed layer. At the North Sea Port of Buesum in Germany, a scatterometer operating at all polarizations and five frequencies will be mounted during summer of this year. The radar backscatter of the sea surface during rain events will be measured in combination with meteorological observations. With help of these measurements, existing radar backscatter models of the water surface will be improved for the presence of rain events. To validate the improved models, ERS-2 SAR-images will be compared with weather radar data.
In dem Flyer wir beschrieben, wie mit schwerkranken Füchsen in der Schonzeit, umgegangen werden muß.
Das Projekt "Global Land Ice Measurements from Space - Antarctic Peninsula (GLIMS)" wird vom Umweltbundesamt gefördert und von Universität Freiburg, Institut für Umweltsozialwissenschaften und Geographie, Professur für Physische Geographie durchgeführt. Das internationale Projekt GLIMS (Global Land Ice Measurements from Space) erstellt ein auf Fernerkundungsdaten basiertes Inventar der Gletscher der Erde. Veränderungen in glazialen Systemen sind Indikatoren für regionalen und globalen Klimawandel. Das Ziel von GLIMS ist, ein globales Gletscherinventar bereitzustellen, das als Referenz für spätere Vergleiche dienen kann. Das Verständnis nicht nur der Gründe für beobachtete Veränderungen, sondern auch deren Auswirkungen, wird zu einem besseren Verständnis des globalen Wandels und seiner Folgen führen. Innerhalb von GLIMS ist das IPG Freiburg als Regional Center 18 verantwortlich für das Gebiet der Antarktischen Halbinsel.
Das Projekt "Identifying the Predominant Sources of Atmospheric Dust to the Antarctic using Peat Cores from Ombrotrophic Sphagnum Bogs in Patagonia" wird vom Umweltbundesamt gefördert und von Universität Heidelberg, Institut für Umwelt-Geochemie durchgeführt. Antarctic ice cores document considerable variation in the fluxes of atmospheric soil dust, volcanic ash particles, and trace metals, but the records are incomplete and the predominant sources of these aerosols are poorly characterised with respect to space and time. Ombrotrophic peat bogs are excellent archives of most atmospheric particles and a wide range of trace metals, and are abundant in Tasmania, New Zealand and Patagonia. The study proposed here will represent the first complete, long term (13.000 yr), high resolution reconstruction of atmospheric dust and trace metal deposition for the southern hemisphere. Conservative, lithogenic trace metals (Ti, Y, Zr, Hf, REE) will be used to quantify the changing rates of atmospheric soil dust deposition, and the ration of these elements to Sc will document changes in mineralogy and particle size. Lead and Sr isotope data will be used to identify changes in predominant dust source areas which will provide new insight into Holocene climate change in the southern hemisphere. Arsenic, Ag, Cd, Sb and Pb will be used to estimate anthropogenic contributions to the metal fluxes. In addition, trace elements supplied by volcanoes will be identified using changes in Au and Bi concentrations, and cosmogenic dust using Os and Ir. These new terrestrial records will complement the existing trace metal and dust records from Antarctica snow and ice archives, and fill in a number of important research gaps.
Das Projekt "Sea Ice Deformation Mapping by Means of Synthetic Aperture Radar" wird vom Umweltbundesamt gefördert und von Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung - Fachbereich Klimawissenschaften durchgeführt. A concept that utilizes parameters retrieved from synthetic aperture radar (SAR) imagery will be devised in order to evaluate the atmospheric drag coefficient of sea ice. Methods will be developed for mapping and quantifying sea ice surface structure and deformation (e. g. floe size distribution, ridge spacing) from radar data. Considering that different SAR systems will be launched into space in the near future, the proposed investigations consider the effect of radar frequency, polarization, and spatial resolutions on the parameter retrieval. Retrieval methods and their accuracy will be assessed. Potential correlations between SAR backscatter variations, retrieved parameters related to sea ice deformation and surface structure, and the atmospheric drag coefficient will be analysed. The utilization of the retrieved parameters will be tested in numerical simulations of atmospheric boundary layer processes. Quantitative information about the sea ice surface structure and deformation is also of use for modelling sea ice dynamics, estimating sea ice mass balance, classifying ice types, and for safety and efficiency of marine transport and offshore operations.
Das Projekt "ESA Distributed Power - Distributed Power Grid Management Based on Space Technologies" wird vom Umweltbundesamt gefördert und von Deutsches Zentrum für Luft- und Raumfahrt, Institut für Technische Thermodynamik, Abteilung Systemanalyse und Technikbewertung durchgeführt. The goal of the project is to evaluate the contribution of space technologies in terms of Earth Observation, telecommunications and navigation satellites applied in the electrical power grid management, when distributed renewable energy plants are present in the grids. The quantitative assessment will be carried out in terms of well identified indicators already defined in the ESA statement of Work and in terms of new indicators defined during the present study.
Das Projekt "Development of an End-to-end Model to Simulate the Performances of a Water Vapour DIAL System in Space" wird vom Umweltbundesamt gefördert und von Universität Hohenheim, Institut für Physik und Meteorologie durchgeführt. An end-to-end performance model is being developed which will be capable of simulating all significant processes important for determining the measurement capabilities of a space-borne DIAL system such as WALES. This model will also be applied for estimating the performance of airborne or ground-based systems.
Das Projekt "Litebus-Modular Lightweight Sandwich Bus Concept" wird vom Umweltbundesamt gefördert und von Technische Universität Clausthal, Institut für Polymerwerkstoffe und Kunststofftechnik durchgeführt. Die öffentlichen Verkehrsmittel sollen durch technische Neuerungen, etwa bei der Materialauswahl, umweltschonender betrieben werden. Bei den Werkstoffen werden Hybrid-Materialien und Sandwichverbunde aufgrund ihres geringen Gewichts, der hohen Steifigkeit und des guten Crashverhaltens immer wichtiger für den Fahrzeugbau. Im Rahmen des EU-Projektes ging es darum, die bisher übliche Metallbauweise von Bussen durch leichtere Strukturen zu ersetzen. Als neue Materialien für die Karosserie empfehlen sich lasttragende Sandwichverbunde aus faserverstärkten Kunst- und Schaumstoffen. Zwischen zwei Schichten von hochstabilen Kunststoffen wird quasi als mittlere Schicht ein steifer Schaumstoff eingelagert. Solche innovativen Materialkombinationen haben sich im Flugzeugbau oder auch für Windenergieanlagen aufgrund ihrer guten Leichtbaueigenschaften bereits etabliert - und könnten nun auch im Busbau eingesetzt werden. Hauptaufgabe der Clausthaler Wissenschaftler waren die Material- und Prozessauswahl der Busstrukturkomponente. Außerdem arbeiteten sie an deren Gestaltung mit. Die Wahl fiel schließlich auf eine Kombination unterschiedlicher Materialien wie Glas- und Kohlenstofffasern mit Epoxidharz als Matrix sowie einem Strukturschaum als Kernwerkstoff für die Erfüllung der hohen Anforderungen in Bussen. Innerhalb des Gesamtprojekts ist eine Zelle des neuen Busses gebaut und mit Sitzen und Fenstern ausgestattet worden. Zur Überprüfung der Bussicherheit wurde ein Überrolltest durchgeführt. Die Zelle bestand den Test mit, lediglich die äußere der Doppelglasscheiben ging zu Bruch. Alle drei am Projekt beteiligten Busbaufirmen wollen die erarbeiteten Erkenntnisse für folgende Fahrzeuggeneration aufnehmen und verstärkt faserverstärkte Kunststoffe einsetzen. Bei der Entwicklung der Sandwichbauweise für Busse waren Wissenschaftler aus ganz Europa beteiligt gewesen. Die Projektkoordination lag beim INEGI - Instituto de Engenharia Mecanica e Gestao Industrial, Leca do Balio, Protugal.
Das Projekt "Dynamic Sensing of Chemical Pollution Disasters and Predictive Modelling of their Spread and Ecological Impact (ECODIS)" wird vom Umweltbundesamt gefördert und von Max-Planck-Institut für marine Mikrobiologie durchgeführt. ECODIS will develop sensor technologies for monitoring the physicochemical reactivity and biological impact of inorganic and organic pollutant species in aquatic systems. ECODIS will also apply these technologies to the study of the short and long term chemical and biological status of aquatic ecosystems following a pollution disaster. Exposure conditions experienced by organisms are defined by the temporal profiles of concentration and speciation of pollutants. These profiles will be quantitatively linked to biological effects via an innovative dynamic approach based on the flux of pollutant species as a key parameter in effective ecosystem quality. The dynamic features of pollutant species distributions over biotic and abiotic components will be a basic component of a new generic dynamic approach for any macroscopic aquatic ecosystem impacted by a pollution disaster event. This will involve the integration of the dynamic features of pollutants with their macroscale transport resulting from diffusion and flows in the water body. One of the major goals of ECODIS is to arrive at a model that includes predicted pollutant species distributions, and ensuing biological risks, in all compartments of the aquatic ecosystem as a function of time and space. Especially in disaster situations, the pollutant sink/source functioning of ecosystems under extreme load will be a key factor in the rate of spread of the disaster impact. ECODIS will couple the sink/source function with the transport modelling and derive the ensuing immediate and long term impact of a given pollution disaster. ECODIS will also open the way for developing sophisticated strategies for dynamic risk assessment and disaster management policies. One of the ultimate goals in ECODIS's action plan is the formulation of a set of guidelines for monitoring, data management, and interpretation of pollution disasters. Prime Contractor: Wageningen Universiteit; Wageningen; Netherland.