Im Rahmen dieses Projekts wurde das Tool TeResE (Temporal Resolution of Emission data) zur zeitlichen Verteilung von Emissionen entwickelt. Für räumlich verteilte Emissionen leitet das Tool regionalisierte Splitting-Faktoren ab, die für jede Gitterbox und jede Quellgruppe pro Stunde den Anteil der jeweiligen Emission enthalten. Diese Splitting-Faktoren hängen dynamisch von den jeweiligen räumlichen oder zeitlichen Bedingungen ab, z.B. unterscheiden sich verschiedene Jahre hinsichtlich der Meteorologie: Art, Ausprägung und Zeitpunkte der auftretenden Wetterlagen variieren sowohl räumlich wie auch von Jahr zu Jahr. Dies beeinflusst unmittelbar die zeitlichen Emissionsprofile der Quellgruppen wie z.B. der Landwirtschaft oder der Kleinfeuerungsanlagen. Andere wichtige Eingangsdaten sind z.B. stündliche Daten der Verkehrsstärken des Straßenverkehrs oder der aktuellen Energieabgabe von Kraftwerken. Die aktuell vorliegende Version des Tools erzeugt Splitting-Faktoren für Stickstoffoxide, Feinstaub, Ammoniak, nicht-Methan Kohlenwasserstoffe, Schwefeldioxid und Kohlenmonoxid und das Nest-2 Gitter (ca. 2 km x 2 km Auflösung über Deutschland) des derzeit im Umweltbundesamt betriebenen Chemie-Transport-Modells REM-CALGRID. Mit diesem Modell wurde für das Jahr 2016 eine Evaluierung der Splitting-Faktoren durchgeführt. Dazu wurden die Schnittstellen des Modells REM-CALGRID entsprechend angepasst. Quelle: Forschungsbericht
Zur Bewertung der Luftqualität und zur Simulation von Szenarien hinsichtlich der Minderung der Schadstoffbelastung in der Atmosphäre werden Chemie-Transport-Modelle verwendet. Diese beruhen auf Emissionsdaten, die in Emissionsinventaren meist als nationale Jahresemissionen zusammengefasst werden. Mittels Verteilfunktionen werden diese Gesamtemissionen sowohl räumlich als auch zeitlich verteilt. Diese Verteilfunktionen geben ein statistisches Emissionsverhalten wieder, welches in Wirklichkeit aufgrund von Wetterbedingungen und individuellen Entscheidungen der Menschen sehr viel variabler ist. Erstmals wird eine vollumfängliche Analyse anthropogener Emissionen mithilfe der im EURADIM (European Air pollution Dispersion - Inverse Model) implementierten 4D-var (vierdimensionale variationelle) Datenassimilationsmethode durchgeführt. Hierbei werden unterschiedliche atmosphären-chemische Beobachtungen genutzt, um Emissionskorrekturfaktoren für die Emissions-Eingangsdaten aus dem Gridding Emission Tool for ArcGIS (GRETA) zu bestimmen. Der Fokus liegt auf der Optimierung anthropogener Spurengas- und Aerosolemissionen für das Analysejahr 2016. Unter Verwendung von drei verschiedenen horizontalen Modellauflösungen (15x15 km^2, 5x5 km^2, 1x1 km^2) werden die Emissionen in Europa, Deutschland und in drei innerdeutschen Regionen detailliert bezüglich ihrer horizontalen Verteilung analysiert. Die 4D-var Re-Analyse ermöglicht eine erfolgreiche Evaluierung der räumlichen Verteilung der Emissionen in Europa. Die gesamt-europäischen Emissionskorrekturen deuten im Mittel auf zu geringe Emissionen in Emissionsinventaren hin. Die Emissionskorrekturen für Deutschland ergeben, dass die nationalen Gesamtemissionen im Mittel nahe den analysierten Emissionen liegen. Allerdings werden regionale Unterschiede zu den Emissionsinventare analysiert, die auf Verbesserungspotentiale der räumlichen Verteilung der Emissionen durch GRETA hindeuten. Die räumlich aufgelösten Emissionskorrekturen sollten als Monats- bzw. saisonales Mittel genutzt werden. Zur Rückführung auf potenzielle Unsicherheiten der räumlichen Verteilung der Emissionsdaten müssen die Ergebnisse folglich mit räumlichen Verteilparametern, die zur Verteilung der Emissionen genutzt werden, korreliert werden. Quelle: Forschungsbericht
Das Projekt "Untersuchung der räumlichen Verteilung der NOx-Belastung im Umfeld von vorhandenen, hochbelasteten Luftmessstationen (RFP 09; Prio 1))" wird vom Umweltbundesamt gefördert und von Bayerisches Staatsministerium für Umwelt und Verbraucherschutz durchgeführt. Mit dem Projekt sollen Bereiche mit Überschreitung des NO2-Grenzwertes im Umfeld von LÜB-Messstationen mittels Passivsammlern und mobilen NOx-Messgeräten näher bestimmt werden, der Einfluss des NO2-Anteils im Abgas auf die Höhe der NO2-Belastung im städt. Hintergrund ermittelt und die Wechselwirkung zwischen den Schadstoffen NO mit Ozon untersucht werden.
Das Projekt "Messung der horizontalen und vertikalen Verteilung von Luftschadstoffen in Wien" wird vom Umweltbundesamt gefördert und von Universität Bremen, Institut für Umweltphysik durchgeführt. Das übergeordnete Ziel des geplanten Projektes besteht darin, vom Menschen verursachte Luftverschmutzung in Ballungsräumen besser zu verstehen. Die Untersuchung von Stickstoffdioxid (NO2) und Aerosolen wird sich dabei auf spektrale Messungen mit zwei MAX-DOAS (Multi-Axiale Differentielle Optische Absorptionsspektroskopie) Instrumenten an zwei verschiedenen Standorten in Wien stützen. Die MAX-DOAS Methode wird zur Messung von Streulicht in verschiedenen Blickrichtungen verwendet, aus denen die horizontale und vertikale Verteilung von Spurengasen und Aerosolen in der Troposphäre abgeleitet werden kann. Die Datenauswertung wird sich auf eine schnelle geometrische Annäherung sowie die exaktere Methode der Optimal Estimation stützen und troposphärische Säulen und Vertikalprofile von NO2 und Aerosolen ergeben. Die Vertikalprofile liefern eine wichtige Datengrundlage, die für den Vergleich mit bestehenden in-situ Messungen verwendet werden kann. Die aus den MAX-DOAS Messungen abgeleiteten troposphärischen Vertikalsäulen ermöglichen zusammen mit meteorologischen Messungen (z.B. Windgeschwindigkeit, Windrichtung) die Überwachung von Luftschadstoffen über städtischem Hintergrund, stark befahrenen Straßen, und industriellen Punktquellen auf horizontaler Ebene. Die geplanten Langzeitmessungen (über zwei Jahre) liefern einen wertvollen Datensatz für die Analyse der zeitlichen Variabilität von Luftschadstoffen (NO2 und Aerosole) über Wien. Ein Vergleich der in Wien erhobenen Daten mit vergleichbaren MAX-DOAS Messungen in Athen, Griechenland, oder Bremen, Deutschland, wird Ähnlichkeiten und Unterschiede zwischen den verschmutzten Standorten mit andersartigen meteorologischen und photochemischen Bedingungen aufzeigen. Die troposphärischen NO2-Säulen ermöglichen die Validierung von Satellitenmessungen der OMI, GOME-2, und TROPOMI Instrumente sowie den Vergleich mit Modellsimulationen (z.B. aus dem COPERNICUS Atmosphärenbeobachtungsdienst). Da sich bei den beiden Messgeräten Blickfelder einzelner azimutaler Richtungen teilweise überschneiden und die ergänzenden Messungen von in-situ Instrumenten eine Vielzahl an Information zur räumlichen Ausbreitung von NO2 bieten, soll versucht werden, ein räumlich aufgelöstes Bild der Luftverschmutzung über Wien mit Hilfe der tomographischen Darstellung zu entwickeln. Die Ergebnisse des Projektes werden wichtige Erkenntnisse zur horizontalen und vertikalen Ausbreitung von NO2 und Aerosolen liefern. Neben der Verbesserung der troposphärischen NO2 Auswertung werden die Ergebnisse wichtige Daten für Atmosphärenmodelle bereitstellen, da die Vertikalprofile von NO2 und Aerosolen eine nützliche Ergänzung zu den Punktmessungen von in-situ Messgeräten darstellen.
Das Projekt "Freshwater budget and salinity variability in the subpolar and subtropical gyres of the North Atlantic" wird vom Umweltbundesamt gefördert und von Universität Bremen, Institut für Umweltphysik, Abteilung Ozeanographie durchgeführt. Up to recent years, the study of trends and variability of the salinity (and freshwater) distributions was hampered by the lack of temporal and spatial resolution of the available observations (Wang DFG form 54.011 - 1/12 page 3 of 6 et al., 2010). With the onset of the Argo programme, the number of observed salinity profiles have significantly increased. The many Argo profiles distributed evenly over the year provide not only the means to calculate seasonally averaged salinity (and freshwater) distributions, but they can also be used to calculate regional Gravest Empirical Modes (GEMs) parameterized by pressure and dynamic height. Dynamic height is measured by altimetry and high quality altimeter data are available since 1992. GEMs will be used to construct from altimetry high resolution (in time and space) salinity, temperature and density fields. The objectives of the proposal are to - combine Argo/CTD profiles and altimetry to calculate temporal and spatial high resolution salinity fields in the mixed layer and in the upper 1500-2000m for the time period 1992 - 2013 for the subpolar and the subtropical Atlantic. - Construct regional freshwater budgets for the mixed layer and the upper 1500-2000m and estimate the contributions of the main processes to the observed change - Follow salinity anomalies from their origin along their circulation pathways, and study involved mechanisms (for instance role of eddies, mean circulation) for shallow, intermediate and deep water masses - Investigate changes in the formation of North Atlantic mode waters in the subpolar and subtropical gyre
Das Projekt "Veränderungen des Süßwassers im westlichen Europäischen Nordmeer" wird vom Umweltbundesamt gefördert und von Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung durchgeführt. The goal of this project is to capture and analyse fluctuations of the fresh water in the western Nordic Seas and to understand the related processes. The East Greenland Current in the Nordic Seas constitutes an important conduit for fresh water exiting the Arctic Ocean towards the North Atlantic. The Arctic Ocean receives huge amounts of fresh water by continental runoff and by import from the Pacific Ocean. Within the Arctic Ocean fresh water is concentrated at the surface through sea ice formation. The East Greenland Current carries this fresh water in variable fractions as sea ice and in liquid form; part of it enters the central Nordic Seas, via branching of the current and through eddies. It controls the intensity of deep water formation and dilutes the water masses which result from convection. The last decades showed significant changes of the fresh water yield and distribution in the Nordic Seas and such anomalies were found to circulate through the North Atlantic. In this project the fresh water inventory, its spatial distribution and its pathways between the East Greenland Current and the interior Greenland and Icelandic seas shall be captured by autonomous glider missions. The new measurements and existing data will, in combination with the modeling work of the research group, serve as basis for understanding the causes of the fresh water variability and their consequences for the North Atlantic circulation and deep water formation.
Das Projekt "Combined airborne lidar measurments of moisture transport and cirrus properties: HALO-LIDAR" wird vom Umweltbundesamt gefördert und von Ludwig-Maximilians-Universität München, Meteorologisches Institut durchgeführt. Humidity in and around cirrus clouds: Radiative effects of cirrus clouds are a major uncertainty in determining the climate cloud feedback. The variability of cirrus on different spatial scales is another major issue which complicates modelling of their radiative properties. Aerosol and water vapour measurements were performed with the DLR lidar system WALES in 2010 during the first mission with the new German research aircraft HALO. ECMWF temperature analyses are used to derive relative humidity inside and outside of cirrus clouds from the lidar water vapour observations. Comparisons with in situ measurements of humidity on the research aircraft Falcon flying inside the cirrus clouds confirm the high accuracy of the WALES system. The study shows the advantages of lidar cross sections to provide additional information about the vertical structure of the complex humidity field, also allowing for simultaneous statistical analyses in different cloud layers. Combined with accurate temperature measurements, the lidar observations have a great potential for detailed statistical cirrus cloud and related humidity studies. Future HALO missions will benefit from the findings and techniques developed here. HSRL aerosol classification: To better understand the effects of aerosols on the climate system it is important to obtain highly accurate information on the aerosol optical properties (e.g., extinction coefficient, single scattering albedo and phase function) as well as on their temporal and spatial distribution. The high spectral resolution lidar (HSRL) method based on an iodine absorption filter and a frequency doubled pulsed Nd:YAG laser, developed at DLR, has the capability to directly measure the extinction and backscatter coefficients of aerosols and clouds. Airborne HSRL data from four different field experiments are used in the frame of this project to build up an aerosol classification. The method is based on HSRL measurements of a set of intensive aerosol properties, in particular the lidar ratio, the particle linear depolarization ratio and the color ratio of backscatter. Applied to the HSRL measurements on ESA's EarthCARE mission it will provide the climate relevant properties extinction coefficient and aerosol optical depth, together with the global, verticallyresolved distribution of aerosols and clouds. Statistical characterization of humidity variability: The distribution of water vapour in the atmosphere shows variability on all spatial scales. An accurate representation of cloud processes in climate models with limited resolution relies on a statistical description of the unresolved structures. A compact description that can describe intermittent variability on many scales is multifractal scaling based on structure functions of different orders. This analysis method was applied to airborne water vapour lidar measurements from a number of field campaigns in midlatitude, polar and subtropical latitudes. The humidity was found to be charact
Das Projekt "Analyse meteorologischer Einflussgrößen auf regionale und lokale Muster von Schwebstaub (PM10) und Stickstoffoxid-Immissionen (NO2, NO)" wird vom Umweltbundesamt gefördert und von Universität Freiburg, Meteorologisches Institut, Professur für Meteorologie und Klimatologie durchgeführt. Auf der Grundlage von Luftmessdaten und meteorologischen Daten von ausgewählten Luftmessstationen in Baden-Württemberg soll über die Anwendung von statistischen Verfahren untersucht werden, inwieweit sich lokale von regionalen Mustern der Schwebstaub- und Stickstoffoxidimmissionen unterscheiden.
Das Projekt "Vertical distribution and spatial variability of physical properties of tropospheric aerosol in the Arctic and Antarctic from in situ measurements by aircraft" wird vom Umweltbundesamt gefördert und von Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR), Institut für Physik der Atmosphäre Oberpfaffenhofen durchgeführt. Um das Verständnis von Haushalt, Lebenszyklus und Klimawirkung des troposphärischen Aerosols in den Polarregionen zu verbessern, werden für die Jahre 2004 bis 2007 vom Alfred-Wegener-Institut (AWI) vier Flugzeug-Messkampagnen in der Arktis und Antarktis als internationale Kooperation von Forschungsgruppen unter anderem aus Deutschland, Japan und Schweden geplant. Das Hauptziel ist die in situ Messung der Vertikalverteilung von mikrophysikalischen, chemischen und optischen Eigenschaften des Aerosols in der unteren und mittleren polaren Troposphäre. Zu diesem übergeordneten Projekt will das Institut für Physik der Atmosphäre des Deutschen Zentrums für Luft- und Raumfahrt (DLR) mit den in diesem Antrag vorgeschlagenen Arbeiten einen Beitrag leisten. Das DLR wird einen substantiellen Teil der Flugzeuginstrumentierung zur Charakterisierung der mikrophysikalischen Aerosoleigenschaften beisteuern. Durch eine Kombination verschiedener Instrumente soll die räumliche und insbesondere vertikale Verteilung der Aerosolanzahlkonzentration und -größenverteilung im Größenbereich von 0.004 bis 100 Mikrometer gemessen werden. Hinzu kommen Messungen der thermischen Partikelflüchtigkeit und des Brechungsindex. In der Antarktis werden die geplanten Messungen die bisher umfassendsten Informationen über Vertikalprofile des troposphärischen Aerosols erbringen, was zu einem verbesserten Verständnis der Transportwege des antarktischen Aerosols führen soll. Daten zu den optische Eigenschaften der troposphärischen Aerosolsäule, abgeleitet aus den mikrophysikalischen Messungen, sollen für Zwecke der Validierung von Satellitensensoren (CALIPSO) und als Eingabedaten für Klimamodelle der Arktis und Antarktis bereitgestellt werden.
Das Projekt "Mehrskalendynamik von Schwerewellen (Koordinatorantrag)" wird vom Umweltbundesamt gefördert und von Johann Wolfgang Goethe-Universität Frankfurt am Main, Institut für Atmosphäre und Umwelt durchgeführt. Eine Verlässlichkeit von Vorhersagen des Klimawandels ist nur dann gegeben, wenn die dabei verwendeten numerischen Modelle das gegenwärtige Klima aus den richtigen Gründen korrekt simulieren. Offene Fragen betreffen z.B. dynamische Aspekte wie die Vorhersage einer Verstärkung der Brewer-Dobson-Zirkulation, den dynamischen Einfluss der Stratosphäre auf die Troposphäre und ein Überschießen in der Erholung der Ozonschicht. Eine besonders große Unsicherheit stellen in diesem Zusammenhang interne Schwerewellen (SW) dar, die durch gegenwärtige Chemie-Klimamodelle nicht aufgelöst werden. Ihr Einfluss muss durch Parametrisierungen erfasst werden, die heutzutage stark vereinfacht sind. Die Forschergruppe (FG) wird explizite Modelle für die Anregung, Ausbreitung und Dissipation von SW formulieren, die mathematisch und physikalisch konsistent sind. Diese werden anhand von prozessauflösenden Simulationen und Messungen validiert. Spezielle Beachtung werden die Mehrskalenwechselwirkungen von SW mit Turbulenz und der balancierten Strömung finden, sowie die Wechselwirkung von kleinskaligen, nichtaufgelösten SW mit großskaligen, aufgelösten SW. Die entwickelten Modelle werden in eine einheitliche SW-Parametrisierung münden, von den Quellen bis zur Dissipation. Sowohl die SW-Parametrisierung als auch globale SW-erlaubende und lokale SW-auflösende Simulationen sollen verwendet werden, um die Unsicherheiten der SW-Effekte auf die atmosphärische Zirkulation, auf großskalige dynamische Prozesse und auf den Klimawandel einzuschränken. Die Untersuchungen der Wellenprozesse selbst als auch ihrer globalen Auswirkungen werden auf der engen interdisziplinären Wechselwirkung zwischen Mathematik, Theorie, hochauflösender numerischer Modellierung und Messungen basieren. Diese Kombination begründet sich darin, dass nur Messungen den direkten Bezug zur Realität haben, nur Theorie uns verstehen lehrt, und nur hochauflösende Modellierung eine detaillierte Diagnose erlaubt. Ein dergleichen umfassendes Programm übersteigt bei weitem die Möglichkeiten einzelner Institute oder ihrer bilateralen Zusammenarbeit. Es erfordert hingegen eine FG, in der experimentelle, numerische, theoretische und mathematische Erfahrungen zusammengeführt werden. Die langfristigen Ergebnisse der FG sollen sein:- Eine erweiterte und vertiefte Kenntnis der räumlichen, zeitlichen und spektralen Verteilung von SW in der Atmosphäre.- Ein wesentlich verbessertes Verständnis der Prozesse, welche die korrespondierende SW-Dynamik erzeugen und kontrollieren.- Darauf aufbauend eine Verbesserung der Belastbarkeit und Vollständigkeit der Parametrisierung von SW als Subgitterskalenphänomen, Quellprozesse, SW-Ausbreitung, die Wechselwirkung von SW mit der aufgelösten Strömung und SW-Dissipation betreffend.- Als Ergebnis ein verlässlicheres Verhalten von SW-Parametrisierungen unter anomalen Bedingungen, z.B. dem Klimawandel.
Origin | Count |
---|---|
Bund | 17 |
Type | Count |
---|---|
Förderprogramm | 15 |
unbekannt | 2 |
License | Count |
---|---|
open | 15 |
unknown | 2 |
Language | Count |
---|---|
Deutsch | 17 |
Englisch | 9 |
Resource type | Count |
---|---|
Keine | 16 |
Webseite | 1 |
Topic | Count |
---|---|
Boden | 15 |
Lebewesen & Lebensräume | 16 |
Luft | 15 |
Mensch & Umwelt | 16 |
Wasser | 15 |
Weitere | 17 |