API src

Found 314 results.

Open Spaces in Megacities: Sociological concepts for the 'urban management' of open space and new settlements

Das Projekt "Open Spaces in Megacities: Sociological concepts for the 'urban management' of open space and new settlements" wird vom Umweltbundesamt gefördert und von Fachhochschule Köln, Forschungsschwerpunkt Sozial+Raum+Management durchgeführt.

Einfluss von Schwerewellen auf Eiswolken in der Tropopausenregion (GW-ICE)

Das Projekt "Einfluss von Schwerewellen auf Eiswolken in der Tropopausenregion (GW-ICE)" wird vom Umweltbundesamt gefördert und von Johann Wolfgang Goethe-Universität Frankfurt am Main, Institut für Atmosphäre und Umwelt durchgeführt. Schwerewellen stellen eine wichtige Komponente im Atmosphärensystem dar. Sie beeinflussen den vertikalen Impuls- und Energietransport und tragen damit entscheidend für verschiedene Zirkulationsmuster bei. Schwerewellen entstehen hauptsächlich in der Troposphäre und propagieren dann durch die Tropopausen Region in die höhere Atmosphäre. Dabei werden ihre Eigenschaften zum Teil verändert. Außerdem können sie durch die induzierten Vertikalgeschwindigkeiten einen großen Einfluss auf die Bildung und Entwicklung von Eiswolken in der Tropopausen Region haben. In diesem Projekt soll die Interaktion von Schwerewellen und Eiswolken in der Tropopausen Region untersucht werden. Dabei soll das in der ersten Phase von MS-GWaves entwickelte WKB-Modell durch Wolkenphysik erweitert werden und dann zur Untersuchung der Wechselwirkung Wellen-Eiswolken benutzt werden. Zusätzlich werden schwerewelleninduzierte Eiswolken mit Hilfe eines Large Eddy Simulation (LES) Modells untersucht. Mögliche Rückkopplungen der Eiswolken auf die Tropopausen Dynamik durch diabatische Effekte werden ebenfalls untersucht. Die Strahlungseffekt der simulierten Eiswolken (WKB Modell oder LES) wird mit Hilfe eines Strahlungstransportmodells abgeschätzt. Damit wird es möglich sein, den Einfluss der Schwerewellen auf Eiswolken und deren Strahlungsbilanz zu untersuchen, mögliche Wechselwirkungen mit der Tropopause abzuschätzen, und genauere Abschätzungen für die Energiebilanz der schwerewelleninduzierten Eiswolken anzugeben.

Ein Brückenschlag zwischen der grünen und der grauen Welt: ein experimenteller Ansatz zur Charakterisierung der Einflüsse von Klima, Vegetation und geochemischer Prozesse entlang eines klimatischen Gradienten

Das Projekt "Ein Brückenschlag zwischen der grünen und der grauen Welt: ein experimenteller Ansatz zur Charakterisierung der Einflüsse von Klima, Vegetation und geochemischer Prozesse entlang eines klimatischen Gradienten" wird vom Umweltbundesamt gefördert und von Universität Tübingen, Fachbereich Geowissenschaften, Forschungsbereich Geographie durchgeführt. Organismen können durch ihre aktive Rolle als 'Verwitterungsmotor' zur Oberflächenformung beitragen. Pflanzen und Bodenmikroorganismen sind in der Lage, Nährstoffe effizient zu nutzen und damit den Bedarf zu reduzieren, Nährstoffe aus dem Ausgangsgestein freizusetzen. Das könnte gerade bei fortgeschrittener Verwitterung hin zu feuchteren Bedingungen der Fall sein. Zusätzlich wird der Nährstoffkreislauf von höheren trophischen Ebenen, insbesondere von Herbivoren beeinflusst. Bisher ist noch nicht geklärt, wie das Klima, insbesondere der Niederschlag, mit Herbivorie gemeinsam auf Nährstoffkreisläufe und Streuabbau wirken. Unser übergeordnetes Ziel ist es, die relative Bedeutung von biotischen (Pflanzen, Mikroorganismen, Herbivore) und abiotischen Faktoren (Geologie, Klima) für Verwitterungs- und biogeochemische Prozesse zu eruieren. Dafür werden wir biologische und geochemische Prozesse wie folgt direkt verknüpfen. Zum einen untersuchen wir im Detail Prozesse an der Schnittstelle zwischen der 'grünen', der 'braunen' und der 'grauen Welt', für die wir in Phase 1 die Grundlage gelegt haben. Zum anderen werden wir eine integrierte Analyse dieser und der in Phase 2 zu erfassenden Daten vornehmen, die durch die Kooperationen eines großen interdisziplinären Konsortiums in unserem Trockenexperiment ermöglicht wird. Wir werden unseren anfänglichen Fokus auf die Rückkopplung zwischen Pflanzen, Boden und Geologie sowohl 'nach unten' als auch 'nach oben' erweitern. Im Detail konzentrieren wir uns auf a) die Nährstofflimitierung und die Nährstoffeffizienz von Pflanzen und Bodenmikroorganismen und b) den Einfluss von Herbivorie auf die Abbaubarkeit von Streu. Beide beeinflussen indirekt biogeochemische Verwitterungsprozesse. Hierzu kombinieren wir den 'Space-for-time' Ansatz mit mechanistisch ausgerichteten Feldversuchen, welche direkt die Niederschläge entlang eines klimatischen Gradienten in Chile manipulieren. Mit dieser Herangehensweise möchten wir folgende Leitfragen beantworten: Können räumliche Gradienten als Resultat von langfristigen Klimaeinflüssen auf die Erdoberfläche für die Ableitung von zeitlichen (kurz- bis mittelfristigen) Klimaveränderungen genutzt werden? Welche Prozesse ('grün' vs. 'braun' vs. 'grau') können mit einem solchen räumlichen Gradienten abgebildet werden? Diese Fragen werden wir mit Hilfe von Beobachtungen und Experimenten im Gelände und Pflanzen- und Herbivorieversuchen im Gewächshaus beantworten. Wir werden Nährstoffanalysen von Pflanzen, Boden, und Bodenmikroorganismen durchführen, die durch innovative Methoden unter Nutzung von Stabilisotopentracern ergänzt werden. Da wir uns explizit der Rolle von Organismen im Nährstoffkreislauf widmen, können wir deren potenzielle Rolle als 'Verwitterungsmotor' ableiten, welches die Säule des EarthShape-Programms darstellt. Unser Projekt untersucht zudem erstmalig in Chile den Einfluss von Klimaveränderungen auf Ökosystemprozesse basierend auf aufwändigen Geländeversuchen.

BeForce - Begleitforschung Bioenergie

Das Projekt "BeForce - Begleitforschung Bioenergie" wird vom Umweltbundesamt gefördert und von DBFZ Deutsches Biomasseforschungszentrum gemeinnützige GmbH durchgeführt. Ziel der Begleitforschung Bioenergie des Forschungsbereichs 3.7 'Energetische Nutzung biogener Rest- und Abfallstoffe' und des Forschungsnetzwerks Bioenergie (FB/FNBioE) ist es, durch die Aufbereitung der Projektergebnisse, gezielte und strategische Vernetzung der relevanten Akteur*innen und Forschungskommunikation maßgeblich zur Entwicklung des Forschungsfeldes Bioenergie mit Blick auf das Gesamtsystem beizutragen. Insbesondere wird der Transfer der aktuellen Forschungsergebnisse in den Markt verfolgt, um so die Beschleunigung von Innovationsprozessen und Produkteinführungen zu unterstützen (Technologie- und Innovationstransfer). Die Forschungsergebnisse werden entlang ausgewählter Kernthemen und förderpolitischer Ziele des 7. EFP wissenschaftlich aufbereitet, analysiert, gebündelt und in aktuelle Diskurse zum Beitrag der Bioenergie zur sektorübergreifenden und klimafreundlichen Energieversorgung eingeordnet. Über partizipative Vernetzungsaktivitäten erfolgt der Diskurs und die Rückkopplung mit der Praxis und relevanten Fachleuten aus unterschiedlichen Zielgruppen (Realitätscheck). Handlungsempfehlungen für die zielgerichtete Ausrichtung von FuE werden auf Basis der Auswertung der Projektergebnisse erarbeitet. Wichtige Innovationen, sowie Möglichkeiten der Übertragbarkeit von Technologien auf weitere Anwendungsbereiche werden ausgelotet. Kernbotschaften werden insbesondere an die Wirtschaft, sowie an den öffentlichen Sektor, Wissenschaft, Politik und die interessierte Öffentlichkeit zielgruppengerecht in pointierter und konzertierter Form kommuniziert. Die hierfür angewandten Methoden und Formate des Wissenstransfers entsprechen dabei aktuellen Trends und Bedarfen der Informationsvermittlung und Wissensaneignung.

DeepEarthShape - Geophysikalische Sondierung: Abbildung der Verwitterungsfront im tiefen Regolith mit seismischen und elektromagnetischen Methoden (GIDES)

Das Projekt "DeepEarthShape - Geophysikalische Sondierung: Abbildung der Verwitterungsfront im tiefen Regolith mit seismischen und elektromagnetischen Methoden (GIDES)" wird vom Umweltbundesamt gefördert und von Helmholtz-Zentrum Potsdam Deutsches GeoForschungsZentrum durchgeführt. Dieses Projekt ist Teil des interdisziplinären DeepEarthshape Verbunds zur Untersuchung der Verwitterungs- bzw. kritischen Zone (CZ) mit Bohrungen und geophysikalischen, geochemischen und mikrobiologischen Untersuchungen. Die CZ ist der oberste Teil der Erdkruste, wo Gesteine durch den Einfluss von Luft, Wasser oder biologischen Organismen mechanisch bzw. chemisch zersetzt werden. Die Mächtigkeit hängt vom Gleichgewicht zwischen Erosion und tiefen Verwitterungsprozessen ab. Die geochemische Charakterisierung der CZ hat gezeigt, dass sie viel tiefer ist als erwartet (ca. 30m). Obwohl in geringen Tiefen (1-2m) beachtliche Mengen an mikrobieller Biomasse und DNA gefunden wurden, die mit der Verwitterung zusammenhängen könnten, ist unser Verständnis der CZ und ihrer Prozesse immer noch begrenzt. Unklar sind die Tiefe der Verwitterung, die Prozesse und ihre jeweiligen Verursacher. Da die Eigenschaften der CZ mit dem Klima in Verbindung zu stehen scheinen, werden im Rahmen der DFG SPP 1803 vier Untersuchungsgebiete vorgeschlagen, die verschiedenen Klimazonen mit unterschiedlicher Vegetation, Niederschlagsmengen und Erosion angehören. Die langgestreckte Küste Chiles ist ein idealer Ort, um klimatische Abhängigkeiten im gleichen geologischen Komplex, der Küstenkordillere, zu untersuchen. Durch den Vergleich der Ergebnisse aus diesen vier Untersuchungsgebieten sollen schließlich Hypothesen für die CZ getestet werden, wie z.B. eine mögliche Verknüpfung der Verwitterungsfront mit rezenten klimagetriebenen Prozessen und der Erosion an der Oberfläche durch eine biogeochemische Rückkopplung oder mikrobielle Aktivität im tiefen Regolith durch organische Substanzen, die die Verwitterung vorantreiben. Die oberflächennahe Geophysik entwickelt sich zu einem wesentlichen Bestandteil der CZ-Untersuchungen, um hydro-geomorphologische und Verwitterungsfront-Modelle zu testen. Hier schlagen wir kombinierte geophysikalische Experimente mit P- und S-Wellen Seismik und flachen elektromagnetischen (Radiomagnetotellurischen) Messungen entlang von ca. 500m langen Profilen an allen vier Standorten vor. Die Hauptziele dieser geophysikalischen Experiment, sind a) die Abbildung der Tiefe der CZ und ihrer räumlichen Variation; b) der Zusammenhang von physikalischen Parametern mit denen, die in den Bohrkernen gefunden wurden; c) die Beurteilung, ob Bohrlochergebnisse für einen größeren Raum repräsentativ sind; d) der Vergleich von geophysikalischen Abbildern der CZ mit denen der hydro-geomorphologischen Modelle; e) das Bestimmen der Tiefe des Grundwasserspiegels und der Einfluss von Störungssystemen, die Wegsamkeiten für meteorische Wässer darstellen; f) die Kopplung seismischer Geschwindigkeiten mit elektrischen Leitfähigkeiten, um zuverlässige Schätzungen der Porosität zu erhalten und g) eine konsistente geologische Interpretation verschiedener geophysikalischer, geochemischer und mikrobiologischer Beobachtungen abzuleiten.

Kohlenstoffspeicherung im Boden naturnaher Buchenwälder - Wasserhaushalt und Totholz als entscheidende Steuerfaktoren in einem sich verändernden Klima

Das Projekt "Kohlenstoffspeicherung im Boden naturnaher Buchenwälder - Wasserhaushalt und Totholz als entscheidende Steuerfaktoren in einem sich verändernden Klima" wird vom Umweltbundesamt gefördert und von Technische Universität Dresden, Institut für Bodenkunde und Standortslehre durchgeführt. Naturnahe Waldwirtschaft oder ein völliges Einstellen der Bewirtschaftung sollte sich positiv auf die Kohlenstoff (C)-Speicherung der Wälder auswirken. Allerdings erfolgen derzeit dramatische Änderungen im Boden- und Standortswasserhaushalt (lange und intensive Trockenperioden, Starkniederschläge) mit unbekannten Auswirkungen auf die C-Speicherung z.B. in naturnahen Buchenwäldern. So ist weitgehend unbekannt, wie sich eine Steigerung an ober- und unterirdischem Totholz durch Nutzungsverzicht auf die langfristige C-Speicherung im Boden in Abhängigkeit von der Bodenfeuchtedynamik auswirkt und welche Rückkopplungsreaktionen auf den Bodenwasserhaushalt zu erwarten sind. Die Wechselwirkungen zwischen verfügbarem Bodenwasser, Totholz, lebenden Bäumen mit ihren Wurzelsystemen und der C-Speicherung im Boden sind unter sich stark verändernden Umweltbedingungen wenig erforscht. Vor diesem Hintergrund soll im 'Buchenwaldgebiet Kossa' in der Dübener Heide (NW Sachsen) quantifiziert werden, wie räumlich-zeitliche Muster in der Bodenfeuchte die ober- und unterirdische C-Speicherung beeinflussen. Natürliche Gradienten im Standortswasserhaushalt werden genutzt, um die Folgen der klimawandelbedingten Änderungen im Feuchteregime auf die C-Speicherung der Buchenwälder zu erfassen und daraus Szenarien für die zukünftige Entwicklung abzuleiten. Im Fokus des interdisziplinären Forschungsansatzes steht die Quantifizierung der Auswirkungen eines veränderten Bodenwasserhaushalts auf die Wuchsleistung der Rotbuchen (ober- und unterirdische Biomasse), das Totholzaufkommen sowie die langfristige C-Speicherung im Boden. Gleichzeitig soll geklärt werden, welche Rückkopplungen eine eventuelle Erhöhung der organischen Bodensubstanz durch Totholz auf die Bodenfeuchtedynamik hat. Hierfür wird ein langfristiges, integriertes Monitoring wichtiger Standorts- und Bestandesparameter mit Freilandexperimenten, modernsten Analysemethoden im Labor sowie Modellierungsansätzen kombiniert.

Sonderforschungsbereich Transregio 32 (SFB TRR): Muster und Strukturen in Boden-Pflanzen-Atmosphären-Systemen: Erfassung, Modellierung und Datenassimilation

Das Projekt "Sonderforschungsbereich Transregio 32 (SFB TRR): Muster und Strukturen in Boden-Pflanzen-Atmosphären-Systemen: Erfassung, Modellierung und Datenassimilation" wird vom Umweltbundesamt gefördert und von Rheinische Friedrich-Wilhelms-Universität Bonn, Meteorologisches Institut durchgeführt. Der Kreislauf von Energie, Wasser und Kohlenstoff durch Boden, Vegetation und Atmosphäre beeinflusst die Verteilung und Qualität des Lebens auf der Erde. Mit dem rasanten Wachstum der Weltbevölkerung und ihrer Bedürfnisse wird die nachhaltige und effiziente Bewirtschaftung und Verteilung unserer natürlichen Ressourcen wichtiger denn je. Der Sonderforschungsbereich Transregio 32 fokussiert auf ein besseres Verständnis der Prozesse und Interdependenzen innerhalb und zwischen Boden, Vegetation und Atmosphäre. Dies ist unabdingbar für verlässlichere Wetter- und Klima-Modelle und genauere Vorhersagen für den Wasser- und CO2-Transport und ermöglicht dadurch eine bessere Bewirtschaftung der natürlichen Ressourcen. Räumliche und zeitliche Muster im Boden-Vegetation-Atmosphäre Kontinuum spielen hierbei eine zentrale Rolle. So beeinflusst zum Beispiel die landwirtschaftliche Nutzung - Weizen unmittelbar neben Rüben oder Kartoffeln neben Mais - den Austausch von Wasser, CO2 und Wärme zwischen Boden und Atmosphäre. Alle Prozesse sind untrennbar miteinander verflochten, wodurch komplexe Rückkopplungen und Reaktionen des Systems auf den verschiedenen räumlichen und zeitlichen Skalen entstehen.Das Ziel des TR32 ist es, die Herkunft von und die Wechselbeziehungen zwischen den räumlichen und zeitlichen Mustern der einzelnen Komponenten innerhalb des Boden-Vegetation-Atmosphäre-Systems mit Hilfe innovativer Monitoring- und Modellierungsansätze besser zu verstehen. Räumliche und zeitliche Strukturen von physikalischen Parametern (z. B. bodenhydraulische Leitfähigkeit), Zustandsgrößen (wie Bodenfeuchtigkeit oder Lufttemperatur) und Prozessen (z. B. Flüsse von CO2, Wasser und Wärme) können auf allen Skalen beobachtet werden. Die Erkennung dieser Muster und das Verstehen der vorhandenen Wechselwirkungen sind erforderlich, um die unterschiedlichen räumlichen und zeitlichen Skalen in numerischen Modellen darzustellen.

Astronomisch angetriebene Klimaveränderungen auf dem Saturnmond Titan

Das Projekt "Astronomisch angetriebene Klimaveränderungen auf dem Saturnmond Titan" wird vom Umweltbundesamt gefördert und von Universität Köln, Institut für Geophysik und Meteorologie durchgeführt. Diese Studie soll die Rolle der Kohlenwasserstoffseen bei astronomisch angetriebenen Klimavariationen auf dem Saturnmond Titan näher beleuchten. Seen auf Titan sind stark auf die nördliche Polarregion konzentriert, während die Becken in der südlichen Polarregion größtenteils nicht mit Flüssigkeiten gefüllt sind. Diese Beobachtung führte zu kontroversen Diskussionen darüber, ob die polaren Seen Gegenstücke zu den irdischen Eisschilden darstellen, die mit dem Croll-Milankovitch-Zyklus wachsen und schrumpfen. Ein regionales und globales numerisches Modell der Methanhydrologie soll benutzt werden, um den Einfluss der Orbitalparametervariationen auf die Seen und deren Rückkopplung auf das Klima zu untersuchen. Die Hauptarbeitshypothese der Studie ist, dass sich der mittlere Seespiegel aufgrund der Variation des Niederschlags, der Verdunstung und des globalen Methantransportes in der Atmosphäre in Zeitskalen der Apsidendrehung von Saturn ändert. Auf regionaler Ebene wird ein dreidimensionales Ozeanzirkulationsmodell der Titan-Seen angewandt, um den orbitalen Einfluss auf die Zirkulation und Schichtung in den Seen zu untersuchen. Diese beinhalten die insbesondere die windgetriebene und dichtegetriebene Zirkulation, die für die Variationen der Seeoberflächentemperatur, -zusammensetzung und Verdunstung wichtig sind. Die langjährige Seespiegelveränderung wird durch Extrapolation der jährlichen Seespiegelveränderungen berechnet, die durch eine Serie von Simulationen unter den Orbitalparametern ausgewählter Epochen in der Vergangenheit prognostiziert werden. Auf globaler Ebene wird ein dreidimensionales atmosphärisches Zirkulationsmodell mit einem eingebauten atmosphärischen Hydrologie-Modul und vereinfachten Ozeanmodell angewandt, um die langjährige Veränderung der globalen Seeverteilung zu simulieren. Das globale Modell beschäftigt sich insbesondere mit der Frage, ob polare Seen in einer Hemisphäre auf Kosten der Seen in der anderen Hemisphäre innerhalb eines Orbitalzyklus anwachsen können oder ob es aus geographischen oder astronomischen Gründen eine Neigung zur Anhäufung der Seen in einer der beiden Hemisphären geben könnte. Ferner soll die Rückkopplung der variablen oder nicht variablen Seeverteilung auf den atmosphärischen Teil des Klimas untersucht werden indem die Simulationsergebnisse mit denen der Kontrollsimulation ohne Seen verglichen werden.

Teilprojekt B 01: Die Zusammensetzung baumbürtiger organischer Substanz und ihre Wirkung auf mikrobielle Prozesse im Untergrund: Rückkopplung auf Pflanzen und Nährstoffkreisläufe

Das Projekt "Teilprojekt B 01: Die Zusammensetzung baumbürtiger organischer Substanz und ihre Wirkung auf mikrobielle Prozesse im Untergrund: Rückkopplung auf Pflanzen und Nährstoffkreisläufe" wird vom Umweltbundesamt gefördert und von Universität Jena, Institut für Ökologie, Professur Ökologie durchgeführt. Ziel dieser Studie ist es zu verstehen, wie sich Unterschiede im chemischen Aufbau baumbürtiger DOM (treeDOM; Kronendurchlass, Stammabfluss, Streulösungen, Wurzelexsudate) auf die Bodenvegetation und mikrobiell-ökologische Prozesse in Boden und Untergrund auswirken. Neben der Erfassung von Baumarten- und Landnutzungseffekten auf DOM und Nährstoffe vom Kronenraum bis in die Wurzelzone, werden DOM und Wurzelexsudate aus dem Freiland analysiert und ihre Wirkung auf bodenmikrobiologische Prozesse ermittelt. Mesokosmenversuche testen die Interaktionen zwischen DOM, Pflanzenwachstum und Prozessen der bodenmikrobiellen Gemeinschaft. Die Kombination dieser sich ergänzenden experimentellen Ansätze erlaubt neue Einblicke in die Beziehung zwischen treeDOM und ökologischen Prozessen am Waldboden.

Teilprojekt: Krypto-TEPHrochronologie im tiefsten ICDP Totes Meer Kern als Schlüssel zur Synchronisation vergangener Hydroklimatischer Veränderungen im östlichen MittelMEerraum(TEPH-ME)

Das Projekt "Teilprojekt: Krypto-TEPHrochronologie im tiefsten ICDP Totes Meer Kern als Schlüssel zur Synchronisation vergangener Hydroklimatischer Veränderungen im östlichen MittelMEerraum(TEPH-ME)" wird vom Umweltbundesamt gefördert und von Helmholtz-Zentrum Potsdam Deutsches GeoForschungsZentrum durchgeführt. Im Dürre-geplagten östlichen Mittelmeerraum ist es besonders wichtig, die vergangene hydroklimatische Variabilität besser zu verstehen, um unsere Möglichkeiten zu erhöhen, zukünftige Änderungen der Wasserbilanz in dieser Klima-sensitiven Region abschätzen zu können. Krypto-Tephrochronologie, d.h. die Identifizierung vulkanischer Asche (Tephra) vergangener Vulkanausbrüche in lakustrinen und marinen Sedimenten, sowie die Nutzung dieser Tephren als Zeit-parallele Marker, ist eine ideale Methode um diese Klimaarchive zweifelsfrei miteinander zu synchronisieren. Hauptziel des TEPH-ME Projektes ist es, Paläoumwelt-Records aus dem östlichen Mittelmeerraum an Hand von Tephra-Zeitmarkern zu verlinken um regional unterschiedliche hydroklimatische Rückkopplungen als Antwort auf vergangene Klimaänderungen zu bestimmen. Dafür sollen weitverbreitete und gut-datierte Kryptotephren aus dem Mittelmeerraum erstmals in den tiefen ICDP-Sedimentkernen des Toten Meeres identifiziert werden, und damit in einem der wichtigsten Paläoklima-Archive der südöstlichen Mittelmeer-Levante Region. Die Identifizierung solcher Tephren aus Vulkanprovinzen des zentralen und östlichen Mittelmeeres in den Sedimentkernen des Toten Meeres wird es erlauben, den tephrostratigraphischen Rahmen weiter in das östliche Mittelmeer auszuweiten. Des Weiteren wird damit die bisher nur unzureichende Chronologie des ICDP Paläoklima Records des Toten Meeres wesentlich verbessert werden. Die Synchronisation der Paläoklimadaten des Toten Meeres mit anderen langen und hochaufgelösten Klimaarchiven des östlichen Mittelmeerraumes wird es ermöglichen, natürliche hydroklimatische Schwankungen der Vergangenheit, sowie regional unterschiedliche Antwortmechanismen auf vergangene Klimawandel in der gesamten Region zu entziffern.Besonderer Fokus soll auf das letzte Interglazial (Marines Isotopenstadium - MIS 5e) gelegt werden, eingenommen der Übergänge von der vorletzten Eiszeit (MIS 6), und zum frühen letzten Glazial (MIS 5d-a). Dieses Zeitfenster ist von besonderem Interesse in der Paläoklimawissenschaft, da es oft als mögliches Analogon zu den projizierten zukünftigen Klimaänderungen angesehen wird. Des Weiteren kann dieser Zeitabschnitt Auskunft geben über vergangene hydrologische Veränderungen in der südlichen Levante, und die Rolle dieser Region als Migrationskorridor für den frühen modernen Menschen, der während des letzten Glazial-Interglazial-Zyklus aus Afrika migriert ist.

1 2 3 4 530 31 32