technologyComment of manganese production (RER): The metal is won by electrolysis (25%) and electrothermic processes (75%). ELECTROLYSIS OF AQUEOUS MANGANESE SALTS The production of manganese metal by the electrolysis of aqueous manganese salts requires at first a milling of the manganese ore. Milling increases the active surface and ensures sufficient reactivity in both the reduction and the subsequent leaching steps. After milling the manganese ore is fed to a rotary kiln where the reduction and calcination takes place. This process is carried out at about 850 - 1000 ºC in a reducing atmosphere. As a reducing agent, several carbon sources can be used e.g. anthracite, coal, charcoal and hydrocarbon oil or natural gas. The cal-cined ore needs to be cooled below 100 ºC to avoid a further re-oxidation. The subsequent leaching process is carried out with recycled electrolyte, mainly sulphuric acid. After leaching and filtration the iron content is removed from the solution by oxidative precipitation and the nickel and cobalt are removed by sulphide precipitation. The purified electrolyte is then treated with SO2 in order to ensure plating of γ-Mn during electrolysis. Electrolysis is carried out in diaphragm cells. The cathode is normally made of stainless steel or titanium. For the anode lead-calcium or lead-silver alloy can be used. After an appropriate reaction time the cathodes are removed from the electrolysis bath. The manganese that is deposited on the cathode starter-sheet is stripped off mechanically and then washed and dried. The metal is crushed to produce metal flakes or powder or granulated, depending on the end use. ELECTROTHERMAL DECOMPOSITION OF MANGANESE ORES The electrothermal process is the second important process to produce manganese metal in an industrial scale. The electrothermal process takes place as a multistage process. In the first stage manganese ore is smelted with only a small amount of reductant in order to reduce mostly the iron oxide. This produces a low-grade ferro-manganese and a slag that is rich in Mn-oxide. The slag is then smelted in the second stage with silicon to produce silicomanganese. The molten silicomanganese can be treated with liquid slag from the fist stage to obtain relatively pure manganese metal. For the last step a ladle or shaking ladle can be used. The manganese metal produced by the electrothermal process contains up to 98% of Mn. Overall emissions and waste: Emissions to air consist of dust and fume emissions from smelting, hard metal and carbide production; Other emissions to air are ammonia (NH3), acid fume (HCl), hydrogen fluoride (HF), VOC and heavy metals. Effluents are composed of overflow water from wet scrubbing systems, wastewater from slag and metal granulation, and blow down from cooling water cycles. Waste includes dust, fume, sludge and slag. References: Wellbeloved D. B., Craven P. M. and Waudby J. W. (1997) Manganese and Manganese Alloys. In: Ullmann's encyclopedia of industrial chemistry (ed. Anonymous). 5th edition on CD-ROM Edition. Wiley & Sons, London. IPPC (2001) Integrated Pollution Prevention and Control (IPPC); Reference Document on Best Available Techniques in the Non Ferrous Metals Industries. European Commission. Retrieved from http://www.jrc.es/pub/english.cgi/ 0/733169 technologyComment of manganese production (RoW): The metal is won by electrolysis (assumption: 25%) and electrothermic processes (assumption: 75%). No detailed information available, mainly based on rough estimates. technologyComment of treatment of non-Fe-Co-metals, from used Li-ion battery, hydrometallurgical processing (GLO): The technique SX-EW is used mainly for oxide ores and supergene sulphide ores (i.e. ores not containing iron). It is assumed to be used for the treatment of the non-Fe-Co-metals fraction. The process includes a leaching stage followed by cementation or electro-winning. A general description of the process steps is given below. In the dump leaching step, copper is recovered from large quantities (millions of tonnes) of strip oxide ores with a very low grade. Dilute sulphuric acid is trickled through the material. Once the process starts it continues naturally if water and air are circulated through the heap. The time required is typically measured in years. Sulphur dioxide is emitted during such operations. Soluble copper is then recovered from drainage tunnels and ponds. Copper recovery rates vary from 30% to 70%. Cconsiderable amounts of sulphuric acid and leaching agents emit into water and air. No figures are currently available on the dimension of such emissions. After the solvent-solvent extraction, considerable amounts of leaching residues remain, which consist of undissolved minerals and the remainders of leaching chemicals. In the solution cleaning step occur precipitation of impurities and filtration or selective enrichment of copper by solvent extraction or ion exchange. The solvent extraction process comprises two steps: selective extraction of copper from an aqueous leach solution into an organic phase (extraction circuit) and the re-extraction or stripping of the copper into dilute sulphuric acid to give a solution suitable for electro winning (stripping circuit). In the separation step occurs precipitation of copper metal or copper compounds such as Cu2O, CuS, CuCl, CuI, CuCN, or CuSO4 • 5 H2O (crystallisation) Waste: Like in the pyrometallurgical step, considerable quantities of solid residuals are generated, which are mostly recycled within the process or sent to other specialists to recover any precious metals. Final residues generally comprise hydroxide filter cakes (iron hydroxide, 60% water, cat I industrial waste).
technologyComment of carbon black production (GLO): The most important production process used nowadays is the oil-furnace process – other processes like e.g. thermal or acetylene carbon black processes are only of minor interests and therefore not further examined within this study here. The oil-furnace process is, according to Voll and Kleinschmit (2010) and Dannenberg and Paquin (2000) a partial combustion process of liquid aromatic residual hydrocarbons. The principle is to atomize the feedstock into the reactor, where it is decomposed into carbon black and hydrogen due to the fact that the oxygen available is not sufficient for a combustion of all the input. The reactor temperature is in the order of 1200 to 1900 °C, achieved through the combustion of natural gas and of the unreacted feedstock. After the decomposition, a fast quenching has to be done to avoid the loss by reaction of carbon black with carbon dioxide and water. The further processing consists mainly of drying and separation from other substances like tail gases, through a filter system. This dataset describes the production of carbon black with the oil-furnace process, using natural gas as further energy input. The inventory is based on literature information about two different types of carbon black, as well as estimations based on industrial data. The emission amount is estimated while the composition is based on literature. References: Voll, M. and Kleinschmit, P. 2010. Carbon, 6. Carbon Black. Ullmann's Encyclopedia of Industrial Chemistry. Dannenberg E. M. and Paquin L. (2000) Carbon Black. In: Kirk-Othmer Encyclopedia of Chemical Technology, Fourth Edition, Electronic Release, 4 th Electronic Release Edition. Wiley InterScience, New York, Online-Version under: http://www.mrw.interscience.wiley.com/kirk.
technologyComment of titanium production (GLO): Primary titanium metal is produced mainly by Kroll process. In this batch process, titanium tetrachloride (TiCl4) is reduced with magnesium under inert atmosphere creating a sponge like titanium metal solid which is refined by vaccum arc remelting. The Kroll process is characterized by multiple steps for which many are energy and labor intensive. Main steps include batch reduction, processing, vaccum distillation and remelting. Main batch reduction takes place in a steel reactor filled with argon where the magnesium is melt at temperature between 850°C-950°C. The titanium chloride (TiCl4) is fed, or blown in as vapor, into the reactor. The reduction is a highly exothermic reaction, thus little energy input is required for it to take place. Reaction is as follow: TiCl4(l or g) + 2 Mg(l) = Ti(s) + 2 MgCl2(l). During the processing the reaction by-product, molten magnesium chloride (MgCl2), is remove from the reator periodically during the reaction. The magnesium and clhoride from this by-product are recovered using electrolysis and re-used. Main product from the process is a sponge like titanium (Ti(0)). Vaccum distillation is then use to purified the crude sponge removing residual metal chlorides and magnesium. This process takes place at temperature between 900°C and 1000°C. The residuals are recovered by condensation. The purified titanium sponge is refined using vacuum arc remelting.
technologyComment of chlor-alkali electrolysis, diaphragm cell (RER): In the diaphragm process, all reactions take place in only one cell. A diaphragm is used to separate the feed brine (anolyte) and the chlorine formed at the anode from the sodium hydroxide containing solution (catholyte) and the hydrogen formed at the cathode. Without the diaphragm being present during electrolysis, chlorine and hydrogen would form an explosive mixture and sodium hydroxide and chlorine would react to form sodium hypochlorite (NaOCl). Diaphragms used to be made from asbestos but up-todate technology allows for asbestos-free polymer-based diaphragms. Purified brine is fed to the anode compartment and percolates through the diaphragm into the cathode compartment. The percolation rate is controlled by a difference in liquid level between both compartments. At the anodes (metal oxide coated titanium), chlorine gas is formed which is collected and directed to further processing. Cathodes, where water decomposition takes place, are made of activated carbon steel. Catholyte leaving the cell, also called cell liquor, is a mixture of 10-12 wt.-% sodium hydroxide and 15-17 wt.-% sodium chloride in water. This solution is usually evaporated to 50 wt.-% NaOH. In this process, simultaneously most of the salt is removed by precipitation to a final residual of 1 wt.-%. The resulting salt is typically recirculated to brine preparation. The advantage of diaphragm cells is that the quality requirements for the brine and the electrical energy consumption are low. Disadvantageous are the high amount of thermal energy necessary for sodium hydroxide concentration and the comparably low quality of the produced sodium hydroxide and chlorine. References: Euro Chlor (2013) An Eco-profile and Environmental Product Declaration of the European Chlor-Alkali Industry, Chlorine (The chlor-alkali process). technologyComment of chlor-alkali electrolysis, membrane cell (RER): In the membrane cell process, the anode and cathode compartments are separated by a perfluoropolymer cation-exchange membrane that selectively transmits sodium ions but suppresses the migration of hydroxyl ions (OH-) from the catholyte into the anolyte. Saturated brine flows through the anode compartment, where chlorine gas is produced at the anode. The electric field in the electrolysis cell causes hydrated sodium ions to migrate through the membrane into the cathode compartment. The cathode compartment is fed with diluted sodium hydroxide solution. Water is electrolysed at the cathode releasing gaseous hydrogen and hydroxyl ions, which combine with the sodium ions and thus increase the concentration of sodium hydroxide in the catholyte. Typically, the outlet concentration of sodium hydroxide is around 32 wt.-%. A part of the product stream is diluted with demineralised water to about 30 wt.-% and used as catholyte inlet. In some units, a more diluted 23 wt.-% NaOH solution is produced. In these cases, the inlet concentration is adjusted to 20-21 wt.-%. Usually the NaOH solution is evaporated to the marketable concentration of 50 wt.-% using steam. Depleted brine leaving the anode compartment is saturated with chlorine and is therefore sent to a dechlorination unit to recover the dissolved chlorine before it is resaturated with salt for recirculation. The advantages of the membrane cell technique are the very high purity of the sodium hydroxide solution produced and the comparably low energy demand. Disadvantages comprise the high requirements on brine purity, the need for sodium hydroxide evaporation to increase concentration, and the comparably high oxygen content in the produced chlorine. In general, multiple cell elements are combined into a single unit, called electrolyser, of whom the design can be either monopolar or bipolar. In a monopolar electrolyser, the anodes and cathodes of the cells are connected electrically in parallel, whereas in the bipolar design, they are connected in series. Therefore, monopolar electrolysers require high current and low voltage, whereas bipolar electrolysers require low current and high voltage. Since bipolar systems allow higher current densities inside the cells, investment and operating costs are usually lower than for monopolar systems. References: Euro Chlor (2013) An Eco-profile and Environmental Product Declaration of the European Chlor-Alkali Industry, Chlorine (The chlor-alkali process). technologyComment of chlor-alkali electrolysis, mercury cell (RER): The mercury cell process comprises an electrolysis cell and a decomposer. Purified and saturated brine (25-28 wt.-% NaCl in water) is fed to the electrolysis cell on top of a film of mercury (Hg) flowing down the inclined base of the cell. The base of the cell is connected to the negative pole of a direct current supply forming the cathode of the cell. Anodes consisting of titanium coated with oxides of ruthenium and titanium are placed in the brine without touching the mercury film. At the anodes, chlorine gas is formed which is collected and directed to further processing. Due to a high overpotential of hydrogen at the mercury electrode, no gaseous hydrogen is formed; instead, sodium is produced and dissolved in the mercury as an amalgam (mercury alloy). The liquid amalgam is removed from the electrolytic cell and fed to a decomposer, where it reacts with demineralised water in the presence of a graphite-based catalyst to form sodium hydroxide solution and hydrogen. The sodium-free mercury is recirculated back into the cell. Cooling of hydrogen is essential to remove any water and mercury. The sodium hydroxide solution is very pure, almost free from chloride contamination and has usually a concentration of 50 %. Further treatment comprises cooling and removal of catalyst and mercury traces by centrifuges or filters. Advantages of the mercury cell process are the high quality of chlorine and the high concentration and purity of sodium hydroxide solution produced. The consumption of electric energy for electrolysis is, however, higher than for the other techniques and a high purity of the feed brine is required. Inherently, the use of mercury gives rise to environmental releases of mercury. References: Euro Chlor (2013) An Eco-profile and Environmental Product Declaration of the European Chlor-Alkali Industry, Chlorine (The chlor-alkali process). technologyComment of potassium hydroxide production (RER): Potassium hydroxide is manufactured by the electrolysis of potassium chloride brine in electrolytical cells. Hydrogen and chlorine are withdrawn from the cell. The rest of the reaction mixture contains KOH, water, and unreacted potassium chloride. This reaction mixture is then concentrated in an evaporator. Most of the potassium chloride crystallizes by evaporation, and is recycled. After evaporation, the potassium hydroxide is precipitated. Potassium hydroxide, chlorine and hydrogen are obtained from potassium chloride brine according to the following reaction: 2 KCl + 2 H2O -> 2 KOH + Cl2 + H2 Reference: Jungbluth, N., Chudacoff, M., Dauriat, A., Dinkel, F., Doka, G., Faist Emmenegger, M., Gnansounou, E., Kljun, N., Schleiss, K., Spielmann, M., Stettler, C., Sutter, J. 2007: Life Cycle Inventories of Bioenergy. ecoinvent report No. 17, Swiss Centre for Life Cycle Inventories, Dübendorf, CH. technologyComment of sodium chloride electrolysis (RER): Sodium chloride electrolysis
technologyComment of chlor-alkali electrolysis, diaphragm cell (RER, RoW): In the diaphragm process, all reactions take place in only one cell. A diaphragm is used to separate the feed brine (anolyte) and the chlorine formed at the anode from the sodium hydroxide containing solution (catholyte) and the hydrogen formed at the cathode. Without the diaphragm being present during electrolysis, chlorine and hydrogen would form an explosive mixture and sodium hydroxide and chlorine would react to form sodium hypochlorite (NaOCl). Diaphragms used to be made from asbestos but up-todate technology allows for asbestos-free polymer-based diaphragms. Purified brine is fed to the anode compartment and percolates through the diaphragm into the cathode compartment. The percolation rate is controlled by a difference in liquid level between both compartments. At the anodes (metal oxide coated titanium), chlorine gas is formed which is collected and directed to further processing. Cathodes, where water decomposition takes place, are made of activated carbon steel. Catholyte leaving the cell, also called cell liquor, is a mixture of 10-12 wt.-% sodium hydroxide and 15-17 wt.-% sodium chloride in water. This solution is usually evaporated to 50 wt.-% NaOH. In this process, simultaneously most of the salt is removed by precipitation to a final residual of 1 wt.-%. The resulting salt is typically recirculated to brine preparation. The advantage of diaphragm cells is that the quality requirements for the brine and the electrical energy consumption are low. Disadvantageous are the high amount of thermal energy necessary for sodium hydroxide concentration and the comparably low quality of the produced sodium hydroxide and chlorine. References: Euro Chlor (2013) An Eco-profile and Environmental Product Declaration of the European Chlor-Alkali Industry, Chlorine (The chlor-alkali process). technologyComment of chlor-alkali electrolysis, membrane cell (CA-QC, RER, RoW): In the membrane cell process, the anode and cathode compartments are separated by a perfluoropolymer cation-exchange membrane that selectively transmits sodium ions but suppresses the migration of hydroxyl ions (OH-) from the catholyte into the anolyte. Saturated brine flows through the anode compartment, where chlorine gas is produced at the anode. The electric field in the electrolysis cell causes hydrated sodium ions to migrate through the membrane into the cathode compartment. The cathode compartment is fed with diluted sodium hydroxide solution. Water is electrolysed at the cathode releasing gaseous hydrogen and hydroxyl ions, which combine with the sodium ions and thus increase the concentration of sodium hydroxide in the catholyte. Typically, the outlet concentration of sodium hydroxide is around 32 wt.-%. A part of the product stream is diluted with demineralised water to about 30 wt.-% and used as catholyte inlet. In some units, a more diluted 23 wt.-% NaOH solution is produced. In these cases, the inlet concentration is adjusted to 20-21 wt.-%. Usually the NaOH solution is evaporated to the marketable concentration of 50 wt.-% using steam. Depleted brine leaving the anode compartment is saturated with chlorine and is therefore sent to a dechlorination unit to recover the dissolved chlorine before it is resaturated with salt for recirculation. The advantages of the membrane cell technique are the very high purity of the sodium hydroxide solution produced and the comparably low energy demand. Disadvantages comprise the high requirements on brine purity, the need for sodium hydroxide evaporation to increase concentration, and the comparably high oxygen content in the produced chlorine. In general, multiple cell elements are combined into a single unit, called electrolyser, of whom the design can be either monopolar or bipolar. In a monopolar electrolyser, the anodes and cathodes of the cells are connected electrically in parallel, whereas in the bipolar design, they are connected in series. Therefore, monopolar electrolysers require high current and low voltage, whereas bipolar electrolysers require low current and high voltage. Since bipolar systems allow higher current densities inside the cells, investment and operating costs are usually lower than for monopolar systems. References: Euro Chlor (2013) An Eco-profile and Environmental Product Declaration of the European Chlor-Alkali Industry, Chlorine (The chlor-alkali process). technologyComment of chlor-alkali electrolysis, mercury cell (RER, RoW): The mercury cell process comprises an electrolysis cell and a decomposer. Purified and saturated brine (25-28 wt.-% NaCl in water) is fed to the electrolysis cell on top of a film of mercury (Hg) flowing down the inclined base of the cell. The base of the cell is connected to the negative pole of a direct current supply forming the cathode of the cell. Anodes consisting of titanium coated with oxides of ruthenium and titanium are placed in the brine without touching the mercury film. At the anodes, chlorine gas is formed which is collected and directed to further processing. Due to a high overpotential of hydrogen at the mercury electrode, no gaseous hydrogen is formed; instead, sodium is produced and dissolved in the mercury as an amalgam (mercury alloy). The liquid amalgam is removed from the electrolytic cell and fed to a decomposer, where it reacts with demineralised water in the presence of a graphite-based catalyst to form sodium hydroxide solution and hydrogen. The sodium-free mercury is recirculated back into the cell. Cooling of hydrogen is essential to remove any water and mercury. The sodium hydroxide solution is very pure, almost free from chloride contamination and has usually a concentration of 50 %. Further treatment comprises cooling and removal of catalyst and mercury traces by centrifuges or filters. Advantages of the mercury cell process are the high quality of chlorine and the high concentration and purity of sodium hydroxide solution produced. The consumption of electric energy for electrolysis is, however, higher than for the other techniques and a high purity of the feed brine is required. Inherently, the use of mercury gives rise to environmental releases of mercury. References: Euro Chlor (2013) An Eco-profile and Environmental Product Declaration of the European Chlor-Alkali Industry, Chlorine (The chlor-alkali process).
Weltweit thematisieren zahlreiche Publikationen den Eintrag von Arzneimitteln aus verschiedenen Emissionsquellen in die Umwelt. Um diese enorme Datenmenge zu überschauen initiierte das Umweltbundesamt im Jahr 2014 ein Datenbankprojekt. Im Rahmen von zwei Projekten wurde seitdem die öffentlich zugängliche Datenbank "Arzneimittel in der Umwelt" (https://www.umweltbundesamt.de/en/database-pharmaceuticals-in-the-environment-0) etabliert (aus der Beek et al., 2016) und optimiert (Dusi et al., 2019) und weltweite gemessene Konzentrationen von Arzneimittelrückständen in der Umwelt, die bis 2016 veröffentlicht wurden, eingetragen. Das Ziel dieses Projektes war die Aktualisierung der Datenbank mit Umweltkonzentrationen von Arzneimitteln, die im Zeitraum 2017 bis 2020 publiziert wurden. Als Ergebnis einer Literaturrecherche wurden während des Projektes 98.246 Umweltkonzentrationen aus 543 Publikationen in die Datenbank eingetragen. Die aktualisierte Datenbank enthält damit derzeit 276.895 Einträge mit Umweltkonzentrationen aus 2.062 Publikationen, gemessen in 89 Ländern. Zusätzlich wurden 632 Publikationen und 196 Review-Artikel für den Zeitraum 2017-2020, die Konzentrationen von Arzneimittelrückständen in der Umwelt thematisieren, zu einer bestehenden EndNote-Literatur-Datenbank hinzugefügt. Im Rahmen des Berichtes wird ein Überblick über die Umweltmatrices in denen Arzneimittelrückstände weltweit gemessen wurden und die am häufigsten gemessen Substanzen gegeben. Quelle: Forschungsberichte
Während der vergangenen Dekade wurden immer mehr Arzneimittelwirkstoffe in der aquatischen Umwelt detektiert und das damit verbundene Risikopotenzial für die aquatischen Lebensgemeinschaften stellt ein drängendes Problem dar. Obwohl viele Arzneimittelwirkstoffe durch die konventionelle Abwasserreinigung zumindest teilweise durch Sorption und Biotransformation entfernt werden, führt eine quasi kontinuierliche Einleitung von Arzneimittelresten zu einer so genannten "Pseudo-Persistenz". Des Weiteren weisen manche Metabolite und Transformationsprodukte eine ähnliche oder sogar höhere Wirkung auf als die medizinischen Ausgangsstoffe. Daher wäre eine höhere Priorisierung von Arzneimittelwirkstoffen sowie deren Metabolite und Transformationsprodukte (AMT) als Umweltkontaminanten in der Europäischen Wasserrahmenrichtlinie (WRRL) und der deutschen Oberflächenwasserverordnung (OGewV) begrüßenswert. Die analytische Bestimmung erfolgt zurzeit hauptsächlich in der Wasserphase, wobei nur wenige standardisierte Methoden existieren. Die physikochemischen Eigenschaften mancher Wirkstoffe lassen eine Akkumulation an Sediment, Schwebstoffen und in Biota vermuten, so dass diese Matrices interessante Alternativen zur Wasserphase darstellen. Das Ziel des Projekts war die Entwicklung, Optimierung, Validierung und Bewertung von Quantifizierungsmethoden für AMT in verschiedenen Umweltmatrices (Wasser, Sediment, Schwebstoff und Biota). Mit Hilfe der entwickelten Methoden wurde das Vorkommen und die Verteilung ausgewählter AMT in Wasser, Sediment, Schwebstoff und Biota von unterschiedlichen Standorten untersucht. Des Weiteren wurden mit Zeitreihen der Umweltprobenbank das Potential der neuen Methoden für die Gewässerüberwachung demonstriert. Aus den gesammelten Erkenntnissen wurden Empfehlungen für ein optimiertes Monitoring von AMT mit verschiedenen physikochemischen Eigenschaften in Oberflächengewässern abgeleitet. Quelle: Forschungsbericht
Die Pilotphase Kleingewässermonitoring konnte als drittes Teilvorhaben zur "Umsetzung des Nationalen Aktionsplan zur nachhaltigen Anwendung von Pflanzenschutzmitteln (PSM)" erfolgreich als zweijähriges Monitoring umgesetzt werden. Es wurden für mehr als 100 Fließgewässerabschnitte in 13 Bundesländern umfassend der chemische und biologische Zustand kleiner Fließgewässer in der Agrarlandschaft zwischen April und Juli erfasst. Zusätzlich zu Schöpfproben analog zu dem behördlichen Monitoring nach Wasserrahmenrichtlinie (WRRL) wurden ereignisbasierte Wasserproben genommen, um kurzfristige Peakkonzentrationen infolge von Niederschlägen zu erfassen. Zudem wurden anthropogene Stressoren wie Gewässerstruktur, Nährstoffe und Sauerstoffdefizite hochaufgelöst aufgenommen. Die biologische Untersuchung umfasste die Beprobung der aquatischen Invertebraten- und Algengemeinschaft sowie eine Untersuchung der Ökosystemfunktion in den Kleingewässern. Die Ergebnisse zeigen, dass die im Rahmen des Zulassungsverfahrens von PSM festgelegten RAK-Werte (Regulatorisch Akzeptablen Konzentrationen) an über 73 % der untersuchten Standorte für mindestens einen PSM-Wirkstoff überschritten wurden. Besonders die Ereignisproben infolge von Regenereignissen wiesen erhöhte Konzentrationen auf, die durch Schöpfproben nicht erfasst wurden. Diese Belastungen korrelieren auch mit der ökologischen Situation der Gewässer. So erfüllt der Großteil (über 80 %) der untersuchten Fließgewässerabschnitte anhand des SPEARpesticides-Index nicht die Qualitätskriterien für einen guten Zustand. Die Pilotphase Kleingewässermonitoring zeigt, dass eine realistische Bewertung und regulatorische Nutzung eines Monitorings von PSM-Rückständen in kleinen Gewässern nur dann erfolgen kann, wenn auch erhöhte Einträge infolge von Niederschlagsereignissen berücksichtigt werden. Weiterhin treten auch unterhalb der bestehenden RAK-Werte ökologische Effekte im Gewässer auf, so dass sich die Frage nach der Protektivität der aus Labordaten abgeleiteten RAK-Werte stellt. Die Daten der ermittelten PSM-Belastung der kleinen Gewässer in der Agrarlandschaft werden dazu beitragen, Ursachen für die regelmäßige Überschreitung der bestehenden Grenzwerte zu ermitteln und Schwächen der bisherigen Risikobewertung aufzudecken. Ziel wird sein, auf dieser Basis Möglichkeiten zur Reduzierung der Einträge zu erarbeiten und regulatorische Konsequenzen zu ziehen. Siehe dazu auch Liess et al. (2021) und Weisner et al. (2021). Quelle: Forschungsbericht
Übergeordnetes Ziel des Vorhabens "Umwelteinträge von Arzneimittelwirkstoffen - Bilanzierung der Emissionen sowie Konsequenzen für Risikobewertung und -management" ist, Eintragsquellen von Arzneimittelwirkstoffen realistisch einschätzen und so die gültigen Expositionsverfahren überprüfen zu können. Die Ergebnisse sollen insbesondere in Berechnungsmodelle neuer Eintragspfade einfließen, um so eine bessere Umweltfolgenabschätzung zu ermöglichen - entsprechend des strategischen Ansatzes der Europäischen Kommission zu Arzneistoffen in der Umwelt. Die erforderlichen Daten sollen über Erhebungen gewonnen werden. Auf Basis der hierdurch gewonnenen Erkenntnisse können Strategien zur Verminderung von Arzneistoffeinträgen in die Umwelt konkretisiert werden. Im Fokus des Vorhabens stehen Arzneistoffverbräuche bei Lebensmittel liefernden Tieren, bei Nicht-Lebensmittel liefernden Tieren sowie wichtige emissionsrelevante Angaben von Arzneimittelproduktionsstandorten in Deutschland. In Teilvorhaben I, Konzepterstellung der Befragungen, werden für eine entsprechend notwendige Erhebung sinnvolle Konzepte beschrieben, mit deren Ergebnissen die Emissionen aus den drei genannten Bereichen in Deutschland besser abgeschätzt werden können. Auf Basis der erarbeiteten Konzepte zur Erhebung von Umwelteinträgen durch Tierarzneimittel und Arzneistoffproduktionsstandorte sind nachfolgend konkrete Erhebungen, Auswertungen und Strategiekonzepte zur Stoffeintragsreduktion durchzuführen. Die Erhebungskonzepte umfassen, je nach Fokus, interviewgestützte Erhebungen in ausgewählten repräsentativen Landkreisen, eine Befragung von Privathaushalten sowie Datenerhebungen bei Herstellern. Quelle: Forschungsbericht
Das Projekt "Biogas-fired Combined Hybrid Heat and Power Plant (Bio-HyPP)" wird vom Umweltbundesamt gefördert und von Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR) durchgeführt. To reach the goals of improving the efficiency of CHP systems while simultaneously widening the biomass feedstock base as well as increasing operational flexibility, the project aims to develop a full scale technology demonstrator of a hybrid power plant using biogas as main fuel in lab environment. A combined hybrid heat and power plant combines a micro gas turbine (MGT) and a solid oxide fuel cell (SOFC). The focus of the technology demonstration plant is to prove the functional capability of the plant concept, followed by detailed characterization and optimization of the integration of both subsystems. The main objective is to move the technology beyond the state of the art to TRL 4. Electrical efficiencies of more than 60% and total thermal efficiencies of more than 90% are intended to reach at base load conditions. An operational flexibility ranging from 25% to 100% electric power should be achieved. The emission levels should not exceed 10 ppm NOx and 20 ppm CO (at 15% vol. residual oxygen). The system should allow the use of biogas with methane contents varying from 40-75%, thus covering the biogas qualities from the fermentation of the entire biomass feedstock range. To achieve the objectives the subsystems MGT and SOFC including their subcomponents have to be adjusted and optimized by a multidisciplinary design approach using numerical and experimental measures to ensure a proper balance of plant. In addition an integrated control system has to be developed and implemented to achieve a reliable operation of the coupled subsystems. A detailed analysis of different European markets, economic and technical constraints in terms of biogas production potentials will clarify the regional suitable sizes and attractive performance conditions of the power plant system. To identify cost reduction potentials a thermo-economic analysis will be performed. Here, an internal rate of return (IRR) of the system of higher than 15% should be achieved over a 20 years.