Abklingbecken Ein mit Wasser befülltes Becken, in dem Brennelemente nach dem Reaktoreinsatz so lange lagern, bis die Aktivität und Wärmeentwicklung auf einen gewünschten Wert gesunken ist, so dass eine Handhabung, u.a. zum Abtransport möglich wird. Ableitung radioaktiver Stoffe Ist die Abgabe flüssiger, an Schwebstoffe gebundener oder gasförmiger radioaktiver Stoffe auf hierfür vorgesehenen Wegen. (§ 1 Abs. 1 StrlSchV ). Ein Beispiel ist die geordnete und überwachte Abgabe von Fortluft aus Anlagengebäuden. Ableitungswerte Sind Angaben über die Aktivität (also Menge) radioaktiver Stoffe als auch über die hervorgerufene Dosis (also Wirkung) von Ableitungen. Für die durch Ableitung freigesetzten radioaktiven Stoffe hat der Gesetzgeber Grenzwerte festgesetzt (§§ 99 ff. StrlSchV ). Die in Genehmigungen festgelegten Werte (nach § 102 StrlSchV ) liegen in Berlin deutlich unterhalb dieser Grenzwerte. Die tatsächlich freigesetzten radioaktiven Stoffe unterschreiten wiederum in der Regel die genehmigten Werte deutlich. Äquivalentdosis Äquivalentdosis ist die mit einem Qualitätsfaktor gewichtete (multiplizierte) Energiedosis . Der Qualitätsfaktor berücksichtigt die relative biologische Wirksamkeit (die Wirkung ist bei verschiedenen Geweben nicht gleich) der unterschiedlichen Strahlenarten. Die Äquivalentdosis ist deshalb die Messgröße für die biologische Wirkung ionisierender Strahlung auf den Menschen. Ihre Einheit ist J/kg mit dem speziellen Namen Sievert (Sv). Aktivität Aktivität ist die Anzahl von Atomkernen eines radioaktiven Stoffes , die in einem bestimmten Zeitintervall zerfallen. Die Aktivität wird in Becquerel (Einheit im Internationalen Einheitssystem) gemessen und beschreibt die Anzahl der Kernzerfälle eines radioaktiven Stoffes in einer Sekunde. Siehe auch Erläuterung unter Dosis . Anlage, kerntechnische siehe „ kerntechnische Anlage Becquerel Das Becquerel (Kurzzeichen: Bq) ist die Maßeinheit der Aktivität eines “radioaktiven Stoffes”/sen/uvk/umwelt/strahlenmessstelle/glossar/#radioaktiver: und gibt an, wie viele Kernzerfälle pro Sekunde stattfinden. Betreiber/in Der Inhaber einer Genehmigung gemäß § 7 Atomgesetz zum Betrieb einer kerntechnischen Anlage . Brennelemente Brennelemente enthalten Kernbrennstoff . Sie bestehen meist aus einer Vielzahl von Brennstäben und sind wesentlicher Bestandteil des Reaktorkerns einer kerntechnischen Anlage . Dekontamination Alle Maßnahmen und Verfahren zur Beseitigung einer möglichen radioaktiven Verunreinigung einer Person oder eines Objekts (z.B. Geräte, Kleidung, Körperteile). Dialoggruppe Gesprächskreis durch ein Vorhaben direkt oder indirekt berührter Bürgerinnen und Bürger aus der Umgebung, Vertreterinnen und Vertreter von Parteien, Initiativen und Umweltorganisationen sowie sonstige interessierte Personen aus der Öffentlichkeit. Ziel ist es, das Vorhaben aktiv mit dem Vorhabenträger zusammen zu diskutieren und evtl. mitzugestalten. Darüber hinaus treffen sich die am Dialogverfahren des BER II Beteiligten ohne Vertreter des HZB im Rahmen der sogenannten Begleitgruppe. Dosimetrie Lehre von den Verfahren zur Messung der Dosis bzw. der Dosisleistung bei der Wechselwirkung von ionisierender Strahlung mit Materie. Dosis Die Dosis ist ein Maß für die Strahlenwirkung. Siehe auch die Erläuterungen zu Energiedosis , Organdosis , Effektive Dosis . Dosisleistung Dosis, die in einem bestimmten Zeitintervall erzeugt wird. Die Einheit ist Sievert oder Gray pro Zeitintervall. Effektive Dosis Die Effektive Dosis berücksichtigt die unterschiedliche Empfindlichkeit der Organe und Gewebe bezüglich stochastischer (zufallsgesteuert auftretender) Strahlenwirkungen. Dazu werden die spezifizierten Organdosen mit einem Gewebe-Wichtungsfaktor multipliziert. Die Effektive Dosis erhält man durch Summation der gewichteten Organdosen aller spezifizierten Organe und Gewebe, wobei die Summe der Gewebe-Wichtungsfaktoren 1 ergibt. Die Gewebe-Wichtungsfaktoren bestimmen sich aus den relativen Beiträgen der einzelnen Organe und Gewebe zum gesamten stochastischen Strahlenschaden (Detriment) des Menschen bei gleichmäßiger Ganzkörperbestrahlung. Die Einheit der Effektiven Dosis ist J/kg mit dem speziellen Namen Sievert (Sv). In der Praxis des Strahlenschutzes werden in der Regel Bruchteile der Dosiseinheit verwendet, zum Beispiel Millisievert oder Mikrosievert Elektromagnetische Strahlung Elektromagnetische Strahlung ist nicht an Materie gebundene Strahlung (kein “Teilchenstrom”), die sich mit Lichtgeschwindigkeit ausbreitet und je nach Energieinhalt (charakterisiert durch die Frequenz oder die Wellenlänge) unterschiedliche Eigenschaften hat. Von den langen zu den kurzen Wellen unterscheidet man Ultralangwelle, Langwelle, Mittelwelle, Kurzwelle, Mikrowelle, Wärmestrahlung (Infrarot), sichtbares Licht, Ultraviolett, Röntgenstrahlung, Gammastrahlung. Für Infrarot und für sichtbares Licht besitzen wir Sinnesorgane, die anderen Strahlungsarten können nur über ihre Wirkung oder mit Messgeräten wahrgenommen werden. Im Ultraviolettbereich liegt die Grenze der ionisierenden Strahlung : kürzerwellige Strahlung ionisiert, längerwellige nicht. Gammastrahlung ist die kürzestwellige und energiereichste dieser Strahlungsarten, sie tritt bei Vorgängen in Atomkernen auf. Energiedosis Die Energiedosis beschreibt die Energie, die einem Material mit einer bestimmten Masse durch ionisierende Strahlung zugeführt wird, dividiert durch diese Masse. Die Einheit der Energiedosis ist J/kg mit dem speziellen Namen Gray (Kurzzeichen: Gy). Entlassung aus dem Atomgesetz Mit der Entlassung aus dem Atomgesetz liegt keine kerntechnische Anlage nach § 2 Abs. 3a Atomgesetz mehr vor. EURATOM-Vertrag Der EURATOM-Vertrag ist einer der Römischen Verträge und damit Bestandteil der Gründungsvereinbarung der Europäischen Union. Das Ziel ist nach Artikel 1 die Schaffung der für die rasche Bildung und Entwicklung von Kernindustrien erforderlichen Voraussetzungen zur Hebung der Lebenshaltung in den Mitgliedstaaten und zur Entwicklung der Beziehungen mit den anderen Ländern. Kapitel 3 regelt Maßnahmen zur Sicherung der Gesundheit der Bevölkerung. Fernüberwachungssystem (Reaktorfernüberwachungssystem – RFÜ) Für die deutschen Kernkraftwerke existieren komplexe Messsysteme zur Erfassung von Anlagendaten und Werten der Umweltradioaktivität (KFÜ). Im Falle des Berliner Forschungsreaktors ist ein der KFÜ analog aufgebautes Reaktorfernüberwachungssystem (RFÜ) vorhanden. Das RFÜ erfasst und überwacht vollautomatisch rund um die Uhr Messwerte zum aktuellen Betriebszustand des Forschungsreaktors BER II einschließlich der Abgaben (Emissionen) in die Luft sowie den Radioaktivitätseintrag in die Umgebung (Immission). Freigabe Die Freigabe ist ein Verwaltungsakt (§ 33 Abs. 2 StrlSchV), der die Entlassung von u.a. beweglichen Gegenständen, Gebäuden, Räumen oder Anlagenteilen aus dem Regelungsbereich des Strahlenschutzgesetzes (und auf diesem beruhender Rechtsverordnungen) bewirkt. Er kann Vorgaben zum weiteren Umgang oder zur Verwendung, Verwertung oder Beseitigung der freigegebenen und damit rechtlich als nicht radioaktiv anzusehenden Stoffe enthalten. Freigabeverfahren Nach §§ 31 ff. Strahlenschutzverordnung (StrlSchV) kann die Entlassung von u.a. beweglichen Gegenständen, Gebäuden, Räumen oder Anlagenteilen aus dem Regelungsbereich des “Strahlenschutzgesetzes“https://www.gesetze-im-internet.de/strlschg/: (und auf diesem beruhenden Rechtsverordnungen) auf Antrag bewirkt werden. Voraussetzung hierfür ist, dass die zuständige Behörde einen Freigabebescheid erteilt. Dieser wird erst dann erteilt, wenn festgestellt worden ist, dass die Materialien oder Objekte nicht so stark strahlen, dass durch sie ein Mitglied der Bevölkerung gefährdet werden könnte. Hierfür müssen bestimmte Anforderungen erfüllt werden, die (z. B. durch Messung) überprüft werden. Der Freigabebescheid kann zusätzliche Festsetzungen enthalten, wonach die freigegebenen Objekte nur dann als nicht radioaktive Objekte gelten, wenn mit ihnen in bestimmter Weise weiter umgegangen wird. Durch die freigegebenen Stoffe darf für Einzelpersonen der Bevölkerung nur eine effektive Dosis bis zu 10 Mikrosievert im Kalenderjahr auftreten (10-Mikrosievert-Konzept). Formelles Verfahren Ist ein auf Antrag erfolgendes behördliches Prüfungsverfahren mit dem Ziel einer Bescheidung durch die zuständige Behörde. Je nach Thematik können sich formelle Genehmigungsverfahren über Jahre erstrecken. Fortluft Der Begriff Fortluft stammt aus der Lüftungs- und Klimatechnik und bezeichnet den Teil der geführten Abluft, welcher nicht weitergenutzt und in die Atmosphäre abgegeben wird. Halbwertszeit Die Zeit, in der die Hälfte der Menge der Atomkerne eines bestimmten radioaktiven Stoffes zerfallen ist. Nach zwei Halbwertszeiten liegt demnach noch ein Viertel der Anfangsmenge vor, nach drei Halbwertszeiten ein Achtel usw. Nach zehn Halbwertszeiten ist die Menge und die Aktivität eines radioaktiven Stoffes auf 1/1024 oder rund ein Promille des Anfangswertes gesunken usw. Die Halbwertszeit ist charakteristisch für eine bestimmte radioaktive Atomkernsorte („Nuklid“). Herausgabeverfahren Nicht jeder Stoff oder Gegenstand in einer kerntechnischen Anlage , der von einer Genehmigung nach § 7 Atomgesetz umfasst ist, ist zwingend radioaktiv kontaminiert oder aktiviert . Stoffe, Gegenstände, Gebäude oder Bodenflächen, die nachweislich von Vornherein weder radioaktiv kontaminiert noch aktiviert sind, fallen nicht unter das in der Strahlenschutzverordnung geregelte Freigabeverfahren . Ein klassisches Beispiel ist ein Anlagenzaun, der in der Genehmigung gefordert wird (also zum genehmigten Bereich gehört), aber nie mit Strahlung oder radioaktiven Stoffen in Verbindung stand. Das Herausgabeverfahren stellt daher ergänzend sicher, dass die Entlassung auch dieser Materialien aus dem atomrechtlichen Genehmigungsbereich überwacht wird. Das Verfahren wird behördlich begleitet. Das Herausgabeverfahren wird grundsätzlich in der Genehmigung zu Stilllegung und Abbau einer kerntechnischen Anlage festgelegt und im atomrechtlichen Aufsichtsverfahren, d.h. bei der nachfolgenden Stilllegung und dem Abbau der kerntechnischen Anlage, angewendet. IAEA Internationale Atomenergie-Organisation IMIS Das Integrierte Mess- und Informationssystem zur Überwachung der Radioaktivität in der Umwelt ( IMIS ) dient dazu, die Radioaktivität in der Umwelt zum Schutz der Bevölkerung zu überwachen, und ist im Strahlenschutzgesetz verankert. Die Überwachungsaufgaben werden zwischen Bund und Ländern aufgeteilt. INES INES steht für International Nuclear and Radiological Event Scale und ist eine Internationale Bewertungsskala für nukleare Ereignisse in kerntechnischen Anlagen (Kernkraftwerken, Zwischenlager etc.), aber auch allgemein bei sämtlichen Ereignissen im Zusammenhang mit radioaktiven Stoffen . Informelles Verfahren Das informelle Verfahren ist vom formellen Genehmigungsverfahren zu unterscheiden. Es dient zunächst ausschließlich der frühzeitigen Information aller potentiell Betroffenen eines bestimmten Vorhabens und steht in der alleinigen Verantwortung des Vorhabenträgers. Das informelle Verfahren umfasst z.B. Informationsveranstaltungen oder eine erweiterte Medienpräsenz. Es steht dem Vorhabenträger weiterhin zu, bei Bedarf eine Dialoggruppe einzurichten, der eine aktive Mitwirkung vorbehalten sein kann. Iodblockade Bei einem Unfall in einer kerntechnischen Anlage kann unter anderem auch radioaktives Iod freigesetzt werden. Durch die rechtzeitige Einnahme von hochdosierten Iodid-Tabletten kann die – Iod speichernde – Schilddrüse mit nicht radioaktivem Iod gesättigt und so die Aufnahme radioaktiven Iods verhindert werden. Siehe auch: Bundesministerium für Umwelt, Naturschutz und nukleare Sicherheit ionisierende Strahlung Strahlung, die so energiereich ist, dass sie beim Auftreffen auf Luftmoleküle aus diesen Elektronen herausschlagen, also sie ionisieren kann. Dabei wird üblicherweise bei dem Begriff “Strahlung” nicht zwischen lichtartiger Strahlung (Röntgenstrahlung oder Gammastrahlung) und Strömen energiereicher Teilchen (Alphastrahlung, Betastrahlung, Neutronenstrahlung usw.) unterschieden – für die Naturwissenschaft ist ein Scheinwerferstrahl ein “Strahl”, ein Wasserstrahl aber auch (diese beiden sind aber nicht ionisierend). Mehr zu ionisierender Strahlung und deren Wirkung beim Bundesamt für Strahlenschutz . Katastrophenschutzplan Er beschreibt Maßnahmen zum Schutz der Bevölkerung in der Umgebung des Forschungsreaktors BER II und dient dem Zweck, die Zeit zwischen einem Schadensereignis und den zu treffenden Einsatzmaßnahmen optimal zu nutzen und damit die Schäden in der Umgebung zu begrenzen, die bei einem schweren Unfall entstehen können. Dabei beschreibt der Katastrophenschutzplan die der Planung zugrundeliegende Ausgangslage, das gefährdete Gebiet, die Aufgaben der Gefahrenabwehr und die Zusammenarbeit der zuständigen Behörden und Einrichtungen. Kerntechnische Anlage Kerntechnische Anlagen sind ortsfeste Anlagen, die eine Genehmigung nach Atomgesetz benötigen. Hierunter fallen im eigentlichen Sinn Anlagen zur Erzeugung, Bearbeitung, Verarbeitung, Spaltung oder Aufbewahrung von Kernbrennstoffen oder zur Aufarbeitung bestrahlter Kernbrennstoffe, die alle eine Genehmigung nach § 7 des Atomgesetzes benötigen. Gemäß § 2 Abs. 3a des Atomgesetzes gelten außerdem folgende Einrichtungen als „kerntechnische Anlagen“: Anlagen zur Aufbewahrung von bestrahlten Kernbrennstoffen nach § 6 Abs. 1 oder Abs. 3 Atomgesetz, Anlagen zur Zwischenlagerung für radioaktive Abfälle, wenn die Zwischenlagerung direkt mit einer vorstehend bezeichneten kerntechnischen Anlage in Zusammenhang steht und sich auf dem Gelände der Anlage befindet. Einrichtungen, in denen mit Kernbrennstoffen sonst umgegangen wird (nach § 9 des Atomgesetzes), werden gelegentlich als „kerntechnische Einrichtung im weiteren Sinn“ in die Definition einbezogen. Kernbrennstoffe Was unter den Begriff „Kernbrennstoff“ zu verstehen ist, wird in § 2 Abs. 1 des Atomgesetzes genauer definiert. Danach sind Kernbrennstoffe eine Teilgruppe der radioaktiven Stoffe , und zwar “besondere spaltbare Stoffe“ u.a. in Form von Plutonium 239, Plutonium 241 oder mit den Isotopen 235 oder 233 angereichertem Uran. Mehr zu Kernbrennstoffen wird hier angeboten. Kerntechnisches Regelwerk Die Nutzung der Kernenergie ist in Deutschland durch verschiedene Gesetze, Verordnungen, Regelungen, Leit- und Richtlinien geregelt. Unterhalb der Gesetzes- und Verordnungsebene werden die Anforderungen durch das kerntechnische Regelwerk weiter konkretisiert. Weitere Informationen, u.a. auch zur Regelwerkspyramide, finden sich auf den Internetseiten des Bundesamtes für die Sicherheit der nuklearen Entsorgung (BASE) . Kontamination Gemäß § 3 Abs. 2 Nr. 19 der Strahlenschutzverordnung eine Verunreinigung von Arbeitsflächen, Geräten, Räumen, Wasser, Luft usw. durch radioaktiven Stoffe . Unter Oberflächenkontamination versteht man die Verunreinigung einer Oberfläche mit radioaktiven Stoffen. Für Zwecke des Strahlenschutzes wird bei der Oberflächenkontamination zwischen festhaftender und nicht festhaftender (ablösbarer) Kontamination unterschieden. Bei nicht festhaftender Oberflächenkontamination kann nicht ausgeschlossen werden, dass sich radioaktive Stoffe ablösen und verbreitet werden.“ Kontrollbereich siehe Strahlenschutzbereich Landessammelstelle Berlin (ZRA) Der Gesetzgeber verpflichtet jedes Bundesland eine Landessammelstelle für radioaktive Abfälle einzurichten. Diese nimmt Abfälle aus Medizin, Industrie und Forschung an, jedoch Betriebs- oder Stilllegungsabfälle von Kernkraftwerken oder anderen kerntechnischen Anlagen nur in speziell gelagerten Fällen mit besonderer Erlaubnis. Das Land Berlin hat dem Helmholtz-Zentrum Berlin den gesetzlichen Auftrag zum Betrieb der Berliner Landessammelstelle für radioaktive Abfälle, genannt „Zentralstelle für radioaktive Abfälle“, ZRA , übertragen. Die ZRA übernimmt folglich als Berliner Landessammelstelle schwach- und mittelradioaktive Abfälle , die z.B. bei Anwendern radioaktiver Stoffe in der Industrie, in der Medizin sowie in Forschung und Lehre des Landes Berlin anfallen. Mediator*in Der Begriff stammt aus dem Lateinischen und bedeutet “Vermittler“. Umgangssprachlich wird ein Mediator*in auch als Streitschlichter*in bezeichnet, da die Aufgabe darin besteht, einen Konflikt zwischen mehreren Parteien friedlich zu lösen. Meist gestaltet sich die Lösung in Form eines Kompromisses oder eines Vergleichs. Megawatt (MW) siehe Watt . Meldekategorien (siehe auch meldepflichtiges Ereignis ) Gemäß der Atomrechtlichen Sicherheitsbeauftragten- und Meldeverordnung werden meldepflichtige Ereignisse nach der Frist, in der die Aufsichtsbehörden unterrichtet werden müssen, in unterschiedliche Meldekategorien unterteilt. Sie werden im Einzelnen in den Anlagen 1 bis 5 der Atomrechtlichen Sicherheitsbeauftragten- und Meldeverordnung aufgeführt. Meldepflichtiges Ereignis Vorkommnis, das nach der Atomrechtlichen Sicherheitsbeauftragten- und Meldeverordnung der zuständigen Aufsichtsbehörde zu melden ist. Es handelt sich dabei bei weitem nicht nur um Unfälle oder Störfälle; diese machen erfahrungsgemäß nur einen sehr kleinen Bruchteil der meldepflichtigen Ereignisse aus. Zu melden sind (als „Normalmeldung“) unter anderem alle Abweichungen vom Normalzustand, die eine sicherheitswichtige Einrichtung beeinträchtigen könnten, auch wenn selbst deren Ausfall noch keine Gefahr darstellen würde. Ein Beispiel für eine Normalmeldung bei einem Forschungsreaktor (Bericht Seite 3 und 7) finden Sie hier . Wesentlichere Befunde sind als Eilmeldung oder gar als Sofortmeldung in das Meldesystem einzubringen. Meldepflichtige Ereignisse werden entsprechend in verschiedene Meldekategorien unterteilt. Weitere Informationen stellt das Bundesamt für die Sicherheit der nuklearen Entsorgung (BASE) hier . Mikrosievert Sievert ist die Maßeinheit der effektiven Dosis , benannt nach dem schwedischen Mediziner und Physiker Rolf Sievert. 1 Mikrosievert (µSv) sind 0,000 0001 Sievert (Sv). Bsp.: Eine Zahnaufnahme erzeugt pro Anwendung eine Dosis von weniger als 10 µSv. Millisievert 1 Millisievert (mSv) sind 1000 Mikrosievert (µSv) oder 0,001 Sievert (Sv). Bsp.: Die Dosis einer Ganzkörper-Computertomographie eines Erwachsenen beträgt pro Anwendung ca. 10 mSv. Mittelradioaktive Abfälle siehe Radioaktiver Abfall Neutronen Neutronen sind ungeladene Elementarteilchen. Sie werden insbesondere bei der Kernspaltung freigesetzt. Die Kernspaltung ist nur für schwere Atomkerne (z.B. vom Element Uran) charakteristisch. Die Neutronenstrahlung besitzt wie die Gammastrahlung ein hohes Durchdringungsvermögen und erfordert zur Abschirmung ebenfalls einen stärkeren Einsatz von Abschirmmaterialien. Mehr zu Neutronen und Neutronenstrahlung finden Sie hier . Organdosis Die Organdosis berücksichtigt die unterschiedliche biologische Wirksamkeit verschiedener Arten ionisierender Strahlung (bei gleicher Energiedosis). Sie ist das Produkt aus der Organ-Energiedosis und dem Strahlungs-Wichtungsfaktor. Beim Vorliegen mehrerer Strahlungsarten ist die gesamte Organdosis die Summe der ermittelten Einzelbeiträge. Die Einheit der Organdosis ist J/kg mit dem speziellen Namen Sievert (Sv). Ortsdosis Ortsdosis ist eine operative Messgröße zur Abschätzung der Strahlenmenge an einem Ort und ist definiert als die Äquivalentdosis für Weichteilgewebe (z.B. Fettgewebe und Muskelgewebe), gemessen an einem bestimmten Ort. Ortsdosisleistung (ODL) Die Ortsdosisleistung ist die pro Zeitintervall erzeugte Ortsdosis. Die Ortsdosis ist die Äquivalentdosis für Weichteilgewebe (z.B. Muskelgewebe oder Fettgewebe), gemessen an einem bestimmten Ort. Personendosis Personendosis ist eine operative Messgröße zur Abschätzung der von einer Person erhaltenen Dosis und ist definiert als die Äquivalentdosis gemessen an einer repräsentativen Stelle der Körperoberfläche. Personendosimeter Messgeräte zur Bestimmung der Personendosis als Schätzwert für die Körperdosis einer Person durch externe Bestrahlung (§§ 66 und 172 StrlSchV ). Radioaktiver Stoff Radioaktive Stoffe ( Kernbrennstoffe und sonstige radioaktive Stoffe) im Sinne von § 2 Abs. 1 des Atomgesetzes sind alle Stoffe, die folgende Bedingungen erfüllen: Sie enthalten ein oder mehrere Radionuklide und ihre Aktivität oder spezifische Aktivität kann im Zusammenhang mit der Kernenergie oder dem Strahlenschutz nicht außer Acht gelassen werden. Wann die Aktivität oder spezifische Aktivität eines Stoffes nicht außer Acht gelassen werden kann ist in den Regelungen des Atomgesetzes (§ 2 Absatz 2 AtG) oder der Strahlenschutzverordnung festgeschrieben. In der Bundesrepublik sind Stoffe mit zerfallenden Atomkernen daher kein „radioaktiver Stoff“, wenn in der Strahlenschutzverordnung festgelegt ist, festgelegt ist, dass die entstehende Strahlung unwesentlich ist. Solche Festlegungen findet man z.B. in § 5 der Strahlenschutzverordnung (StrlSchV). Das neue Strahlenschutzgesetz greift in seinem § 3 diese Definition aus dem Atomgesetz auf. Mehr zu Grenzwerten im Strahlenschutz finden Sie hier . Radioaktivität Radioaktivität ist die Eigenschaft bestimmter Stoffe, sich spontan (ohne äußere Wirkung) umzuwandeln (zu „zerfallen“) und dabei charakteristische Strahlung (ionisierende Strahlung) auszusenden. Die Radioaktivität wurde 1896 von Antoine Henri Becquerel an Uran entdeckt. Wenn die Stoffe, genauer gesagt, die Radionuklide, in der Natur vorkommen, spricht man von natürlicher Radioaktivität; sind sie ein Produkt von Kernumwandlungen in Kernreaktoren oder Beschleunigern, so spricht man von künstlicher Radioaktivität. Mehr über die Wirkung ionisierender Strahlung finden Sie hier . Röntgenstrahlung Durchdringende elektromagnetische Strahlung mit einem Frequenzspektrum (und Energie) zwischen Ultraviolettstrahlung und Gammastrahlung. Mehr zum Thema „Wie wirkt Röntgenstrahlung?“ finden Sie hier . Auch bei Röntgenstrahlung gelten die Grundsätze des Strahlenschutzes. Mehr dazu wird hier angeboten. Rückbauverfahren Der Abbauprozess einer kerntechnischen Anlage , welcher typischerweise aus verschiedenen Verfahrensschritten besteht, z.B. Dekontamination, Demontage, Gebäudeabriss. Sicherheitsbericht Der Sicherheitsbericht ist Teil der einzureichenden Antragsunterlagen zu Stilllegung und Rückbau einer kerntechnischen Anlage . Er legt die relevanten Auswirkungen des Vorhabens im Hinblick auf die kerntechnische Sicherheit und den Strahlenschutz dar. Er soll außerdem Dritten die Beurteilung ermöglichen, ob die mit der Stilllegung und dem Abbau verbundenen Auswirkungen sie in ihren Rechten verletzen könnten. Sperrbereich siehe Strahlenschutzbereich Stilllegung Die Stilllegung einer kerntechnischen Anlage besteht hauptsächlich aus dem Rückbau (siehe Rückbauverfahren ) des nuklearen Teils und der Entsorgung des radioaktiven Inventars „(Gesamtheit der in einer kerntechnischen Anlage enthaltenen radioaktiven Stoffe). Zielsetzung ist die Beseitigung der Anlage und Verwertung der Reststoffe so weit wie möglich. Stilllegungsverfahren Der Begriff „Stilllegungsverfahren“ bezeichnet den Gesamtprozess von der Einreichung des Grundantrages bis zur endgültigen Entlassung der kerntechnischen Anlage aus dem Atomgesetz. Strahlendosis siehe Dosis Strahlenexposition Ist ein Synonym für Strahlenbelastung. Bezeichnung für die Einwirkung ionisierender Strahlung auf Lebewesen oder Materie. Strahlenschutz (nur bezogen auf die schädigende Wirkung ionisierender Strahlung) Strahlenschutz dient dem Schutz von Menschen und Umwelt vor den schädigenden Wirkungen ionisierender Strahlung aus natürlichen oder künstlichen Strahlenquellen. Strahlenschutzbeauftragter Nach § 43 bis 44 der Strahlenschutzverordnung ( StrlSchV ) die Person, die neben dem Strahlenschutzverantwortlichen (Genehmigungsinhaber) in einem Betrieb für die Einhaltung der Strahlenschutzvorschriften im Rahmen seiner Befugnisse verantwortlich ist. Strahlenschutzbereich Strahlenschutzbereiche sind räumlich abgrenzbare Bereiche, die aus Strahlenschutzaspekten besonders überwacht und kontrolliert werden. Sie unterteilen sich in Überwachungsbereich, Kontrollbereich und Sperrbereich. Überwachungsbereich Nicht zum Kontrollbereich (und nicht zum Sperrbereich) gehörende betriebliche Bereiche, in denen Personen im Kalenderjahr eine effektive Dosis von mehr als 1 Millisievert oder eine Organ-Äquivalentdosis von mehr als 50 Millisievert für die Hände, die Unterarme, die Füße oder Knöchel oder eine lokale Hautdosis von mehr als 50 Millisievert: erhalten können. Der Zutritt zu einem Überwachungsbereich darf aus gesundheitlichen Gründen nur erlaubt werden, wenn Personen eine dem Betrieb dienende Aufgabe wahrnehmen oder ihr Aufenthalt in diesem Bereich zur Anwendung ionisierender Strahlung oder radioaktiver Stoffe an ihnen selbst oder als Betreuungs-, Begleit- oder Tierbegleitperson erforderlich ist, sie Auszubildende oder Studierende sind und der Aufenthalt in diesem Bereich zur Erreichung ihres Ausbildungszieles erforderlich ist oder sie Besucher sind. Kontrollbereich Sind Strahlenschutzbereiche, die aus Strahlenschutzaspekten besonders überwacht und kontrolliert werden und in denen Personen im Kalenderjahr eine effektive Dosis von mehr als 6 Millisievert oder eine Organ-Äquivalentdosis von mehr als 15 Millisievert für die Augenlinse oder 150 Millisievert für die Hände, die Unterarme, die Füße oder Knöchel oder eine lokale Hautdosis von mehr als 150 Millisievert erhalten können. Der Zutritt zu einem Kontrollbereich darf aus gesundheitlichen Gründen Personen nur erlaubt werden, wenn sie zur Durchführung oder Aufrechterhaltung der in diesem Bereich vorgesehenen Betriebsvorgänge tätig werden müssen, ihr Aufenthalt in diesem Bereich zur Anwendung ionisierender Strahlung oder radioaktiver Stoffe an ihnen selbst oder als Betreuungs-, Begleit- oder Tierbegleitperson erforderlich ist und eine zur Ausübung des ärztlichen, zahnärztlichen oder tierärztlichen Berufs berechtigte Person, die die erforderliche Fachkunde im Strahlenschutz besitzt, zugestimmt hat oder bei Auszubildenden oder Studierenden dies zur Erreichung ihres Ausbildungszieles erforderlich ist. Sperrbereich Bereiche des Kontrollbereichs, in denen die Ortsdosisleistung höher als 3 Millisievert (mSv) durch Stunde sein kann. Der Zutritt zu einem Sperrbereich darf aus gesundheitlichen Gründen nur erlaubt werden, wenn sie zur Durchführung der in diesem Bereich vorgesehenen Betriebsvorgänge oder aus zwingenden Gründen tätig werden müssen und sie unter der Kontrolle eines Strahlenschutzbeauftragten oder einer von ihm beauftragten Person, die die erforderliche Fachkunde im Strahlenschutz besitzt, stehen oder ihr Aufenthalt in diesem Bereich zur Anwendung ionisierender Strahlung oder radioaktiver Stoffe an ihnen selbst oder als Betreuungs- oder Begleitperson erforderlich ist und eine zur Ausübung des ärztlichen oder zahnärztlichen Berufs berechtigte Person, die die erforderliche Fachkunde im Strahlenschutz besitzt, schriftlich zugestimmt hat. Es gelten spezielle Reglungen für Schwangere. Umweltverträglichkeitsprüfung (UVP) Umweltverträglichkeitsprüfung im Stilllegungsgenehmigungsverfahren des Forschungsreaktors BER II: Die Durchführung einer UVP dient der frühzeitigen Feststellung, Erkennung und Bewertung der möglichen Auswirkungen des Rückbaus des Reaktors für Menschen, Tiere, Pflanzen sowie auf die Qualität der Böden, Luft, Gewässer, Klima, Landschaft, Kulturgüter und sonstige Schutzgüter. Die Durchführung der UVP ist bei der Stilllegung von Reaktoranlagen ab 1 kW thermischer Dauerleistung gesetzlich vorgeschrieben (vgl. der Forschungsreaktor BER II hat eine thermische Dauerleistung von 10 Megawatt ). Überwachungsbereich siehe Strahlenschutzbereich Watt Maßeinheit für Leistung. Der Forschungsreaktor BER II hat eine Nennleistung von 10 MW. Zum Vergleich: Ein mittleres Kernkraftwerk hat eine Nennleistung von ca. 1.400 MW. 1 Megawatt (MW) = 1.000.000 Watt (W) > 1 Gigawatt (GW) = 1.000 Megawatt (MW) = 1.000.000 Kilowatt (kW) = 1.000.000.000 Watt (W) Wetterparameter Ist eine Größe wie Temperatur, Windstärke oder Niederschlagsmenge, mit deren Hilfe eine Aussage über die Wetterverhältnisse gewonnen werden kann. Das spielt eine Rolle zum Beispiel bei der Vorhersage der Ausbreitung radioaktiver Stoffe nach einer Freisetzung. ZRA Die Zentralstelle für radioaktive Abfälle (ZRA) betreibt als Institution der Helmholtz-Zentrum Berlin GmbH die Landessammelstelle Berlin. Das Atomgesetz verpflichtet jedes Bundesland, eine Landessammelstelle zur Zwischenlagerung der in seinem Gebiet angefallenen radioaktiven Abfälle einzurichten. Zwischenlager Lagerort für radioaktive Abfälle, die aufbewahrt werden müssen, bis man sie an ein Endlager abgeben kann. Es werden Zwischenlager für hochradioaktive Abfälle ( Brennelemente und Wiederaufarbeitungsabfälle) und Zwischenlager für schwach- und mittelradioaktive Abfälle unterschieden.
Das Projekt "Überarbeitung von technischen Strahlenschutznormen aus dem Bereich des Normenausschusses Materialprüfung bzw. DKE - Los 1 - DIN" wird vom Umweltbundesamt gefördert und von DIN Deutsches Institut für Normung e.V. durchgeführt. A) Normen aus den Bereichen des Normenausschusses 'Materialprüfung' (NMP) bzw. DKE des DIN besitzen für den Vollzug der Strahlenschutzverordnung (StrSchV) sowie der Röntgenverordnung (RöV) eine hohe praktische Relevanz. Es ist daher wichtig, dass diesbezügliche Normenwerke auf dem aktuellen Stand von W/T zu halten sind. Besondere Bedeutung für den praktischen Vollzug haben hierbei die folgenden Normenwerke: - DIN 25426-ff. 'Umschlossene radioaktive Stoffe' mit einem direkten fachlichen Bezug zu Aufgaben im Bereich des BMU, des BfS und der Länder (z.B. Sicherheit von umschlossenen Quellen, einschließlich von HRQ - betrifft infolge der Klassifizierungs- und Kennzeichnungsregeln auch das HRQ-Register und Bauartzulassungen gemäß StrSchV), - DIN 25415 'Dekontamination von radioaktiv kontaminierten Oberflächen', - DIN 25466 'Radionuklidabzüge: Regeln für die Ausführung und Prüfung'. Von Bedeutung sind weiterhin die DIN 25407 'Abschirmwände gegen Ionisierende Strahlung' sowie weitere 4 Normen (DIN 25430, -25462, -25412, -25413). Von Interesse ist weiterhin die Überarbeitung der DIN 25401: Teil 8 und 9. B) Handlungsbedarf: Da die durch AtG, StrlSchV und Richtlinien vorgegebenen Regelungen durch Normen weiter präzisiert und Ausführungshinweise gegeben werden, besteht ein erhebliches Interesse des Bundes an einer Koordinierung der Normungsarbeit. Auch eine frühzeitige und direkte Einflussnahme auf die internationale Normung liegt im Interesse des Bundes und kann vom DIN nur dann geleistet werden, wenn er über Arbeitsausschüsse verfügt, die eine Spiegelfunktion internationaler Normungsgremien wahrnehmen. C) Ziel des Vorhabens ist die Überarbeitung der o.g. Normen zur Anpassung an die 2001 novellierte StrlSchV und an den aktuellen Stand von W und T, sowie die Einflussnahme auf die internationale Normungsarbeit.
Das Projekt "Vergleich der verschiedenen Methoden zur Finanzierung von Stilllegung, Rückbau und Entsorgung nuklearer Anlagen in der Europäischen Union" wird vom Umweltbundesamt gefördert und von Wuppertal Institut für Klima, Umwelt, Energie gGmbH durchgeführt. Sowohl in den einzelnen Mitgliedstaaten als auch auf europäischer Ebene sind zusätzliche Maßnahmen erforderlich, um zu gewährleisten, dass Mittel zur Finanzierung von Stilllegung, Rückbau und Entsorgung im Kernenergiebereich in ausreichendem Maße zur Verfügung stehen, wenn sie benötigt werden. Außerdem sollte die Transparenz durch verstärkten Informationsaustausch und Berichterstattung erhöht werden. Dies sind die Ergebnisse einer umfassenden Analyse der verschiedenen Finanzierungssysteme in der Europäischen Union, die das Wuppertal Institut und seine Projektpartner im Auftrag der Europäischen Kommission durchgeführt hat. Die Europäische Kommission schätzt, dass etwa ein Drittel der etwa 145 laufenden Kernkraftwerke in der Europäischen Union bis zum Jahr 2025 stillgelegt werden. Dies wird den Rückbau, die Dekontamination und Zerlegung dieser nuklearen Installationen erfordern als auch Maßnahmen zum Umgang mit den radioaktiven Abfällen und den abgebrannten Brennelementen. In den Mitgliedstaaten existieren unterschiedliche Systeme, wie die Kosten dieser Aktivitäten geschätzt und gesteuert, wie Mittel zu ihrer Finanzierung angesammelt und die existierenden Fonds verwaltet und geleitet werden sowie was mit den angesammelten Mitteln passiert bis sie für ihren eigentlichen Zweck benötigt werden. Das Wuppertal Institut und seine Projektpartner haben im Auftrag der Europäischen Kommission eine umfassende Analyse der finanziellen Konsequenzen und Risiken der unterschiedlichen Finanzierungssysteme aus vier Perspektiven vorgenommen: aus der Steuerungs-, der Rechnungsführungs-, der Wertermittlungs- und der Investitionsperspektive. Außerdem wurden die rechtlichen Aspekte der Finanzierung von Stilllegung, Rückbau und Entsorgung im Kernenergiebereich auf EU-Ebene untersucht. Hierauf aufbauend werden Empfehlungen abgeleitet, wie gewährleistet werden kann, dass Finanzierungsmittel in ausreichendem Maße zur Verfügung stehen, wenn sie benötigt werden. Die Empfehlungen richten sich zum einen an die Adresse der Mitgliedstaaten. Zum anderen wird aufgezeigt, was heute bereits auf europäischer Ebene in die Wege geleitet werden sollte. Außerdem werden Vorschläge unterbreitet, wie eine weitergehende Harmonisierung auf europäischer Ebene erreicht werden kann, falls dies als notwendig erachtet wird. Zusammen mit den Empfehlungen enthält der Bericht konkrete Vorschläge, wie die Transparenz durch verstärkten Informationsaustausch und Berichterstattung erhöht werden kann.
Das Projekt "Development and optimization of an easy-to-process electrolyte for electrochemical decontamination of stainless steel" wird vom Umweltbundesamt gefördert und von Kraftanlagen AG Heidelberg durchgeführt. Objective: This work aims at optimizing an acetyl-acetone base electrolyte so that it can be used for electrochemical decontamination of stainless steels. Kraftanlagen Heidelberg developed the electrolyte under the preceding EC programme from 1984 to 1988 (contract No. FI1D0004, report EUR 12383). With regard to waste management and disposal, the obtained electrolyte came up to all expectations. An advantage of the organic electrolyte as compared to the phosphoric/sulphuric acid electrolyte is its long radiological service life (the activity settles out continuously). It is easy to convert the crystalline by-product (sediment) by high-pressure compaction into a form that is suitable for disposal. As only small residues of acetyl-acetonates are dissolved in the electrolyte, it is possible to reduce considerably the electrolyte volume by evaporation. In tests with radioactive samples of carbon steel, the obtained results concerning removal effects, duration of treatment, surface quality, and decontamination factors, were satisfactory or good. However, pitting was observed in the tests with samples of stainless steel. As a consequence, the surface was not uniformly removed. Parts of the original surface were visible for a long time. This resulted in poor decontamination factors or long treatment times, respectively. In addition, larger volumes of secondary wastes were produced than with a uniformly removed surface. It is therefore necessary to optimize this electrolyte, if it is to be used for the treatment of stainless steel. General Information: WORK PROGRAMME: 1.Quantitative investigations concerning the dissolution mechanism; 2.Optimization of the aqueous electrolyte through replacing the potassium bromide by other conductive salts; 3.Investigations into scattering and its effect on abrasion, surface quality and decontamination factor; 4.Development of a water-free electrolyte. 5.Decontamination tests with contaminated samples. 6.Processing of spent electrolyte. Achievements: This work aims at optimising an acetylacetone base electrolyte so that it can be used for electrochemical decontamination of stainless steels. In cyclovoltametric, potentiostatic and galvanostatic analyses, it was possible to verify the assumptions as to the anodic dissolution mechanism of potassium bromide and potassium chloride. The dissolution mechanism when using the potassium fluoride electrolyte and glycol electrolytes still remains to be investigated and clarified. The replacement of potassium bromide by potassium fluoride as conductive salt showed positive results. Satisfactory removal rates along with a good anode current yield could be achieved. The aqueous electrolyte along with potassium fluoride as conductive salt demonstrated that the scattering behaviour depends on the viscosity and on the rated current density. When using glycol as solvent along with potassium bromide as conductive salt, no pitting was noted on the electrode. The decontamination tests ...
Das Projekt "Decontamination technique using a dispersed chemical agent" wird vom Umweltbundesamt gefördert und von Battelle-Institut e.V. durchgeführt. Objective: The objective of this research is to develop a technique using a chemical agent dispersed as fog for the decontamination of large size components of nuclear installations. The proposed project investigates the decontamination factors which can be achieved via this method using a lab-scale experimental setup focusing on the decontamination of austenitic steel. The programme essentially includes: Construction and testing of the experimental set up; adaptation of a droplet size and concentration measuring system; decontamination tests with nonactive samples to optimize the process parameters; decontamination tests with radioactive samples in order to verify the efficiency of this method. This research programme aims at obtaining consistent information on a new approach towards the decontamination of components of nuclear installations: decontamination by means of high affinity chemical reagents, in an aqueous medium for a good surface contact, using methods already existing in other technical fields. General Information: Work Programme. 1. Construction and testing of the experimental setup. 2. Adaptation of a droplet size and concentration measuring system. 3. Experiments with nonradioactive samples for the optimization of the process parameters. 4. Verification experiments with radioactive samples for the determination of the decontamination factor. Achievements: The objective of this research is to develop a technique using a chemical agent dispersed as fog for the decontamination of large size components of nuclear installations. The proposed project investigates the decontamination factors which can be achieved via this method using a lab-scale experimental setup focusing on the decontamination of austenitic steel. The first phase of the work has been performed. This covered lay out, construction and testing of an experimental setup, capable of producing and depositing an ultra fine fog of a chemical agent on a target surface, which consists in a first approach of a nonactive sample. The system contains a closed loop, where fine droplets of an etching fluid are generated in the 2 um size range via an ultrasonic transducer and deposited electrostatically on a metal target after passing a corona discharge section. The metal target consist of a rotating endless belt which faces the aerosol generator and a wiper on the back of the belt to collect the waste liquid for post investigation. To test the functions of the apparatus and to determine typical process parameters first experiments have been carried out successfully. The apparatus available now allows a direct automatic online measurement of the reaction kinetics of the etching process. The system is ready for the planned experiments with austenitic steel to optimize the process with nonradioactive samples and to demonstrate the method using radioactive samples determining the attainable decontamination factors.
Das Projekt "Entwicklung eines Verfahrens zur Entfernung radioaktiv kontaminierter Beschichtungen von Beton und Stahlstrukturen bei der Stillegung von Nuklearanlagen" wird vom Umweltbundesamt gefördert und von Universität Dortmund, Lehrstuhl Bauphysik durchgeführt. Es soll ein Verfahren zur Entfernung radioaktiv kontaminierter Schutzbeschichtungen von Stahl-, Beton-, Putz- und Estrichoberflaechen zum Einsatz bei der Dekontamination bzw. der Stillegung von kerntechnischen Anlagen entwickelt und unter praxisnahen Bedingungen erprobt werden. Durch kurzzeitige Einwirkung tiefer Temperaturen (Kaelteschock) soll ein starkes Schrumpfen und bedingt dadurch das Abplatzen der Schutzschichten bewirkt werden, so dass diese ohne Anwendung besonderer Hilfen (wie z.B. durch Einsatz von Loesemitteln, Hochdruck- oder Flammstrahlen) entfernt werden koennen. Die Nachteile der bisher ueblichen Methoden zur Entfernung von Schutzschichten, wie Kontaminationsverschleppung in den Untergrund, Bildung von Staeuben, Aerosolen und der Anfall von Sekundaerabfaellen koennten hierdurch verhindert und die Belastungen des Arbeitspersonals durch Schadstoffe und Radioaktivitaet minimiert werden.
Das Projekt "BioVeStRa: Untersuchung des Potenzials biologischer Verfahren zur Strahlenschutzvorsorge bei Radionuklidbelastungen" wird vom Umweltbundesamt gefördert und von Strahlenschutz, Analytik & Entsorgung Roßendorf e.V. durchgeführt. Ziel des Vorhabens ist es, einen Beitrag zur Strahlenschutz-Vorsorge zu leisten, indem untersucht werden soll, inwiefern auf der Basis eingebrachter mycelbildender Pilze eine schnelle, stabilere und quantitativ hohe Akkumulation von Radionukliden aus tieferliegendem Erdreich und aus Wässern im Myzel möglich ist. Aufbauend auf die im Rahmen von Vorläuferprojekten erlangten Erkenntnisse soll durch Grundlagenforschung, über anwendungsorientierte Laboruntersuchungen bis hin zu praxisnahen Verfahrensansätzen das Ziel in Form einer Machbarkeitsstudie erreicht werden. Im Rahmen des beantragten Projekts soll die Eignung von Pilzen zur schnellen und ausgedehnten Durchdringung eines Bodenkörpers zum Zwecke der mittelfristigen Immobilisierung von freigesetzten Radionukliden überprüft werden. Ergänzend werden entsprechende Untersuchungen auch an Pflanzen durchgeführt. Dazu wird die Translokation von Radionukliden aus der Bodenmatrix in Pilze und Pflanzen sowie die Migration der Radionuklide in dem Organismus analytisch erfasst. Durch die Untersuchung der Radionuklid-Speziation im Boden, an und in der Biomasse sollen außerdem physikalische, chemische und biologische Einflussfaktoren für die Metallaufnahme identifiziert werden. Ziel ist es zusätzlich, nach Möglichkeit bestehende analytische Verfahren (SIMS) dafür zu adaptieren. Das Projekt ist in zwei Phasen gegliedert. Eine erste Phase, in der grundlegende Prozesse im Labor an je zwei Pilzen und Pflanzen in einem für Deutschland und die Ukraine relevanten Referenzboden (Refesol 04, Gley-Podsol, schwach schluffiger Sand, mittel sauer, mittel humos) und einem zweiten kontaminierten Boden (z.B. VKTA) untersucht werden sollen. Für die Experimente werden die Isotope Sr-90/Sr-85, Cs-137 und Am-241 (ggf. auch Eu-152) verwendet. Darüber hinaus werden auch inaktives Sr, Cs sowie Eu genutzt. In der zweiten Phase sollen die erhaltenen Erkenntnisse in einem Freilandversuch unter Verwendung von Pflanzen und Pilzen überprüft werden.
Das Projekt "BioVeStRa: Untersuchung des Potenzials biologischer Verfahren zur Strahlenschutzvorsorge bei Radionuklidbelastungen" wird vom Umweltbundesamt gefördert und von Helmholtz-Zentrum Dresden-Roßendorf e.V., Institut für Ressourcenökologie durchgeführt. Ziel des Vorhabens ist es, einen Beitrag zur Strahlenschutz-Vorsorge zu leisten, indem untersucht werden soll, inwiefern auf der Basis eingebrachter mycelbildender Pilze eine schnelle, stabilere und quantitativ hohe Akkumulation von Radionukliden aus tieferliegendem Erdreich und aus Wässern im Myzel möglich ist. Aufbauend auf die im Rahmen von Vorläuferprojekten erlangten Erkenntnisse soll durch Grundlagenforschung, über anwendungsorientierte Laboruntersuchungen bis hin zu praxisnahen Verfahrensansätzen das Ziel in Form einer Machbarkeitsstudie erreicht werden. Im Rahmen des beantragten Projekts soll die Eignung von Pilzen zur schnellen und ausgedehnten Durchdringung eines Bodenkörpers zum Zwecke der mittelfristigen Immobilisierung von freigesetzten Radionukliden überprüft werden. Ergänzend werden entsprechende Untersuchungen auch an Pflanzen durchgeführt. Dazu wird die Translokation von Radionukliden aus der Bodenmatrix in Pilze und Pflanzen sowie die Migration der Radionuklide in dem Organismus analytisch erfasst. Durch die Untersuchung der Radionuklid-Speziation im Boden, an und in der Biomasse sollen außerdem physikalische, chemische und biologische Einflussfaktoren für die Metallaufnahme identifiziert werden. Ziel ist es zusätzlich bestehende analytische Verfahren (SIMS) dafür entsprechend weiter zu entwickeln. Das Projekt ist in zwei Phasen gegliedert. Eine erste Phase, in der grundlegende Prozesse im Labor an je zwei Pilzen und Pflanzen in einem für Deutschland und die Ukraine relevanten Referenzboden (Refesol 04, Gley-Podsol, schwach schluffiger Sand, mittel sauer, mittel humos) und einem zweiten kontaminierten Boden (z.B. VKTA) untersucht werden sollen. Für die Experimente werden die Isotope Sr-90/Sr-85, Cs-137 und Am-241 (ggf. auch Eu-152) verwendet. Darüber hinaus werden auch inaktives Sr, Cs sowie Eu genutzt. In der zweiten Phase sollen die erhaltenen Erkenntnisse in einem Freilandversuch unter Verwendung von Pflanzen und Pilzen überprüft werden.
Das Projekt "BioVeStRa: Untersuchung des Potenzials biologischer Verfahren zur Strahlenschutzvorsorge bei Radionuklidbelastungen" wird vom Umweltbundesamt gefördert und von Leibniz Universität Hannover, Institut für Radioökologie und Strahlenschutz durchgeführt. Ziel des Vorhabens ist es, einen Beitrag zur Strahlenschutz-Vorsorge zu leisten, indem untersucht werden soll, inwiefern auf der Basis eingebrachter mycelbildender Pilze eine schnelle, stabilere und quantitativ hohe Akkumulation von Radionukliden aus tieferliegendem Erdreich und aus Wässern im Myzel möglich ist. Aufbauend auf die im Rahmen von Vorläuferprojekten erlangten Erkenntnisse soll durch Grundlagenforschung, über anwendungsorientierte Laboruntersuchungen bis hin zu praxisnahen Verfahrensansätzen das Ziel in Form einer Machbarkeitsstudie erreicht werden. Im Rahmen des beantragten Projekts soll die Eignung von Pilzen zur schnellen und ausgedehnten Durchdringung eines Bodenkörpers zum Zwecke der mittelfristigen Immobilisierung von freigesetzten Radionukliden überprüft werden. Ergänzend werden entsprechende Untersuchungen auch an Pflanzen durchgeführt. Dazu wird die Translokation von Radionukliden aus der Bodenmatrix in Pilze und Pflanzen sowie die Migration der Radionuklide in dem Organismus analytisch erfasst. Durch die Untersuchung der Radionuklid-Speziation im Boden, an und in der Biomasse sollen außerdem physikalische, chemische und biologische Einflussfaktoren für die Metallaufnahme identifiziert werden. Ziel ist es zusätzlich, nach Möglichkeit bestehende analytische Verfahren (SIMS) dafür zu adaptieren. Das Projekt ist in zwei Phasen gegliedert. Eine erste Phase, in der grundlegende Prozesse im Labor an je zwei Pilzen und Pflanzen in einem für Deutschland und die Ukraine relevanten Referenzboden (Refesol 04, Gley-Podsol, schwach schluffiger Sand, mittel sauer, mittel humos) und einem zweiten kontaminierten Boden (z.B. VKTA) untersucht werden sollen. Für die Experimente werden die Isotope Sr-90/Sr-85, Cs-137 und Am-241 (ggf. auch Eu-152) verwendet. Darüber hinaus werden auch inaktives Sr, Cs sowie Eu genutzt. In der zweiten Phase sollen die erhaltenen Erkenntnisse in einem Freilandversuch unter Verwendung von Pflanzen und Pilzen überprüft werden.
Das Projekt "Betondekontamination mittels Trockeneisstrahlens zum Rückbau von Gebäudestrukturen im kerntechnischen Bereich (BeDeKo)" wird vom Umweltbundesamt gefördert und von Leibniz Universität Hannover, Institut für Werkstoffkunde durchgeführt. Ziel ist es die Trockeneisstrahltechnik für die Verwendung als sicheres und leistungsfähiges Dekontaminationsverfahren zu etablieren, um somit die Gebäudedekontamination kerntechnischer Anlagen wesentlich zu erleichtern. Die Leistungsfähigkeit moderner Prozessvarianten soll anhand valider Daten zum Abtrag von Lacken und Beton erarbeitet werden, sodass diese Erkenntnisse direkt in die Rückbauplanung einfließen können. Im Fokus steht dabei die Arbeitssicherheit in Bezug auf die CO2 Konzentration in der Anlage. 1 Mock-Up Strukturen zur Entschichtung 1.1 Unbeschichtete Betonoberflächen1.2 Beschichtete Betonoberflächen 2 Trockeneisbearbeitung von Beton 2.1 Pellet-Strahlen ohne zusätzliche AbrasivmittelPelletformExtrudierte PelletsGebrochene Pellets 2.2 Strahlen mit geringem Anteil an Abrasivmittel 3 Bestimmung des Leistungspotentials der verschiedenen Entschichtungsarten auf CO2-Basis 3.1 Leistungsdatenermittlung 3.2 Leistungsdatenvergleich 3.3 Wirtschaftlichkeitsabschätzung 4 Übertragung auf andere Dekontaminationsbereiche im kerntechnischen Bereich 4.1 Entschichtung von metallischen Bauteilen 4.2 Reinigung von metallischen Bauteilen 4.3 Weiterer Betonabtrag nach der Entschichtung 5 Abfallbehandlungskonzept 5.1 Prognose zum Sekundärwaste 5.2 Weitergehende Konditionierungsmaßnahmen des abgetragenen Materials6 Analyse der Prozessemissionen 6.1 Ableiten eines spezifischen Lüftungskonzepts 6.2 Gasanalyse zum CO2-Verbleib 6.3 Sicherheitsbetrachtungen CO2-am Arbeitsplatz 6.4 CO2 Rückgewinnung.