API src

Found 43 results.

Related terms

Teilprojekt 1

Das Projekt "Teilprojekt 1" wird vom Umweltbundesamt gefördert und von Technische Universität München, Physik Department, E17: Lehrstuhl für Physik , Biophysik durchgeführt. Ziel des Vorhabens ist die Weiterentwicklung eines kombinierten Tomographiesystems (NeuRoFast), an der Neutronenanlage ANTARES am FRM-II, dass es ermöglicht Neutronen- und Röntgen-Tomographie mit zusätzlichem Gitter-basiertem Phasen- und Dunkelfeld-Kontrast gleichzeitig an einer Probe durchzuführen. Diese neuen Methodologien soll auf zentrale Fragestellungen im Bereich neuer Polymerkompositmembranen für Redox Flowbatterien und Elektrolyse- und Brennstoffzellen angewandt werden. NeuRoFast baut auf dem derzeit laufenden Projekt NeuRoTom (Förderkennziffer: 05K13VF1) auf, und basiert auf zwei wesentlichen Erweiterungen des ANTARES durch den Projektpartner TUM: Einerseits soll die Implementierung weiterer fortgeschrittener Kontrastmodalitäten - auf der Basis der derzeitig laufenden Arbeiten - erfolgen. Insbesondere soll der gitter-basierte Neutronen und Röntgen-Phasen- und Dunkelfeldkontrast implementiert werden, da sich in bereits durchgeführten Demonstrationsversuchen ein großes Potential dieser Methoden zur Erforschung neuer Batteriesysteme sowie Brennstoff- und Elektrolysezellen abzeichnet. Andererseits soll ein neues Neutronendetektorsystem mit den derzeit höchstmöglichen zeitlichen und räumlichen Auflösungen angeschafft und implementiert werden. Verbunden mit höchstmöglicher zeitlicher und örtlicher Auflösung wird in NeuRoFast ein einzigartiges Analysesystem geschaffen. AP 1: Einbau eines kombinierten Gitter-basierten Röntgen- und Neutronen Phasenkontrast- und Dunkelfeld-Bildgebungsaufbaus AP 1.1: Entwicklung und Aufbau des Systems AP 1.1: Bildverarbeitung AP 1.3: Inbetriebnahme und Charakterisierung des Systems AP 2: Entwicklung und Implementierung eines zeitlich und räumlich höchstauflösenden 'Super-Resolution'-Neutronendetektors am FRM-II AP 2.1: Aufbau des Systems AP 2.2: Inbetriebnahme und Charakterisierung des Systems AP 2.3: Anwendungen.

Teilprojekt 2

Das Projekt "Teilprojekt 2" wird vom Umweltbundesamt gefördert und von Albert-Ludwigs-Universität Freiburg, Institut für Mikrosystemtechnik (IMTEK), Professur für Anwendungsentwicklung durchgeführt. Ziel des Vorhabens ist die Weiterentwicklung eines kombinierten bildgebenden Systems (NeuRoFast), an der Neutronentomographieanlage ANTARES am FRM-II (Forschungs-Neutronenquelle Heinz Maier-Leibnitz / TU München), das es ermöglicht Neutronen- und Röntgen- Bildgebung gleichzeitig an einer Probe durchzuführen. Zusätzlich werden in NeuRoFast neue Kontrastverfahren für die Untersuchung dynamischer Prozesse im Bereich neuer Materialien für Energieanwendungen entwickelt und Pilotexperimente durchgeführt. NeuRoFast baut auf dem derzeit laufenden Projekt NeuRoTom auf und basiert auf zwei wesentlichen Erweiterungen des ANTARES durch den Projektpartner TU München: Einerseits soll die Implementierung weiterer fortgeschrittener Kontrastmodalitäten - auf der Basis der derzeitig laufenden Arbeiten - erfolgen. Insbesondere soll der gitter-basierte Neutronen und Röntgen- Phasen- und Dunkelfeldkontrast implementiert werden, da sich in bereits durchgeführten Demonstrationsversuchen ein großes Potential dieser Methoden zur Erforschung neuer Batteriesysteme sowie Brennstoff- und Elektrolysezellen abzeichnet. Andererseits soll ein neues Neutronendetektorsystem mit bislang ungekannten räumlichen (10 Mikrometer) und zeitlichen (10 Herz) Auflösungen entwickelt werden. Der ANTARES Messplatz am FRM-II hat die weltweit höchste Flussrate und Kollimation. Verbunden mit höchstmöglicher zeitlicher und örtlicher Auflösung wird in NeuRoFast dadurch ein weltweit einzigartiges Analysesystem geschaffen. Für die Erschließung neuer Anwendungsfelder für den ANTARES Setup am FRM-II müssen neue Verfahren für die Untersuchung von Energieanwendungen mit Neutronenbildgebung entwickelt werden. Im Fokus von NeuRoFast stehen die vielversprechenden Redox-Flow-Batterien (RFBs) sowie Elektrolyse mit Festelektrolytmembran (PEMELs), denen Schlüsselrollen für die Energiewende zugesprochen werden. Für PEMELs und RFBs werden in NeuRoFast daher dynamische in operando Kontrastverfahren am IMTEK entwickelt, die auf Lithium- und Wasserstoffisotopen beruhen. Dunkelfeld und Phasenkontrast-Bildgebung sollen zudem für die Untersuchung von Blasenbildungsdynamiken verwandt werden.

Highly-resolved imaging in artificial and natural soils to yield dynamics and structure of interfaces from oxygen, pH and water content

Das Projekt "Highly-resolved imaging in artificial and natural soils to yield dynamics and structure of interfaces from oxygen, pH and water content" wird vom Umweltbundesamt gefördert und von Universität Potsdam, Institut für Erd- und Umweltwissenschaften durchgeführt. In soils and sediments there is a strong coupling between local biogeochemical processes and the distribution of water, electron acceptors, acids, nutrients and pollutants. Both sides are closely related and affect each other from small scale to larger scale. Soil structures such as aggregates, roots, layers, macropores and wettability differences occurring in natural soils enhance the patchiness of these distributions. At the same time the spatial distribution and temporal dynamics of these important parameters is difficult to access. By applying non-destructive measurements it is possible to overcome these limitations. Our non-invasive fluorescence imaging technique can directly quantity distribution and changes of oxygen and pH. Similarly, the water content distribution can be visualized in situ also by optical imaging, but more precisely by neutron radiography. By applying a combined approach we will clarify the formation and architecture of interfaces induces by oxygen consumption, pH changes and water distribution. We will map and model the effects of microbial and plant root respiration for restricted oxygen supply due to locally high water saturation, in natural as well as artificial soils. Further aspects will be biologically induced pH changes, influence on fate of chemicals, and oxygen delivery from trapped gas phase.

Micro-scaled hydraulic heterogeneity in subsoils

Das Projekt "Micro-scaled hydraulic heterogeneity in subsoils" wird vom Umweltbundesamt gefördert und von Leibniz Universität Hannover, Institut für Bodenkunde durchgeführt. Nutrient and water supply for organisms in soil is strongly affected by the physical and physico-chemical properties of the microenvironment, i.e. pore space topology (pore size, tortuosity, connectivity) and pore surface properties (surface charge, surface energy). Spatial decoupling of biological processes through the physical (spatial) separation of SOM, microorganisms and extracellular enzyme activity is apparently one of the most important factors leading to the protection and stabilization of soil organic matter (SOM) in subsoils. However, it is largely unknown, if physical constraints can explain the very low turnover rates of organic carbon in subsoils. Hence, the objective of P4 is to combine the information from the physical structure of the soil (local bulk density, macropore structure, aggregation, texture gradients) with surface properties of particles or aggregate surfaces to obtain a comprehensive set of physical important parameters. It is the goal to determine how relevant these physical factors in the subsoil are to enforce the hydraulic heterogeneity of the subsoil flow system during wetting and drying. Our hypothesis is that increasing water repellency enforces the moisture pattern heterogeneity caused already by geometrical factors. Pore space heterogeneity will be assessed by the bulk density patterns via x-ray radiography. Local pattern of soil moisture is evaluated by the difference of X-ray signals of dry and wet soil (project partner H.J. Vogel, UFZ Halle). With the innovative combination of three methods (high resolution X-ray radiography, small scale contact angle mapping, both applied to a flow cell shaped sample with undisturbed soil) it will be determined if the impact of water repellency leads to an increase in the hydraulic flow field heterogeneity of the unsaturated sample, i.e. during infiltration events and the following redistribution phase. An interdisciplinary cooperation within the research program is the important link which is realized by using the same flow cell samples to match the spatial patterns of physical, chemical, and biological factors in undisturbed subsoil. This cooperation with respect to spatial pattern analysis will include the analysis of enzyme activities within and outside of flow paths and the spatial distribution of key soil properties (texture, organic carbon, iron oxide content) evaluated by IR mapping. To study dissolved organic matter (DOM) sorption in soils of varying mineral composition and the selective association of DOM with mineral surfaces in context with recognized flow field pattern, we will conduct a central DOM leaching experiment and the coating of iron oxides which are placed inside the flow cell during percolation with marked DOM solution. Overall objective is to elucidate if spatial separation of degrading organisms and enzymes from the substrates may be interconnected with defined physical features of the soil matrix thus explaining subsoil SOM stability and -dynami

Der Einfluss von Regenwuermern auf die Bioverfuegbarkeit von Bentazon und seiner Abbauprodukte im Boden

Das Projekt "Der Einfluss von Regenwuermern auf die Bioverfuegbarkeit von Bentazon und seiner Abbauprodukte im Boden" wird vom Umweltbundesamt gefördert und von Universität Heidelberg, Zoologisches Institut I durchgeführt. Viele Pflanzenschutzmittel bilden nicht extrahierbare Rueckstaende im Boden, die konventionellen analytischen Methoden nicht zugaenglich sind. Untersuchungen dieser Pestizidfraktion deuten darauf hin, dass die Belastung des Bodens mit Pflanzenschutzmitteln bisher moeglicherweise unterschaetzt wurde. Das Herbizid Bentazon wird im Boden ueberwiegend in Huminstoffe eingebaut. Da Regenwuermer grosse Bedeutung fuer die Umsetzung organischer Materialien, insbesondere Huminstoffen, haben, wird in Laborexperimenten der Einfluss dieser Tiergruppe auf die Bindung von radioaktiv markierten Bentazonrueckstaenden untersucht. Ferner werden Veraenderungen des Metabolitspektrums im Boden und die Verteilung von Bentazon in Regenwuermern analytisch und autoradiographisch erfasst.

Teilprojekt P5: Non-equilibrium processes during infiltration into structured soil

Das Projekt "Teilprojekt P5: Non-equilibrium processes during infiltration into structured soil" wird vom Umweltbundesamt gefördert und von Helmholtz-Zentrum für Umweltforschung GmbH - UFZ, Department Bodenphysik durchgeführt. Infiltrationsprozesse in Böden bestimmen die Verteilung von Wasser als Folge von Niederschlägen. Diese Prozesse lassen sich mit klassischen Kontinuumsmodellen beschreiben, vorausgesetzt die zugrundeliegenden Annahmen sind erfüllt. In erster Linie sind dies die Kontinuität der Wasser- und Gasphasen, sowie das lokale Gleichgewicht zwischen Wassergehalt und Wasserpotenzial. Diese Annahmen werden unter den transienten Bedingungen nahe der Bodenoberfläche und vor allem während hoher Niederschlagsintensitäten häufig verletzt. n diesem Projekt werden Ungleichgewichtsprozesse während Wasserinfiltration in Böden untersucht: Infiltrationsfronten werden mittels Röntgenradiographie im Detail untersucht wobei kritische Schwellenwerte für den Übergang zu Ungleichgewichtsprozessen identifiziert werden. Es wird erwartet, dass sich diese Schwellen als gekoppelte Funktion von initialer Bodenfeuchte, Flussrandbedingungen und charakteristischen Größen der Porenstruktur (Größenverteilung und Topologie) darstellen lassen. Parallel wird die porenskalige Struktur des Materials über Röntgentomographie gemessen, um zu untersuchen, inwieweit die kritischen Schwellen direkt aus der Struktur abgeleitet werden können. Schließlich soll ein Modellkonzept erarbeitet werden, das eine vereinheitlichte Beschreibung von Ungleichgewichtbedingungen und der Hysterese von hydraulischen Bodeneigenschaften erlaubt. Dieser Ansatz hat das Potenzial, die Charakterisierung von Infiltrationsereignissen deutlich zu verbessern, was für die Modellierung des Wasserhaushaltes von Böden v.a. unter sich ändernden Niederschlagsverteilungen wichtig ist. Die notwendigen Parameter können dabei aus der Struktur des Materials abgeleitet werden und sind damit direkt zugänglich.

Statistische Analyse und Bewertung der Erhebungen zum Schilddruesenkrebsrisiko durch Radiojodtest

Das Projekt "Statistische Analyse und Bewertung der Erhebungen zum Schilddruesenkrebsrisiko durch Radiojodtest" wird vom Umweltbundesamt gefördert und von Gesellschaft für Strahlen- und Umweltforschung, Institut für Medizinische Informatik und Systemforschung durchgeführt. In einer Fall-Kontrollstudie zum strahleninduzierten Schilddruesenmalignom durch die diagnostische Anwendung von Jod 131 ergibt sich fuer Frauen ein Odds Ratio bezueglich der Exposition von 1,6 mit einem 95 Prozent-Konfidenzintervall bei 1,1-2,4. Fuer Maenner liegt der entsprechende Wert bei 1,0 (95 Prozent-Intervall 0,4-2,6). Eine regionale Variation scheint sich abzuzeichnen, wobei jedoch untersucht werden muss, ob dieser Effekt durch Verzerrungen hervorgerufen wird. Aehnliches gilt auch fuer den Faktor 'Struma', wobei sich ein Trend zu einem hoeheren Odds-Ratio bei Struma-Patienten ergibt.

Sub project: Dynamic capillary fringes - a multidisciplinary approach

Das Projekt "Sub project: Dynamic capillary fringes - a multidisciplinary approach" wird vom Umweltbundesamt gefördert und von Helmholtz-Zentrum für Umweltforschung GmbH - UFZ - Department Bodensystemforschung durchgeführt. The capillary fringe is characterized by the fluctuating water table evoking the dynamic formation and dissolution of trapped gas. Due to phase discontinuities flow and transport across this interface cannot be described by classical theory. In this sub-project we want to (I) experimentally explore the dynamics of phase saturation during water table fluctuations at a high spatial (0.01 mm) and high temporal (1 s) resolution using X-ray radiography, (ii) investigate the formation and dissolution of a residual gas phase under transient forcing, and (iii) study incoherent gas transport and the extent to which it may be represented by travel time distributions and effective continuum properties. The experiments will be run in Hele- Shaw cells corresponding to the other SPs. The continuum scale analysis will be complemented by optical measurements of the dynamics of water-gas interfaces and the movement and size distribution of gas bubbles at the pore scale (resolution 0.01 mm). Using 3D X-ray tomography the structure of the pore geometry is obtained which provides the basis for pore scale modeling of the dissolution of gas bubbles (SP2). Moreover, the pore structure will be quantified in terms of pore size distribution, connectivity and pore-solid interface curvature. These measures are then used as input to an equivalent micro-model where the detailed multiphase dynamics can be explored. This will provide the experimental basis to relate structural properties, external forcing and fluid properties to effective properties observed in the central experimental facility of CP.

Erkennen und Korrigieren von Abschirmungen beim mobilen Einsatz

Das Projekt "Erkennen und Korrigieren von Abschirmungen beim mobilen Einsatz" wird vom Umweltbundesamt gefördert und von Bayerisches Staatsministerium für Umwelt und Gesundheit durchgeführt. Für Aufgaben, bei denen die Quantifizierung von radioaktiven Stoffen hinter unbekannten Abschirmungen durch Gamma-spektrometrische Messung erfolgen soll - und das ist der Normal-fall -, stehen bislang stark ausbaufähige Methoden der Identifizierung des abschirmenden Materials und der Strahlungabschwächungskorrektur zur Verfügung. Techniken, wie sie beim sta-tionären Einsatz mittels Digitaler Radiographie (DR) und Transmissions-Computer-Tomographie (TCT) eingesetzt werden können, stehen bei mobilen Messungen meist nicht zur Verfügung. Daher sollen die nachfolgenden Techniken instrumentiert und erprobt werden: - Identifizierung von Abschirmmaterial durch tragbaren Röntgen-Fluoreszenz-Analysator; Dickenbestimmung durch Ultraschall-Messgerät (bei ATR vorhanden) - Durchstrahlung mittels mobiler Röntgen-Quelle, Datenaufnahme nicht durch konventionelle Polaroid-Filme, die nunmehr bedingt lieferbar sind, sondern durch Speicherplatten (Image-Plates), welche ein digitales Auswerten durch einen Laser-Trommel-Scanner ermöglichen. - Software zur Simulation von Gamma-Spektren mit unterschiedlichsten Detektor-Materialien und -Abmessungen hinter definierten Abschirmungen.

Teilprojekt: Zellbau und Systemtests

Das Projekt "Teilprojekt: Zellbau und Systemtests" wird vom Umweltbundesamt gefördert und von Technische Universität Cottbus-Senftenberg, Institut für Energietechnik, Lehrstuhl für Kraftwerkstechnik durchgeführt. Das F/E-Verbundvorhaben zielt auf das innovative Konzept, die Effizienz und Leistungsdichte (Raum-Zeit-Ausbeute) der alkalischen Elektrolyse durch ein gezieltes Gasblasenmanagement mittels neuartiger poröser dreidimensionaler Elektrodenmaterialien zu erhöhen. Speziell soll die effektive Stromdichte unter Berücksichtigung niedriger Überspannungen deutlich erhöht werden, indem der störende Einfluss der entstehenden Gase durch die poröse 3D-Elektrodenstruktur reduziert wird. Das Projekt AEL3D untergliedert sich in folgende Projektschritte: 1. die Einbringung elektrochemisch aktiver Katalysatormaterialien in ein poröses dreidimensionales metallisches Gerüst (Schaummatte oder Vlies) auf Eisen oder Nickelbasis und deren elektrochemische und strukturelle Charakterisierung, 2. erstmalige Untersuchungen einer Zweiphasenströmung (Gasblasen-Elektrolyt-Gemisch) durch eine solche rigide poröse 3D-Struktur mittels CFD-Simulationen und In-operando-Experimenten (Videosonde, Radiographie, Tomographie) sowie daraus abgeleitete Auslegungsvorschriften zum Zelldesign, 3. die Testung der neuartigen Elektrodenmaterialien und -strukturen in einem zweistufigen Prozess in einer 30bar-Einzelzelle sowie in einem alkalischen 60bar-Testelektrolyseur unter realen Betriebsbedingungen bei einer Elektrodenfläche von ca. 0,56 m2 sowie 4. die technisch-ökonomische Bewertung des neuen Elektrodenmaterials hinsichtlich seiner Tauglichkeit für den großtechnischen Einsatz.

1 2 3 4 5