Freisetzungen von Radionukliden aus Kernkraftwerkunfaellen (Harrisburg, Tschernobyl) haben gezeigt, wie notwendig Kenntnisse ihrer Verbreitung in unserer Umwelt sind. Durch nasse oder trockene Deposition gelangen die Radioisotope auf Pflanzen und Boden, werden von den Pflanzen via Wurzeln oder Blaetter aufgenommen und gelangen so in die menschliche Nahrungskette. Die Bestimmung von Transferfaktoren unter lokalen Bedingungen (Klima, Nahrungsmittelkonsum, Ernaehrungsgewohnheiten) sowie die Verteilung der Radionuklide in den Pflanzen (essbarer Anteil) sind sehr wichtig, aber lueckenhaft. Ferner fehlen Daten ueber Resuspensionsfaktoren und Abwitterungskonstanten. Die besten Rechenmodelle fuer die Abschaetzung des Transports von Radionukliden durch die Umwelt und die nachfolgende menschliche Strahlenbelastung nuetzen wenig, wenn die genauen Kenntnisse dieser Parameter und ihrer Wechselwirkung fehlen.
Es werden Luft-, Wasser- und sonstige fluessige und feste Proben untersucht. Die Arbeiten zielen darauf ab, die Empfindlichkeit des Nachweises zu verbessern und die Transportwege der kuenstlichen Radionuklide in der Umwelt zu verfolgen.
Durch den Reaktorunfall in Tschernobyl wurde unter anderem das langlebige radioaktive Isotop Cs-137 freigesetzt und ueber weite Regionen Europas - einschliesslich der norddeutschen Tiefebene - verteilt. Die Verlagerung des Caesiums wird in charakteristischen Boeden Norddeutschlands - Marsch, Moor, Podsol, Pseudogley - verfolgt und die Verfuegbarkeit dieses Nuklides fuer die Pflanze festgestellt. Die Untersuchungen sollen dazu beitragen, die Kenntnisse ueber das Verhalten des Cs in geringen Konzentrationen zu verbessern. Sie sollen ausserdem klaeren helfen, inwieweit Standorteigenschaften - insbesondere hohe Humusgehalte und Kalkgehalt - zur verstaerkten Mobilitaet beitragen. Ergebnisse unmittelbar praktischer Bedeutung koennten in Bezug auf Verbesserung der Vorhersagbarkeit des Cs-Verhaltens in Boeden, auf die Pflanzenverfuegbarkeit des Cs und auf das problem der stark variierenden Angaben zu Transferfaktoren erzielt werden.
Im Ronneburger Revier (Ostthüringen) fand von 1952-1990 die weltweit größte Urangewinnung aus Schwarzpeliten statt. Die derzeit vom Halden-Sickerwasser der Nordhalde, später vom austretenden Flutungswasser des gefluteten unterirdischen Grubengebäudes durchströmten Talsedimente des Gessentales stellen nach den seit August 1997 laufenden Voruntersuchungen eine Senke für Schwermetalle/Radionuklide dar. Die Fällungsprozesse und die Randbedingungen für diese Senkenfunktion sind bisher nicht bekannt. Noch in diesem Jahr werden über 100 Sondierungsbohrungen (Schlagbohrverfahren) von Seiten der Wismut GmbH im Gessental durchgeführt, woraus sich eine exzellente Probenentnahmemöglichkeit ergibt. Mit dem beantragten Forschungsprojekt sollen die sedimentologischen und hydraulischen Bedingungen und hydrogeochemischen (und mikrobiologischen Prozesse im Sicker- und Grundwasserpfad der quartären Talsedimente unter besonderer Berücksichtigung des Verhaltens von Uran erfasst werden. Hierzu sind sowohl Gelände- (Infiltrationstests, Pumpversuche, evtl. Tracertests) als auch Laborexperimente (Säulenversuche) vorgesehen. Die Kenntnisse sollen genutzt werden, um Teilprozesse des Systems zu modellieren (hydraulische und thermodynamische Gleichgewichtsmodelle), die für die Demobilisierung der Schwermetalle/Radionuklide wichtig sind. Die Ergebnisse stellen die Voraussetzung für eine fundierte Prognose über die Entwicklung der Stoffausträge aus dem Gessentaler Fließsystem und für die Stoffdynamik natürlicher Systeme dar.
Als Füllmaterial oder als Bestandteil technischer Barrieren in Endlagern von chemisch-toxischen oder radioaktiven Abfällen werden bestimmte Tonminerale verwendet bzw. in den Designstudien vorgeschlagen. Dabei sind vor allem drei Eigenschaften dieser Tone ausschlaggebend: Die geringe Wasserleitfähigkeit, das Quellvermögen bei Wasserzutritt und das Rückhaltevermögen für Kationen. Das wünschenswerte Rückhaltevermögen auch für Anionen fehlt bei naturbelassenen Tonen, kann aber durch Behandlung erzeugt werden, bei der die Zwischenschicht-Kationen der Tone durch bestimmte organische Kationen ersetzt werden. Dadurch entstehen sogenannte organophile Tone, die so eingestellt werden können, daß sie beide Ionenarten sorbieren können. Die entscheidenden Mechanismen dieser Sorptionsprozesse an organophilen Tonmineralen und die sich dabei ergebenden Strukturen des Tonminerals sind noch nicht vollständig bekannt. Ihre umfassende Kenntnis ist jedoch wichtig für die gezielte Optimierung ihrer Sorptionseigenschaften und ihrer Eignung zum Einsatz unter Endlagerungsbedingungen. Das Optimierungspotential liegt in der chemischen Struktur, Größe und Ladungsverteilung des organischen Kations sowie in der Wahl des Tonminerals. Zur Erlangung bisher fehlender Detailkenntnisse und zur Unterstützung der Optimierung soll daher in diesem Forschungsvorhaben eine Computersimulation des Organo-Ton-Systems auf der Basis der bisher gesammelten experimentellen Informationen entwickelt werden. Mit diesem Modell soll die Konsistenz des bisherigen Verständnisses der beteiligten Phänomene überprüft, geeignete Fragestellungen an das Experiment entwickelt und Optimierungsschritte durch Simulation ausgewählt werden.
For surface soils, the mechanisms controlling soil organic C turnover have been thoroughly investigated. The database on subsoil C dynamics, however, is scarce, although greater than 50 percent of SOC stocks are stored in deeper soil horizons. The transfer of results obtained from surface soil studies to deeper soil horizons is limited, because soil organic matter (SOM) in deeper soil layers is exposed to contrasting environmental conditions (e.g. more constant temperature and moisture regime, higher CO2 and lower O2 concentrations, increasing N and P limitation to C mineralization with soil depth) and differs in composition compared to SOM of the surface layer, which in turn entails differences in its decomposition. For a quantitative analysis of subsoil SOC dynamics, it is necessary to trace the origins of the soil organic compounds and the pathways of their transformations. Since SOM is composed of various C pools which turn over on different time scales, from hours to millennia, bulk measurements do not reflect the response of specific pools to both transient and long-term change and may significantly underestimate CO2 fluxes. More detailed information can be gained from the fractionation of subsoil SOM into different functional pools in combination with the use of stable and radioactive isotopes. Additionally, soil-respired CO2 isotopic signatures can be used to understand the role of environmental factors on the rate of SOM decomposition and the magnitude and source of CO2 fluxes. The aims of this study are to (i) determine CO2 production and subsoil C mineralization in situ, (ii) investigate the vertical distribution and origin of CO2 in the soil profile using 14CO2 and 13CO2 analyses in the Grinderwald, and to (iii) determine the effect of environmental controls (temperature, oxygen) on subsoil C turnover. We hypothesize that in-situ CO2 production in subsoils is mainly controlled by root distribution and activity and that CO2 produced in deeper soil depth derives to a large part from the mineralization of fresh root derived C inputs. Further, we hypothesize that a large part of the subsoil C is potentially degradable, but is mineralized slower compared with the surface soil due to possible temperature or oxygen limitation.
Das Forschungsvorhaben soll beitragen zur Rekonstruktion der pleistozänen und holozänen Landschafts- und Klimageschichte des Muksu-Tals bis hinauf zum Fedtschenkogletschers im Pamir-Gebirge, sowie jener der umgebenden Täler wie Sauksay und Balandkijk. Insbesondere interessiert uns die Klärung offener Fragen bezüglich (i) des Ausmaßes der jüngeren Schwankungen der Fedtschenkogletscherzunge (ii) der Lage der tiefsten Eisrandlagen und (iii) des Nachweises mehrerer weit ins Tal reichender spätpleistozäner Gletschervorstöße. Hierzu werden verschiedene Methoden der absoluten und relativen Alterdatierung von glazialen Ablagerungen eingesetzt wie Radiocarbonanalysen, Thermolumineszenzanalysen, Bestimmung kosmogener Nuklide sowie glazialmorphologische, bodengeographische, pollenanalytische, dendrochronologische und lichenometrische Untersuchungen. Umfangreiche Erfahrungen aus den dem Pamir nördlich angrenzenden Gebieten (NW-Tienshan, Alai-Kette und Hissar-Gebirge) zeigen, daß dieser Ansatz gut geeignet ist zur Gliederung der holozönen und spätpleistozänen Vergletscherung in den genannten zentralasiatischen Gebirge. Zudem konnten wir interglaziale Bodenbildungen nachweisen und fanden Hinweise auf eine intensive mittelpleistozäne Vergletscherung.
Gebäude schützen im Notfall vor Strahlung Das Verbleiben im geschlossenen Gebäude kann eine einfache und wirksame Schutzmaßnahme im radiologischen Notfall sein. Fenster und Türen sollten geschlossen bleiben. Lüftungs- und Klimaanlagen sollten ausgeschaltet werden. Dies verhindert, dass radioaktive Stoffe mit der Luft in die Wohnung gelangen und eingeatmet werden. Katastrophenschutzbehörden der Bundesländer können als frühe Schutzmaßnahme den Aufenthalt in Gebäuden anordnen. In einem radiologischen Notfall , zum Beispiel nach einem Unfall in einem Kernkraftwerk oder einer Nuklearwaffen-Explosion, können verschiedene radioaktive Stoffe in die Atmosphäre gelangen. Dort können sie sich, angeheftet an Staubpartikel oder gasförmig, als radioaktive Wolke verbreiten . Diese radioaktiven Luftmassen können gesundheitliche Folgen haben, wenn Menschen sich der Strahlung im Freien aussetzen. Oder wenn sie radioaktive Staubpartikel oder Gase in den Körper aufnehmen - mit der Atmung oder über die Nahrung. Mit dem Aufenthalt in geschlossenen Innenräumen im Haus kann das Einatmen von radioaktiven Partikeln reduziert werden, zusätzlich kann die einwirkende Strahlung aus den radioaktiven Luftmassen stark verringert werden. Als Aufenthaltsorte kommen Innen- und Kellerräume von Wohnhäusern und Arbeitsstätten in Betracht. Gleiches gilt für Innen- und Schutzräume in umliegenden Gebäuden, Läden und Geschäftsräumen. Besonders hohe Schutzwirkung bieten Kellerräume im Untergrund. Warum hilft das Drinnenbleiben? In einem radiologischen Notfall können unterschiedliche radioaktive Stoffe in die Umwelt gelangen . Ein Haus schirmt die Strahlungsenergie dieser radioaktiven Stoffe deutlich ab. Gebäude bieten Schutz vor Strahlung in einem radiologischen Notfall Alphastrahlung und Betastrahlung werden zu 100 % abgeschirmt. Gammastrahlung wird – je nach Bauart des Hauses und nach dem gewählten Aufenthaltsort im Haus – um bis zu 85 % abgehalten. Besonders hoch ist die Abschirmung im Keller. Hier können mehr als 85 % der Strahlung abgehalten werden. Wände aus Beton schirmen Strahlung besser ab als Holzwände. So wird zum Beispiel die Gammastrahlung von radioaktivem Jod durch 6 Zentimeter Beton um etwa 75 % reduziert. Je besser die Abschirmung , desto weniger Strahlung sind die betroffenen Menschen ausgesetzt – und desto geringere gesundheitliche Folgen sind zu erwarten. Auch im Fall einer Nuklearwaffen-Explosion ist der Aufenthalt in einem Gebäude in den ersten 24 bis 48 Stunden eine empfohlene Maßnahme. Bei einer Nuklearwaffen-Explosion entstehen viele kurzlebige Radionuklide , die sehr schnell zerfallen. Durch den schnellen Zerfall nimmt die Strahlenbelastung innerhalb von 48 Stunden etwa um den Faktor 100 ab. Wann sollte ich in einem Gebäude bleiben? Die Katastrophenschutzbehörden der Bundesländer können "Aufenthalt in Gebäuden" als frühe Schutzmaßnahme (früher sagte man Katastrophenschutzmaßnahme) anordnen. Sie legen auch die Gebiete fest, in denen diese Schutzmaßnahme angeordnet wird. Die Informationen dazu laufen dann über Medien oder kommen von den Behörden direkt. Und wie entscheiden Verantwortliche, wann eine solche Maßnahme nötig ist? Dafür gibt es sogenannte Notfall-Dosiswerte . Mit diesen Werten ist für das deutsche Staatsgebiet festgelegt, ab welcher zu erwartenden Strahlenbelastung für Menschen im Notfall aus radiologischer Sicht der Aufenthalt in einem Gebäude empfohlen wird. Was ist zu beachten? Verschiedene Orte bieten unterschiedlich guten Schutz. Wenn Sie aufgefordert werden, drinnen zu bleiben, bringen Sie so viel Material (Decken, Wände und in Kellerräumen Erdreich) wie möglich zwischen sich selbst und die radioaktiven Stoffe im Freien. Sollte ein (mehrstöckiges) Haus oder ein Keller innerhalb weniger Minuten sicher erreichbar sein, begeben Sie sich umgehend dort hin. Die sichersten Gebäude bestehen aus Ziegelstein- oder Betonwänden. Fahrzeuge und Wohnmobile bieten keinen ausreichenden Schutz. Trotzdem sind sie immer noch besser als ein Aufenthalt im Freien. Im Gebäude: Außenluft abschirmen, möglichst weit weg von Außenwänden aufhalten Suchen Sie, wenn möglich, innenliegende Räume und Keller ohne Fenster auf. Hat der sicherste Raum im Gebäude doch Fenster, halten Sie sich möglichst weit weg von den Fenstern auf. Im Gebäude müssen Türen und Fenster geschlossen werden, damit keine radioaktiven Teilchen mit der Luft ins Haus gelangen können. Einen zusätzlichen Schutz bieten abgedichtete Fenster und Außentüren – je weniger Luft von draußen ins Innere des Gebäudes gelangt, desto besser. Klima- und Lüftungsanlagen müssen, wenn es geht, ausgeschaltet werden, damit möglichst wenig radioaktive Partikel mit der Luft ins Haus gelangen können. Radioaktive Kontaminationen vermeiden: Waschen und Umziehen sind wichtig Lebensmittel, Getränke und Medikamente, die sich bereits in Lagern bzw. Geschäften oder in Ihrem Schutzraum befinden, können sicher verwendet werden. Falls es keine anderen behördlichen Empfehlungen gibt, kann auch Leitungswasser bedenkenlos genutzt werden. Ablegen von kontaminierter Oberbekleidung vor dem Betreten eines Gebäudes. Sollte Ihre (Ober-)Bekleidung, zum Beispiel Ihre Jacke, Hose oder Mütze, kontaminiert sein, legen Sie diese idealerweise vor Betreten des Gebäudes ab. Verstauen Sie diese Sachen in Plastiktüten außerhalb des Hauses. Waschen Sie alle ungeschützten Hautstellen unter fließendem Wasser. Achten Sie darauf, dass kein Wasser in den Mund, in die Nase und in die Augen läuft, damit radioaktive Stoffe nicht in den Körper eindringen können. Die zusätzliche Schutzwirkung des Tragens einer FFP 3-Atemschutzmasken im Haus kann vernachlässigt werden. Die Masken schützen nur vor radioaktiven Staubpartikeln, die bei geschlossenen Fenstern nur reduziert in die Wohnung gelangen können. Gut informiert bleiben Informationskanäle im Notfall Informieren Sie sich über Radio (Sender mit Verkehrsfunk), Fernsehen oder im Internet auf den offiziellen Behördenseiten. Folgen Sie den Anweisungen der Behörden und Einsatzkräfte. Nutzen Sie im Falle eines Stromausfalls zum Beispiel batteriebetriebene Radiogeräte für aktuelle Informationen. Wann darf ich wieder raus? Was habe ich dann zu beachten? Die Gefahr , die von radioaktivem Niederschlag, dem sogenanntem Fallout , ausgeht, nimmt in der Regel mit der Zeit ab. Wie schnell genau das passiert, ist abhängig von den Halbwertszeiten der radioaktiven Stoffe. In manchen Szenarien kann die Gefahr sogar sehr schnell und stark sinken. Wird von den Katastrophenschutzbehörden der Bundesländer die frühe Schutzmaßnahme „Aufenthalt in Gebäuden“ empfohlen, sollten Sie und Ihre Familie während des gesamten Zeitraums, für den diese Empfehlung gilt, das Haus nicht verlassen. Auch Ihre Haustiere sollten Sie in dieser Zeit nicht ausführen. Bleiben Sie an dem Ort, der Sie am besten schützt etwa im Keller oder in innenliegenden Räumen, sofern Sie nicht von einer unmittelbaren Gefahr bedroht sind (zum Beispiel Feuer, Gasleck, Gebäudeeinsturz oder ernsthafte Verletzung). Das heißt, Sie bleiben am besten im Gebäude, bis Sie andere Anweisungen erhalten: Die Behörden informieren darüber, wenn die Gebäude wieder verlassen werden können und ob und was dann beachtet werden muss. Von eigenständiger Evakuierung wird strengstens abgeraten, bis die gefährdeten Fallout -Gebiete identifiziert und sichere Routen für eine mögliche Evakuierung ausgewiesen wurden. Was tun, wenn ich doch das Haus verlassen muss oder von draußen komme? Wenn Sie das Gebäude doch verlassen müssen, tragen Sie am besten Schutzkleidung, zum Beispiel abwaschbare Kleidung und Gummistiefel. Falls vorhanden, tragen Sie außerdem eine FFP2- oder FFP3-Maske, das gilt auch im Falle einer Nuklearwaffen-Explosion. Damit werden radioaktive Partikel aus der Außenluft gefiltert und die Aufnahme von Radionukliden mit der Luft kann um mehr als das Zehnfache vermindert werden. Falls keine Maske vorhanden ist, können Sie sich auch ein Taschentuch vor Mund und Nase halten und dadurch atmen. Wenn Sie von draußen kommen und ein Gebäude betreten wollen, ziehen Sie Oberbekleidung und Schuhe beim Betreten des Gebäudes aus. Verpacken Sie die Kleidung und die Schuhe in einen Plastikbeutel und lagern Sie diesen verschlossen außerhalb der Wohnung. Damit verhindern Sie, dass radioaktive Stoffe ins Gebäude getragen werden. Reinigen Sie im Haus zunächst gründlich Hände und Kopf sowie alle weiteren unbedeckten Körperstellen, die mit radioaktiven Stoffen in Kontakt gekommen sein könnten, unter fließendem Wasser. Erst danach sollten Sie gründlich duschen. Achten Sie dabei darauf, dass kein Wasser in den Mund, die Nase oder die Augen gelangt, damit radioaktive Stoffe nicht aus Versehen in den Körper kommen können. Potenziell kontaminierte Haustiere sollten in einem separaten Raum, getrennt von schutzsuchenden Personen, ausgebürstet und möglichst ebenfalls gewaschen werden. Dabei sollte - wenn verfügbar - eine FFP2- oder FFP3-Maske getragen werden. Wie kann ich mich auf die Schutzmaßnahme "Aufenthalt im Haus" vorbereiten? Identifizieren Sie bereits jetzt potenzielle Schutzräume – daheim, am Arbeitsplatz und in der Schule sowie auf dem Weg zur Arbeit. So wissen Sie im Ernstfall direkt, wohin Sie und Ihre Familie gehen können. In Betracht kommen können die Kellerräume Ihres Wohnhauses und Ihrer Arbeitsstätte, ebenso Schutzräume in umliegenden Gebäuden, Läden und Geschäftsräumen, insbesondere wenn sich diese im Untergrund befinden. Fahrzeuge und Wohnmobile bieten keinen ausreichenden Schutz. Das Bundesamt für Bevölkerungsschutz und Katastrophenhilfe ( BBK ) informiert ausführlich darüber, welche Vorräte man für den Fall eines radiologischen Notfalls sowie für andere Katastrophenfälle am besten zuhause vorrätig haben sollte. Verständigen Sie sich mit Ihrer Familie und Freunden über Ihre Vorgehensweise im Fall eines radiologischen Notfalls. So wissen alle Bescheid. Befestigen Sie Namensschilder an der Kleidung kleinerer Kinder und anderer schutzbedürftiger Personen, um sie im Fall einer Trennung schneller zu finden. Das BBK empfiehlt Brustbeutel oder eine SOS-Kapsel mit Namen, Geburtsdatum und Anschrift. SOS-Kapseln erhalten Sie in Kaufhäusern, Apotheken und Drogerien. Für das Szenario einer Nuklearwaffen-Explosion wäre es zusätzlich hilfreich, im Schutzraum einen Erste-Hilfe-Kasten mit Ausstattung und Medikamenten zur Behandlung von Verletzungen und Verbrennungen sowie mit allgemeiner und täglich benötigter Medizin vorzuhalten. Es bietet sich zudem an, bereits im Voraus Erste-Hilfe-Maßnahmen für mechanische Traumata und Verbrennungen zu erlernen. Stand: 26.11.2025
| Origin | Count |
|---|---|
| Bund | 1467 |
| Land | 74 |
| Wissenschaft | 25 |
| Zivilgesellschaft | 6 |
| Type | Count |
|---|---|
| Chemische Verbindung | 2 |
| Daten und Messstellen | 40 |
| Ereignis | 2 |
| Förderprogramm | 993 |
| Gesetzestext | 2 |
| Text | 402 |
| unbekannt | 129 |
| License | Count |
|---|---|
| geschlossen | 476 |
| offen | 1088 |
| unbekannt | 4 |
| Language | Count |
|---|---|
| Deutsch | 1449 |
| Englisch | 233 |
| Resource type | Count |
|---|---|
| Archiv | 27 |
| Bild | 9 |
| Datei | 20 |
| Dokument | 280 |
| Keine | 944 |
| Multimedia | 4 |
| Unbekannt | 5 |
| Webdienst | 5 |
| Webseite | 321 |
| Topic | Count |
|---|---|
| Boden | 1022 |
| Lebewesen und Lebensräume | 1240 |
| Luft | 685 |
| Mensch und Umwelt | 1568 |
| Wasser | 802 |
| Weitere | 1370 |