API src

Found 127 results.

Corrections

s/ramaneffekt/Raman-Effekt/gi

Food to Food-Recycling von PET mittels Prozess-Laser-Fluoreszenz und Prozess-Raman-Spektroskopie

Das Projekt "Food to Food-Recycling von PET mittels Prozess-Laser-Fluoreszenz und Prozess-Raman-Spektroskopie" wird vom Umweltbundesamt gefördert und von UNISENSOR Sensorsysteme GmbH durchgeführt. Zielsetzung und Anlass des Vorhabens: Der zunehmende Einsatz von PET-Kunststoffen für Getränkeflaschen und Lebensmittelbehälter bei gleichzeitig starkem Rückgang der Verwendung von Glasflaschen hat zu einer enormen Steigerung des Verbrauchs von Rohöl geführt. Eine Mehrfachverwendung von Kunststoffen im Lebensmittelbereich durch Recyclingprozesse ist daher unvermeidbar. Das Vorhaben umfasst daher die Entwicklung eines Mess- und Sortiersystems zur Erkennung und Ausscheidung von Fremdkunststoffen z.B. PVC, Nylon, etc., Fremdmaterialien z.B. Silikon, Holz, Leimreste, Metall, Papier, Glas etc., Kontaminationen z.B. Benzin, Diesel, Altöl etc. sowie fremdfarbiges PET. Fazit: Für das Food-to-Food-Recycling von PET befindet sich das System in der Phase der Serienproduktion und der internationalen Vermarktung. Wegen des zur Zeit niedrigen Ölpreises wird diese Phase längere Zeit in Anspruch nehmen als ursprünglich erwartet. Um diesen Effekt weitgehend zu kompensieren, laufen bereits intensive Anstrengungen um das System in weiteren Märkten, z.B. in der Nahrungsmittelbranche, einzusetzen.

Teilprojekt 10

Das Projekt "Teilprojekt 10" wird vom Umweltbundesamt gefördert und von Leibniz-Institut für Ostseeforschung durchgeführt. Am IOW wird die Isolierung und Aufreinigung von Mikroplastik (MP) aus Mischwasserentlastungsanlagen, Kläranlagen, Klärschlamm, Gärresten, und Kompostanlagen durchgeführt, wobei insbesondere die Aufarbeitung Organik-reicher Proben optimiert werden wird. Aufreinigung wässriger Proben zur Identifizierung von MP: Wasserproben aus den Transportgefäßen werden über einen 500 Mikro m-Konzentrator größensepariert, um MP größer als 500 Mikro m manuell isolieren und über ein NIR-Spektrometer (microPHAZIR GP des IOW) identifizieren zu können. Die Fraktion wird kleiner als 500 Mikro m wird enzymatisch und chemisch verdaut und aufgereinigt, und anschließend dem IPF zur Identifizierung über Raman oder FT-IR übergeben. Aufarbeitung Organik-reicher Proben: Klärschlammproben werden, angelehnt an den Abschlussbericht Mikroplastik in ausgewählten Kläranlagen des Oldenburgisch- Ostfriesischen Wasserverbandes (OOWV) in Niedersachsen (Mintenig et al., 2014), aufgearbeitet. Im Vergleich zu wässrigen Proben wird Klärschlamm wesentlich aggressiver mit 10 molarer Natronlauge bei 60 Grad Celsius für 24 h oxidiert. Dabei muss in Kauf genommen werden, dass dabei einige Kunststoffe in Mitleidenschaft gezogen werden können. Nach abschließendem Dekantieren kann MP auf 10 Mikro m Edelstahlfiltern aufkonzentriert werden. Die MP-Identifizierung erfolgt wie oben beschrieben. Die Bearbeitung von Klärschlammproben ist als äußerst aggressiv und auch teilweise als Plastik-zerstörend anzusehen. Daher sollen hier alternative Chemikalien und Enzyme zur Aufreinigung von MP getestet werden. Dies wird an definierten gespikten Klärschlammproben durchgeführt. Generell besteht wenig Erfahrung in der Isolierung und Aufarbeitung von MP aus Kompost. Daher werden diese Proben vorerst analog zu Klärschlammproben aufgearbeitet, aber die Aufarbeitung spezifisch optimiert. Die genaue Anzahl der zu untersuchenden Proben wird auf dem Kickoff festgelegt.

Teilprojekt 6

Das Projekt "Teilprojekt 6" wird vom Umweltbundesamt gefördert und von Postnova Analytics GmbH durchgeführt. Das Projekt hat drei Schwerpunkte 1) Die Bewertung und der Vergleich von Analyseverfahren für Submikrometer-Plastikpartikel (teilw. inkl. adsorbierter Spurenstoffe) an definierten Referenzpartikeln im Labor, in Laborkläranlagen und in Umweltproben. 2) Bewertung der Auswirkungen der Partikel auf aquatische Umwelt und menschliche Gesundheit. 3) Problemwahrnehmungen und Bewältigungsstrategien in Bezug auf Submikropartikel in der Umwelt in Gesellschaft und Politik sowie Einbindung der Ergebnisse in Rechtssetzungsprozesse. AP II (vgl. SubMikroTrack AP 2.2) In AP 2.2 (M1-30) entwickelt die Postnova Methoden zur Charakterisierung von Mikro- und Nanoplastik mittels Feldflussfraktionierung (FFF). Dies beinhaltet neben der Entwicklung geeigneter Methoden für die FFF-Probenvorbereitung (Filtration, Ultraschallbad/-finger-Behandlung etc.) auch die Entwicklung von Messmethoden zur Fraktionierung und Charakterisierung der im Projekt SubMikroTrack adressierten Zielanalyten sowohl in einfachen (Reinstwasser zur Methodenetablierung) als auch in komplexen, projektrelevanten Matrices (Bier, Leitungswasser, Babynahrung...) Die hierbei entwickelten Methoden und gesammelten Erfahrungen werden regelmäßig mit dem TUM-IWC ausgetauscht, so dass in der zweiten Projekthälfte ein nahtloser Transfer der FFF-Instrumentierung und des entwickelten FFF-Raman-Interfaces (siehe AP 2.4) an das TUM-IWC gewährleistet wird. AP II (vgl. SubMikroTrack AP 2.4) Im Rahmen von AP 2.4 (M1-21) entwickelt die Postnova ein Interface zur direkten Kopplung der FFF an ein Ramanspektrometer. Hierfür wird ein Ramanspektrometer der Firma WITec auf Mietbasis für 12 Monate im Labor der Postnova aufgebaut, wo die Kopplung zunächst 'offline' mit Hilfe eines Fraktionensammlers realisiert wird. In einem weiteren Schritt werden Flusszellen entwickelt, die eine direkte Weiterleitung ('Online-Kopplung') der aus dem FFF-Trennkanal eluierenden Mikro- bzw. Nanoplastik-Fraktionen in das Raman-Spektrometer ermöglichen.

Teilprojekt 9

Das Projekt "Teilprojekt 9" wird vom Umweltbundesamt gefördert und von Leibniz-Institut für Polymerforschung Dresden e.V. durchgeführt. Übergeordnetes Ziel von PLASTRAT ist die Entwicklung unterschiedlicher Lösungsstrategien aus den Bereichen Technik, Green Economy und sozial-ökologischer Forschung, die zur Minderung von Plastikeinträgen in das limnische Milieu urbaner Siedlungsräume beitragen. Ein Ziel von PLASTRAT ist, Maßnahmen zur Risikominimierung von Plastikrückständen in limnischen Systemen zu definieren. Das IPF hat im Vorhaben die Aufgabe Mikroplastik in definierten Proben aus Misch/Regenwasserentlastung, aus Membran-/Sandfiltertechnik und aus Klärschlamm/Gärrest/Kompost mit FTIR- und Raman-Spektroskopie zu identifizieren und quantifizieren. Partikel größer 500 Mikro m werden einzeln mit ATR/FTIR- und Raman-Spektroskopie gemessen und identifiziert. Partikel kleiner als 500 Mikro m werden mit FTIR-Imaging und Raman gemessen. Bei der Raman-Messung werden in allen Proben vor der Messung die Partikelgrößen bestimmt. Nach der FTIR- bzw. Raman-Messung erfolgt für alle Mikroplastik-Partikel die Identifizierung mittels spektraler Datenbanken. Der gesamte Prozess der Partikelerkennung, der FTIR- und Raman-Messung und der Identifizierung mittels Datenbanken soll dabei weitgehend automatisiert werden. Diese Automatisierung ist zwingend notwendig, um in akzeptabler Zeit einen hohen Probendurchsatz zu erreichen. - Vorbehandlung und Filtration aller Proben - Automatisierung der Erfassung der Partikelgrößen und -verteilung - Messung aller Proben mit FTIR- und Raman - Identifizierung der Mikroplastikpartikel in allen Proben mittels spektraler Datenbanken - Entwicklung der für die Identifizierung notwendigen spektralen Datenbanken für Mikroplastik in der Umwelt (Polyme, Copolymeren, Polymerblends, Farb- und. Lackpartikel) und für die in den Proben vorkommenden organischen und anorganischen Stoffe - Entwicklung einer (halb) automatisierten Mess- und Auswertemethodik für alle vorgenannten Arbeitsschritte, mit dem Ziel 80% aller Mikroplastikpartikel zu identifizieren.

Teilprojekt 5

Das Projekt "Teilprojekt 5" wird vom Umweltbundesamt gefördert und von Universität Jena, Institut für Physikalische Chemie durchgeführt. In dem Teilprojekt soll eine kultivierungsfreie Methode zur Identifizierung von Pathogenen wie Legionellen und Pseudomonaden etabliert werden. Für diese Aufgabe soll die Raman-Spektroskopie als nicht-invasive Spektroskopie Verwendung finden. Für die Durchführung sollen zunächst die Zielkeime aus Biofilmen Isoliert werden. Hier soll auch eine geeignete Lokalisierung bzw. Lebend / Tot-Unterscheidung mittels Fluoreszenzmarkierung durchgeführt werden. Bei den Legionellen soll zusätzlich ein Protozoen-Modell etabliert werden aus dem in einem zweiten Schritt Legionellen isoliert werden sollen. Dies ist vor allem wichtig, da eine Unterscheidung zwischen prokaryotischen und eukaryotischen Organismen über Fluoreszenzfärbung schwierig ist. Nach der Isolierung sollen die Bakterien jeweils Raman-spektroskopisch charakterisiert werden und für die entsprechenden Umgebungsparameter eine Datenbank einschließlich möglicher Begleitflora aufgestellt werden.

Teilprojekt 3

Das Projekt "Teilprojekt 3" wird vom Umweltbundesamt gefördert und von Hochschule RheinMain University of Applied Sciences Wiesbaden Rüsselsheim, Institut für Umwelt- und Verfahrenstechnik (IUVT) durchgeführt. EmiStop - Identifikation und Reduktion von MikroPlastik in industriellen Abwässern. Forschungsschwerpunkt 'Plastik in der Umwelt - Quellen - Senken -Lösungsansätze': Industrielle Abwässer gehören zu den Eintragspfaden für Mikroplastik in die Umwelt. Wie viel Mikroplastik in den Abwässern unterschiedlicher Industriebranchen enthalten sind, erforscht seit Januar 2018 das Verbundprojekt EmiStop. Die Hochschule RheinMain, die TU Darmstadt, die inter 3 GmbH und die BS-Partikel GmbH erfassen unter der Leitung der EnviroChemie GmbH Kunststoffemissionen in industriellen Abwasserströmen mit innovativen Nachweisverfahren. Mikroplastik in industriellem Abwasser stammt vermutlich vor allem aus der Herstellung und Verarbeitung von Kunstfasern und Kunststoffpellets. Daher werden zunächst Abwässer untersucht, die in industriellen Wäschereien und in Industriebetrieben anfallen, die Kunststoffe produzieren, transportieren oder weiterverarbeiten. Dabei kommen zwei Analysemethoden zum Einsatz: 1. An der Hochschule RheinMain werden mittels Raman-Spektroskopie Größe und Art des Kunststoffs der Mikroplastik-Partikel im Abwasser bestimmt. Die häufige Anwendung in der Gewässerforschung ermöglicht den Vergleich der Industrieabwasseranalysen mit den Mikroplastik-Funden in Gewässern. 2. Mittels dynamischer Differenzkalorimetrie werden an der TU Darmstadt die Konzentrationen von Mikroplastik-Partikeln ermittelt. Vermeidung und Entfernung industrieller Mikroplastik-Emissionen. Zur Vermeidung der industriellen Mikropastik-Emissionen setzt EmiStop im Industriebetrieb selbst an: Gemeinsam mit den Industriebetrieben werden Möglichkeiten zur Reduktion an der Entstehungsstelle evaluiert und nach Möglichkeit Maßnahmen zur Vermeidung des Eintrags von Mikroplastik ins Abwasser ergriffen. Daher wird in einer Expertenbefragung identifiziert, welche Rahmenbedingungen die Umsetzung solcher Maßnahmen fördern oder hindern. Wenn Vermeidungsansätze nicht möglich oder ausreichend sind, kann Mikroplastik durch effiziente Reinigungsmethoden wieder aus dem Abwasser entfernt werden. Welche Reinigungsmethoden für welche industriellen Abwasserarten geeignet sind, wird in EmiStop mittels magnetischer Tracerpartikel untersucht. Abgerundet werden die Untersuchungen zur Entfernung von Mikroplastik aus Abwasser durch die Entwicklung von Flockungsmitteln. Diese sollen gezielt Mikroplastik im Abwasser zu großen Mikroplastik-Flocken verbinden und so die Effizienz aller Reinigungsmethoden verbessern. Das Bundesministerium für Bildung und Forschung (BMBF) fördert das Verbundprojekt EmiStop im Forschungsschwerpunkt 'Plastik in der Umwelt - Quellen, Senken, Lösungsansätze' mit über 400.000 Euro. Der Forschungsschwerpunkt ist Teil der Leitinitiative Green Economy des BMBF-Rahmenprogramms 'Forschung für Nachhaltige Entwicklung' (FONA3).

Teilprojekt 6

Das Projekt "Teilprojekt 6" wird vom Umweltbundesamt gefördert und von DVGW Deutscher Verein des Gas- und Wasserfaches e.V. - Technisch-wissenschaftlicher Verein - Technologiezentrum Wasser (TZW) durchgeführt. Um das Verhalten von Mikroplastik (MP) in verschiedenen Wasseraufbereitungsanlagen von Oberflächenwasser im Detail untersuchen zu können, soll zunächst eine Methode zur Detektion der Mikroplastik-Partikel mittels Raman-Mikrospektroskopie etabliert werden. Angestrebt wird dabei eine untere Grenze mit einem Partikeldurchmesser von 1 Mikrometer in trinkwasserrelevanten Bereichen. Im Rahmen der Methodenentwicklung ist auch die Beprobung von Grundwasser in Kooperation mit der Technischen Universität München geplant, um von der Probenahme bis zur Detektion Vergleichsuntersuchungen mit Proben identischer Herkunft durchführen zu können. In Detailuntersuchungen soll anschließend die Effizienz einzelner Aufbereitungsschritte für die Entfernung von MP in verschiedenen Wasseraufbereitungsanlagen für Oberflächenwasser ermittelt werden. Schließlich soll die Auswirkung von Desinfektionsverfahren auf MP erforscht werden. Dabei sollen in Kooperation mit der Bundesanstalt für Materialforschung und -prüfung (BAM) die Veränderungen der Eigenschaften von MP (u.a. Oberflächeneigenschaften) und in Kooperation mit der Goethe-Universität Frankfurt auch die Auswirkungen von derartig behandeltem MP auf Organismen untersucht werden.

Teilprojekt 2; Teilprojekt 3

Das Projekt "Teilprojekt 2; Teilprojekt 3" wird vom Umweltbundesamt gefördert und von Leibniz-Institut für Plasmaforschung und Technologie e.V. durchgeführt. Im Rahmen des vorliegenden Projektes sollen Grundlagen für eine Technologie auf photokatalytischer Basis entwickelt werden, die die Nutzung des Sonnenlichtes zur direkten Herstellung von Wasserstoff aus Wasser ermöglicht. In den beiden Unterprojekten der Gruppe Weltmann/Brüser sollen plasmabasierte Variante der Trägerung von Organometallkomplexen auf Halbleitermaterialien erarbeitet werden. Die Plasmatechnik wird hier für die Entwicklung von heterogenen Katalysatoren genutzt. Die Konzeption, Auswahl und Test der Katalysatoren wir in enger Zusammenarbeit mit den Gruppen Beller, Rosenthal und Brückner durchgeführt. Für die Entwicklung heterogener Katalysatoren sind im Wesentlichen zwei Wege vorgesehen:1) plasmagestützte Fixierung von adsorptiv geträgerten Organometallkomplexen2) plasmagestützte Synthese von Katalysatoren aus den Komponenten der jeweiligen Organometallkomplexe. Die Fixierung bzw. Synthese der Katalysatoren soll mit hochfrequenz-angeregten Plasmaquellen teilweise auch in Kombination mit Sputtermagnetronquellen durchgeführt werden. Es sind umfangreiche oberflächenanalytische Untersuchungen geplant hinsichtlich Struktur und chemischer Zusammensetzung mittels XRD, FTIR, Raman, SEM, AFM, XPS, EDX und BET geplant.

Teilprojekt F

Das Projekt "Teilprojekt F" wird vom Umweltbundesamt gefördert und von Universität Potsdam, Institut für Chemie, Professur für Physikalische Chemie durchgeführt. Die Universität Potsdam (Physikalische Chemie, UPPC) wird Laser-basierte optische Verfahren zur Bearbeitung der im Verbund 'Geochemische Radionuklidrückhaltung an Zementalterationsphasen' definierten Arbeitspakete AP1 - AP4 einsetzen bzw. (weiter)entwickeln. Ziel der durchgeführten Arbeiten besteht in der Entwicklung analytischer, optischer Methoden, die sich nutzen lassen, ein weitreichendes molekulares Prozessverständnis der Wechselwirkung von Actinoid-Ionen (bzw. Lanthanoid-Ionen als Analoga) mit Mineralphasen, wie Bentonit, Tongestein und Zementalterationsphasen zu erlangen. Hierfür lässt sich besonders die intrinsische Lumineszenz von Lanthanoiden nutzen, da diese sich charakteristisch infolge einer geänderten chemischen Umgebung in der spektralen und zeitlichen Dimension ändert. Mit Hilfe moderner, ortsauflösender Schwingungsspektroskopie (wie Raman-Mikroskopie und SFG-Spektroskopie) lassen sich andererseits die interessierenden Wechselwirkungen auch aus Sicht der Mineralphase beobachten. Hier sind speziell Änderungen in der Schwingungssignatur von funktionellen Gruppen an Grenzflächen von Interesse. Bei den Untersuchungen werden die endlagerrelevanten Umgebungsparameter wie Temperatur, Ionenstärke und pH-Wert berücksichtigt werden. Die Auswahl der verschiedenen Systembestandteile bzw. -parameter ist an das Endlagerkonzept NORD angepasst. Dabei werden in der Konzeption der Experimente zwei Teilbereiche im Endlager betrachtet: i) die Endlagerkomponente Zement (Bohrlochverschluss) am Übergang zum Buffer und ii) der Zement des Betons (als Außenliner) mit Übergang zum Tongestein. In AP1 wird die Speziation von Eu(III) an CSH-Phasen mittels TRLFS und Schwingungsspektroskopie untersucht. In AP2 werden Laser-spektroskopische Verfahren zur Untersuchung von Opalinuston und Ca-Bentonit-Oberflächen unter hyperalkalinen Bedingungen und hohen Ionenstärken angewandt. In AP4 werden optische Methoden für die ortsaufgelöste Speziation auf Oberflächen (weiter)entwickelt.

Teilprojekt F

Das Projekt "Teilprojekt F" wird vom Umweltbundesamt gefördert und von Universität Bonn, Steinmann-Institut für Geologie, Mineralogie und Paläontologie - Endogene Prozesse durchgeführt. In Ergänzung und Erweiterung zu den geplanten Arbeiten des IMMORAD-Verbundprojekts soll das Korrosionsverhalten von Borosilikatgläsern in wässrigen Lösungen untersucht werden (als assoziiertes Mitglied). Erste Ergebnisse von Isotopentracer-Experimenten deuten darauf hin, dass entgegen der Behauptung etablierter Glaskorrosionsmodelle Borosilikatgläser in wässrigen Lösungen kongruent aufgelöst werden und nach Sättigung der Lösung mit amorpher Kieselerde diese an einer nach innen wandernden Grenzfläche aus der Lösung ausfällt. Die Hauptziele sind (1) diese Hypothese weiter durch experimentelle Arbeiten zu testen und verfeinern, (2) das Retentionsverhalten von Ce (als Surrogat für Pu) und U, (3) den Einbau von Ra im Alterationssaum bzw. anderen Alterationsphasen zu untersuchen sowie (4) eine mathematische Beschreibung des Lösungs-Fällungsmodells zu erarbeiten. Strukturelle und chemische Entwicklung der kieselerde-basierten Korrosionszonen soll als Funktion der Zeit, des pH-Wertes der Lösung sowie der Glaszusammensetzung (synthetische und archäologische Gläser) experimentell untersucht werden. Hierfür sollen Batch-Experimente, teilweise mit 30Si, 42Ca, 18O und 2H als Isotopentracer, als auch dynamische Durchfluss-Experimente durchgeführt werden. Die Ergebnisse dieser Untersuchungen (ICP-QMS, REM, EMS, Ramanspektroskopie, TEM, SAXS, LA-ICPMS, NanoSIMS) bilden die Grundlage zur Erarbeitung eines mathematischen Modells zur Modellierung der Korrosionsmechanismus.

1 2 3 4 511 12 13