In der Bundesrepublik wurde erstmals Smog-Alarm der Stufe III ausgerufen. Betroffen ist vor allem das westliche Ruhrgebiet. Mit Stufe III der Smogverordnung wurde zeitweise ein absolutes Fahrverbot für private KFZ verhängt. Die Industrieproduktion musste gedrosselt und auf Sparflamme gefahren werden. Es handelte sich hier um den so genannten "London-Smog". Nebel und Rauch treffen zusammen: Schadstoffe können nicht mehr abziehen. Diese Art des Smogs ist heute in den westlichen Industrieländern dank zahlreicher Gegenmaßnahmen selten geworden.
In der Nähe der Ortschaft Casselton im US-Bundesstaat North Dakota kollidierten am 30. Dezember 2013 zwei Güterzüge. Mehrere mit Rohöl beladene Kesselwagen explodierten und gingen in Flammen auf. Die Bewohner der Ortschaft wurden vor dem giftigen Qualm evakuiert. Der Bundesstaat North Dakota ist der zweitgrößte Ölproduzent des USA. Anfang Dezember 2013 hatte die staatliche Regulierungsbehörde mitgeteilt, dass 2014 90 Prozent statt bisher 60 Prozent der Öltransporte per Zug erfolgen werden.
Am 22. August 2017 stellte der WWF Deutschland eine Marktanalyse handelsüblicher Grillkohlen in Berlin vor. Insgesamt wiesen laut WWF-Analyse 80 Prozent der getesteten Produkte Auffälligkeiten wie falsch deklarierte Holzarten auf. In 40 Prozent der Grillkohlen fanden die Umweltschützer sogar tropische Hölzer. Eine Grillkohle, die mit dem Aufdruck „kein Tropenholz“ warb, bestand laut Laboranalyse ausschließlich aus solchem. In mehreren Kohlesäcken wurden auch Ulme, Padouk und Bongossi gefunden, Holzarten, die vom Aussterben bedroht sind. Auch Grillkohlen mit Zertifizierung waren im Test auffällig, das heißt sie enthielten auch nicht oder falsch deklarierte Hölzer. Tropenholz wurde bei FSC- und PEFC-zertifizierten Produkten jedoch nicht gefunden. Für den Marktcheck hat der WWF 20 Grillkohlen mit und ohne Holz-Zertifikat aus Tankstellen, Baumärkten, Supermärkten und Discountern mit forensischen Methoden testen lassen. „Die Testergebnisse sind erschütternd. Die Holzkohlebranche scheint nach wie vor rücksichtslos alles zu verkohlen, was sie als billigen Rohstoff in die Finger bekommt. Die vielen Tropenholzfunde sind besonders schockierend. Wenn die Regenwälder beim Grillfest in Rauch aufgehen, befeuert das Artenverlust und die Klimakatastrophe. Die Branche muss schleunigst umdenken“, kritisiert Johannes Zahnen, Holzexperte des WWF Deutschland.
In einem japanischen Atomkraftwerk in Tokaimura, 110 Kilometer nordöstlich von Tokio ist es zu einem Zwischenfall gekommen, bei dem Rauch innerhalb einer Anlage austrat. Der Rauch entstand in einer Sammelstelle für radioaktiv belasteten Müll. Die Betreiberfirma Japan Atomic Power Co. teilte mit, dass kein Rauch nach außen getreten sei.
Am 16. November 2018 auf dem Forum für saubere Luft in Paris legten die Europäische Kommission und die Europäische Umweltagentur einen neuen Luftqualitätsanzeiger vorgelegt, durch den Bürgerinnen und Bürger die Luftqualität in Echtzeit nachvollziehen können. Die Kommission hat darüber hinaus einen Atlas der Luftqualität veröffentlicht, der von der Gemeinsamen Forschungsstelle der Kommission erstellt wurde und die Ursachen von Feinstaubemissionen wie Staub, Rauch, Ruß, Pollen und Bodenpartikel in den Städten der EU aufzeigt. Der neue Europäische Luftqualitätsanzeiger umfasst eine nutzerfreundliche, interaktive Karte, von der die Luftqualität an den jeweiligen Orten abgelesen werden kann. Er basiert auf den fünf wichtigsten Schadstoffen, die die menschliche Gesundheit und die Umwelt belasten: Feinstaub (PM2,5 und PM10), bodennahes Ozon (O3), Stickstoffdioxid (NO2) und Schwefeldioxid (SO2). Der Atlas der Luftqualität bietet Informationen über die geographischen und branchenspezifischen Ursachen der Luftverschmutzung für die 150 größten Städte in Europa. Deutlich wird darin, dass Schadstoffemissionen in Städten hauptsächlich durch verschiedene menschliche Tätigkeiten entstehen. Dabei sind Verkehr, Landwirtschaft, Industrie und die Beheizung von Wohngebäuden die größten Verursacher.
technologyComment of manganese production (RER): The metal is won by electrolysis (25%) and electrothermic processes (75%). ELECTROLYSIS OF AQUEOUS MANGANESE SALTS The production of manganese metal by the electrolysis of aqueous manganese salts requires at first a milling of the manganese ore. Milling increases the active surface and ensures sufficient reactivity in both the reduction and the subsequent leaching steps. After milling the manganese ore is fed to a rotary kiln where the reduction and calcination takes place. This process is carried out at about 850 - 1000 ºC in a reducing atmosphere. As a reducing agent, several carbon sources can be used e.g. anthracite, coal, charcoal and hydrocarbon oil or natural gas. The cal-cined ore needs to be cooled below 100 ºC to avoid a further re-oxidation. The subsequent leaching process is carried out with recycled electrolyte, mainly sulphuric acid. After leaching and filtration the iron content is removed from the solution by oxidative precipitation and the nickel and cobalt are removed by sulphide precipitation. The purified electrolyte is then treated with SO2 in order to ensure plating of γ-Mn during electrolysis. Electrolysis is carried out in diaphragm cells. The cathode is normally made of stainless steel or titanium. For the anode lead-calcium or lead-silver alloy can be used. After an appropriate reaction time the cathodes are removed from the electrolysis bath. The manganese that is deposited on the cathode starter-sheet is stripped off mechanically and then washed and dried. The metal is crushed to produce metal flakes or powder or granulated, depending on the end use. ELECTROTHERMAL DECOMPOSITION OF MANGANESE ORES The electrothermal process is the second important process to produce manganese metal in an industrial scale. The electrothermal process takes place as a multistage process. In the first stage manganese ore is smelted with only a small amount of reductant in order to reduce mostly the iron oxide. This produces a low-grade ferro-manganese and a slag that is rich in Mn-oxide. The slag is then smelted in the second stage with silicon to produce silicomanganese. The molten silicomanganese can be treated with liquid slag from the fist stage to obtain relatively pure manganese metal. For the last step a ladle or shaking ladle can be used. The manganese metal produced by the electrothermal process contains up to 98% of Mn. Overall emissions and waste: Emissions to air consist of dust and fume emissions from smelting, hard metal and carbide production; Other emissions to air are ammonia (NH3), acid fume (HCl), hydrogen fluoride (HF), VOC and heavy metals. Effluents are composed of overflow water from wet scrubbing systems, wastewater from slag and metal granulation, and blow down from cooling water cycles. Waste includes dust, fume, sludge and slag. References: Wellbeloved D. B., Craven P. M. and Waudby J. W. (1997) Manganese and Manganese Alloys. In: Ullmann's encyclopedia of industrial chemistry (ed. Anonymous). 5th edition on CD-ROM Edition. Wiley & Sons, London. IPPC (2001) Integrated Pollution Prevention and Control (IPPC); Reference Document on Best Available Techniques in the Non Ferrous Metals Industries. European Commission. Retrieved from http://www.jrc.es/pub/english.cgi/ 0/733169 technologyComment of manganese production (RoW): The metal is won by electrolysis (assumption: 25%) and electrothermic processes (assumption: 75%). No detailed information available, mainly based on rough estimates. technologyComment of treatment of non-Fe-Co-metals, from used Li-ion battery, hydrometallurgical processing (GLO): The technique SX-EW is used mainly for oxide ores and supergene sulphide ores (i.e. ores not containing iron). It is assumed to be used for the treatment of the non-Fe-Co-metals fraction. The process includes a leaching stage followed by cementation or electro-winning. A general description of the process steps is given below. In the dump leaching step, copper is recovered from large quantities (millions of tonnes) of strip oxide ores with a very low grade. Dilute sulphuric acid is trickled through the material. Once the process starts it continues naturally if water and air are circulated through the heap. The time required is typically measured in years. Sulphur dioxide is emitted during such operations. Soluble copper is then recovered from drainage tunnels and ponds. Copper recovery rates vary from 30% to 70%. Cconsiderable amounts of sulphuric acid and leaching agents emit into water and air. No figures are currently available on the dimension of such emissions. After the solvent-solvent extraction, considerable amounts of leaching residues remain, which consist of undissolved minerals and the remainders of leaching chemicals. In the solution cleaning step occur precipitation of impurities and filtration or selective enrichment of copper by solvent extraction or ion exchange. The solvent extraction process comprises two steps: selective extraction of copper from an aqueous leach solution into an organic phase (extraction circuit) and the re-extraction or stripping of the copper into dilute sulphuric acid to give a solution suitable for electro winning (stripping circuit). In the separation step occurs precipitation of copper metal or copper compounds such as Cu2O, CuS, CuCl, CuI, CuCN, or CuSO4 • 5 H2O (crystallisation) Waste: Like in the pyrometallurgical step, considerable quantities of solid residuals are generated, which are mostly recycled within the process or sent to other specialists to recover any precious metals. Final residues generally comprise hydroxide filter cakes (iron hydroxide, 60% water, cat I industrial waste).
technologyComment of chromium production (RoW): Metallic chromium is produced by aluminothermic process (75%) and electroylsis of dissolved ferrochromium (25%) technologyComment of chromium production (RER): Metallic chromium is produced by aluminothermic process (75%) and electroylsis of dissolved ferrochromium (25%) ALUMINOTHERMIC PROCESS The thermic process uses aluminium as a reducing agent for chromium hydroxide. The charge is weighed and loaded into a bin, which is taken to an enclosed room to mix the contents. The firing pot is prepared by ramming refractory sand mixed with water around a central former. After ramming the firing pot, the inner surface is coated with a weak binder solution and dried under a gas fired hood before being transferred to the firing station. The raw material mix is automatically fed at a controlled rate into the firing pot, where the exothermic reaction takes place. When the metal has solidified following the reaction, the firing pot is removed and transferred by crane to a cooling conveyor. On removal from the cooling conveyor (by crane), the firing pot is placed on a stripping bogie for transferral to a stripping booth. Inside the closed booth, the pot casing is hoisted off the solidified metal/slag. The slag is separated from the Chromium metal “button” and sent to a despatch storage area. Water is used to reduce button temperature to below 100 ºC. After cooling the metal button is transferred to other departments on site for cleaning, breaking, crushing and grinding to achieve the desired product size. ELECTROLYTIC PROCESS In the electrolytic process normally high carbon ferrochrome is used as the feed material which is then converted into chromium alum by dissolution with sulphuric acid at temperatures at about 200 ºC. After several process steps using crystallisation filtration ageing, a second filtration and a clarifying operation the alum becomes the electrolyte for a diaphragm cell. Chromium is plated onto stainless steel cathodes until it attains a thickness of ca. 3 mm. The process is very sensitive. The additional de-gassing (heating at 420 °C) stage is necessary because the carbon content of the electrolytic chromium is sometimes too high for further industrial applications. The cooled chromium metal is fragmented with a breaker prior to crushing and drumming. The generated slag can be reused as refractory lining or sold as abrasive or refractory material. Overall emissions and waste: Emissions to air consist of dust and fume emissions from smelting, hard metal and carbide production; other emissions to air are ammonia (NH3), acid fume (HCl), hydrogen fluoride (HF), VOC’s and heavy metals. Emissions to water are overflow water from wet scrubbing systems, wastewater from slag and metal granulation, and blow down from cooling water cycles. Solid waste is composed of dust, fume and sludge, and slag. References: IPPC (2001) Integrated Pollution Prevention and Control (IPPC); Reference Document on Best Available Techniques in the Non Ferrous Metals Industries. European Commission. Retrieved from http://www.jrc.es/pub/english.cgi/ 0/733169
Secondary copper consists of various types of scrap. Prompt scrap is directly reused in foundries and is not further processed. Old scrap has to be treated in a secondary copper smelter, where a variety of metal values are recuperated. Depending on the chemical composition, the raw materials of a secondary copper smelter are processed in different types of furnaces, including: - blast furnaces (up to 30% of Cu in the average charge), - converters (about 75% Cu), and - anode furnaces (about 95% Cu). A scheme of the process considered is given in Fig 1. The blast furnace metal (“black copper”) is treated in a converter; then, the converter metal is refined in an anode furnace. In each step additional raw material with corresponding copper content is added. In the blast furnace, a mixture of raw materials, iron scrap, limestone and sand as well as coke is charged at the top. Air that can be enriched with oxygen is blown through the tuyeres. The coke is burnt and the charge materials are smelted under reducing conditions. Black copper and slag are discharged from tapholes. The converters used in primary copper smelting, working on mattes containing iron sulphide, generate surplus heat and additions of scrap copper are often used to control the temperature. The converter provides a convenient and cheap form of scrap treatment, but often with only moderately efficient gas cleaning. Alternatively, hydrometallurgical treatment of scrap, using ammonia leaching, yields to solutions which can be reduced by hydrogen to obtain copper powder. Alternatively, these solutions can be treated by solvent extraction to produce feed to a copper-winning cell. Converter copper is charged together with copper raw materials in anode furnace operation. For smelting the charge, oil or coal dust is used, mainly in reverberatory furnaces. After smelting, air is blown on the bath to oxidise the remaining impurities. Leaded brasses, containing as much as 3% of lead, are widely used in various applications and recycling of their scrap waste is an important activity. Such scrap contains usually much swarf and turnings coated with lubricant and cutting oils. Copper-containing cables and motors contain plastic or rubber insulants, varnishes, and lacquers. In such cases, scrap needs pre-treatment to remove these non-metallic materials. The smaller sizes of scrap can be pre-treated thermally in a rotary kiln provided with an after-burner to consume smoke and oil vapours (so-called Intal process). Emissions and waste: Elevated levels of halogenated organic compounds may arise, such as TCDD. Slags are usually used in construction. Waste water is led to a communal treatment plant. References: EEA, 1999. imageUrlTagReplacef2b602ec-dc47-48e3-88a7-ab8ec727bd33
Das Projekt "C-COOK-MALI" wird vom Umweltbundesamt gefördert und von Technische Hochschule Köln, Institut für Technologie- und Ressourcenmanagement in den Tropen und Subtropen (ITT) durchgeführt. Eine Schlüsselaufgabe zur Gewährleistung einer nachhaltigen Entwicklung in allen globalen Regionen liegt in einem angemessenen Management von Ressourcen durch (lokale) Kreislaufwirtschaft. Forschungskooperationen, die sich mit den problematischen lokalen Themen und der Anpassung von Technologien an die lokalen Bedürfnisse befassen, bieten eine einzigartige Gelegenheit. Forschungsergebnisse finden Einzug in der praktischen Umsetzung im Rahmen von Bildung, Kapazitätsaufbau und Berufsausbildung. Dies ist das übergeordnete Ziel des Projekts, welches in die Bereiche Forschung, Ausbildung, Hochschulbildung und Vernetzung unterteilt ist. Mali, eines der am wenigsten entwickelten Länder, verwendet Brennholz zum Kochen. Das resultiert in mehreren Problemen: Entwaldung, Rauch in Innenräumen, Zeitaufwand für die Sammlung von Brennholz und Unfälle während der Sammlung von Brennholz. Das spezifische Ziel des Projekts besteht darin, einen Beitrag zu sauberen Kochtechnologien zu leisten. Dabei werden die verschiedenen methodischen Ansätze wie Kreislaufwirtschaft, Wassernutzungseffizienz und landwirtschaftliche Produktivität auf das Fallstudiengebiet in Katibougou, Mali angewendet. Die Verwendung von meist Low-Tech-Lösungen, die von der lokalen Gemeinschaft leicht angepasst werden können, wird bevorzugt. Daher möchten wir in diesem Projekt weiter analysieren, welche anderen Barrieren den Einsatz dieser Systeme behinderten. Wir wollen Lösungen finden die im Rahmen von ganzheitlichen Ansätzen, technischen, wirtschaftlichen und sozialen Zielparametern genügen. Durch die Adressierung der Themen 'sauberes' Kochen wird in diesem Projekt auf eine bessere Gesundheit der Bevölkerung (rauchfreies Kochen) und einer Verringerung der Umweltschäden abgezielt. Neben den projektbezogenen Zielen erwartet die Zusammenarbeit Synergien und gegenseitigen Nutzen in Partnernetzwerken, in denen Erfahrungen zur Lehre und Forschung ausgetauscht werden.
Das Projekt "Neuartiges System fuer das Schleppen von Flugzeugen ohne Zugstange" wird vom Umweltbundesamt gefördert und von Krauss-Maffei Verfahrenstechnik GmbH durchgeführt. Objective: The aim of the project is to save jet fuel at airports by using a new system of towing aircraft from landing/take off points to terminal instead of running aircraft on their own turbine. At the same time, the new towing system without tow bar helps to reduce environmental impacts (i.e. noise, smoke, exhaust gases). It is expected to achieve an energy saving of about 3500 TOE/year per B-747 aircraft. Expected payback is between 3 and 5 years at commercial level. General Information: Conventional aircraft towing requires a tow bar. Danger of 'jack-knifing' during barking restricts towing speed. Other inconveniences are: - manual coupling and uncoupling is time consuming and inefficient - to provide a multiplicity of different tow bars is complex and expensive. High speed towing from terminal to starting point is not possible, therefore, on taxi-ways, aircraft run in many cases on their own turbine power which results in high fuel consumption and negative environmental impact. The proposed system picks up the front wheel and combines the tractor and plane as an integrated system so that high speeds (30 km/h) are available under safe conditions. The new tractor can handle current aeroplanes ranging from 100 tons (TU 154) to 380 tons (B 747) with 2 engines of 600 HP. The system structure is a U welded structure containing all the components. A 2 cylinder hydraulic device, electronically controlled, lifts up the aircraft front-wheel in a supporting structure. For the demonstration phase, a considerable number of measurement points will be provided on the tractor and the aeroplane to evaluate the operating conditions from technical and economic point of view. Achievements: In total, Krauss-Maffei has up to now sold eleven PTS 1 units (six to Lufthansa, Frankfurt, two to Lufthansa, Munich under a leasing arrangement, one to United Airlines, San Francisco, two to Japan Airlines, Tokyo-Narita). One PTS 2 is operated by Lufthansa at the new Munich Airport. Negotiations for further purchases in Europe, the Far East and Northamerica are on the way. Towing of aircraft to the take-off with PTS 1 has been successfully practised by Lufthansa in Frankfurt for several months. Introduction of this procedure in big scale is, however, still pending due to operational organizational and legal (not technical) obstacles. Whereas, during development had been assumed that aircraft fuel savings would only be achievable in towing the aircraft to the runway, it has meanwhile been experienced that also maintenance towing is an important source of energy conservation: In San Francisco, PTS 1 is used for replacing maintenance taxiing (with aircraft power) by maintenance towing. This saves the airlines aircraft fuel in the order of nearly one million dollars per year. This leads to a relatively short period for return on investment. Similar values could be expected in Japan. In general, it can be stated that cost-energy and environmental conscious airlines are...
Origin | Count |
---|---|
Bund | 161 |
Land | 60 |
Type | Count |
---|---|
Ereignis | 5 |
Förderprogramm | 140 |
Messwerte | 1 |
Text | 57 |
Umweltprüfung | 2 |
unbekannt | 17 |
License | Count |
---|---|
closed | 65 |
open | 150 |
unknown | 6 |
Language | Count |
---|---|
Deutsch | 218 |
Englisch | 30 |
unbekannt | 1 |
Resource type | Count |
---|---|
Archiv | 3 |
Bild | 1 |
Datei | 8 |
Dokument | 8 |
Keine | 171 |
Webseite | 45 |
Topic | Count |
---|---|
Boden | 220 |
Lebewesen & Lebensräume | 221 |
Luft | 221 |
Mensch & Umwelt | 221 |
Wasser | 220 |
Weitere | 212 |