API src

Found 13 results.

Sound Attenuation by Optimised Tread Brake

Das Projekt "Sound Attenuation by Optimised Tread Brake" wird vom Umweltbundesamt gefördert und von Waggon Fabrik Talbot durchgeführt. General information: Objectives and content. Exterior noise caused by rail traffic is a major source of noise pollution in Europe. A large number of people living in the vicinity of railway routes are affected by rolling noise from trains, in particular from goods trains running through densely populated areas at night. Rolling noise of goods and passenger trains is generated by wheel and rail roughness (form irregularity). This roughness leads to wheel and rail vibration and noise radiation. The cast-iron block braking system usually applied on goods trains and still widely found on passenger stock causes a significant increase in wheel roughness in the wavelength range 1-25 cm, which is of most importance for noise generation. This gives rise to high rolling noise levels, compared to a wheel with no brake blocks acting on the wheel tread. Where disc brakes are used, the wheel roughness is found to be much lower and the rolling noise is significantly reduced. In many situations conventional tread brakes are preferred, for both technical and commercial reasons. Alternative materials to the conventional cast-iron brake block material have been tried and it appears possible to develop materials which do not roughen the wheel surface in the wavelength region of importance for noise generation. A number of practical problems have to be overcome, such as thermal build-up in the wheel, excessive wheel wear, wheel cracks, undesirable hollow wear of the wheel profile, lack of efficiency in wet conditions etc. The objective of this project is to develop suitable brake block materials, which prevent the build-up of periodic roughness on the wheel running surface. This should be readily applicable to existing freight rolling stock and locomotives without significant extra costs. The aim is to achieve reductions in rolling noise of 5-12 dB compared to traditional cast-iron block brake stock. This acoustical improvement would affect millions of people living around railway tracks. An important aspect of the development is the retrofit potential of the novel brake block. This means that in a relatively short time all freight wagons can be acoustically improved. The consortium consists of 13 organisations, which are complementary in the development of the novel brake blocks: end-users like railway companies, manufactures of goods wagons, bogies and locomotives, suppliers of brake blocks, scientific institutions which appropriate knowledge of tribilogy and acoustics. Together they constitute an ideal consortium to tackle the present problem. The time frame is about 3 years and the total budget is around 5.3 MECU. Prime Contractor: AEA Technology Rail BV; Utrecht; Nederland.

Coupling of airborne and in situ ground based measurements of surface albedo, BRDF and snow properties in Antarctica to improve prognostic snow models

Das Projekt "Coupling of airborne and in situ ground based measurements of surface albedo, BRDF and snow properties in Antarctica to improve prognostic snow models" wird vom Umweltbundesamt gefördert und von Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung durchgeführt. We propose to investigate the temporal and spatial variability of surface albedo, bidirectional reflectivity BRDF and snow properties in Antarctica. The overall goal of the project is to improve prognostic snow models and parameterizations of snow albedo used in regional and global climate models. The parameterizations will be formulated in dependence on snow grain size, snow surface roughness and atmospheric parameters. To achieve this goal we will couple ground based in situ (temporal variability) and airborne remote sensing measurements (spatial variability). Airborne data will include spectral surface albedo, BRDF, surface roughness and snow grain size. Corresponding remote sensing retrieval algorithms will be improved and developed in the project. The same quantities will be measured in situ on the Antarctic plateau by ground based instruments installed at Kohnen Station. The ground based measurements covering the temporal variability of snow and atmospheric properties will allow validating and improving prognostic snow models coupled to a radiative transfer code. By implementing measurement data in the models and comparing simulated and measured snow albedo and by sensitivity studies, snow albedo parameterizations for use in radiative transfer and climate models will be validated and improved. This will reduce uncertainties in predicting future climate change in Antartica.

Development of New Technologies for Low Noise Railways Infrastructure (SILENT TRACK)

Das Projekt "Development of New Technologies for Low Noise Railways Infrastructure (SILENT TRACK)" wird vom Umweltbundesamt gefördert und von Technische Universität Berlin, Institut für Luft- und Raumfahrt durchgeführt. General information: Amongst environmental issues that represent major constraints for European Railways, noise generated by freight traffic is one of the most important and difficult to solve. Freight traffic is operated as much at night as during the day, and noise levels imposed by legislation tend to be particularly severe for this type of traffic. Noise emitted by freight traffic is the result of interaction between freight wagons, belonging to a wide number of Companies all over Europe and neighbour countries, and national infrastructures This makes solutions especially difficult to apply, and require a joint effort at European level. Although ground based protection such as noise barriers, or buildings improvement. will remain locally necessary, a reduction at the source is indeed more efficient, when achievable Reducing freight traffic noise at its source requires combined action on both track and wagons. Therefore, (( Silent Track )) project clusters closely with the BRITE EURAM 'Silent Freight' project, BRPR CT95 0047, started in february 1996, which concentrates on solutions for interoperable rolling stock The objectives of (( Silent Track )) are to develop a number of innovative technical solutions to be applied to existing tracks, and also to new infrastructure, allowing to reach, together with a combined action on vehicles, a global reduction of noise emitted by the train/track system by about 10 dB(A) The cost of implementing these solutions, by retrofit on existing tracks, or from building stage for new ones. must remain reasonable, that is significantly lower than the cost of a noise barrier. Work will include development of investigation and simulation tools, design and validation of solutions. with a strong emphasis on the understanding of phenomena governing rail roughness, the optimisation of the design of track components ( rail, fastening systems, sleepers...). It will be concluded by a demonstration exercise coordinated with Silent Freight where prototype solutions for wagons and track will be jointly tested, shonwing achievable noise reduction and allowing an extensive validation of new models. Guidelines ill been producec in view of standardisation and of defining a policy for the implementation of low noise design in Europe. The project will be carried out by a consortium coordinated by the European Rail Research lnstitute (ERRI ), a body in charge of RTD for all European Railways, and including several manufacturer, of rails. fasteners. pads and other components. and several Research Centres. Prime Contractor: Stichting European Rail Research Institute; Utrecht; Nederland.

Aus der Atmosphäre in den Boden - wie Druckfluktuationen den Gastransport im Boden beeinflussen

Das Projekt "Aus der Atmosphäre in den Boden - wie Druckfluktuationen den Gastransport im Boden beeinflussen" wird vom Umweltbundesamt gefördert und von Universität Freiburg, Institut für Geo- und Umweltnaturwissenschaften, Professur für Bodenökologie durchgeführt. Gasaustausch findet in der Atmosphäre primär durch turbulenten und laminaren Fluss statt. Im Boden dagegen spielt advektiver Gastransport eine untergeordnete Rolle, stattdessen dominiert Diffusion die Transportprozesse. Trotz der Unterschiedlichkeit und scheinbaren Unabhängigkeit dieser Prozesse wurde während Freilanduntersuchungen ein Anstieg von Gastransportraten im Boden um mehrere 10 % während Phasen starken Windes beobachtet. Dieser Anstieg ist auf wind-induzierte Druckfluktuationen zurückzuführen, die sich in das luftgefüllte Porensystem des Bodens fortpflanzen und zu einem minimal oszillierenden Luftmassenfluss führen (Pressure-pumping Effekt). Durch den oszillierenden Charakter des Luftmassenflusses ist der direkte Beitrag zum Gastransport sehr gering. Die damit einhergehende Dispersion führt jedoch zu einem Anstieg der effektiven Gastransportrate entgegen des Konzentrationsgradienten. Wird der Pressure-pumping (PP) Effekt bei der Bestimmung von Gasflüssen mit der Gradienten- und Kammermethode nicht berücksichtigt, kann dies zu großen Unsicherheiten in der Bestimmung von Bodengasflüssen führen. Insbesondere für das langfristige Monitoring von treibhausrelevanten Gasflüssen stellen diese Unsicherheiten ein zentrales Problem dar. Wir stellen vier Hypothesen auf:(H1) Der PP-Effekt ist abhängig von Bodeneigenschaften.(H2) Die Ausprägung von Luftdruckfluktuationen ist abhängig von der Rauigkeit verschiedener Landnutzungen (Wald, Grasland, landwirtschaftliche Kulturen, Stadt)(H3) Kammermessungen werden durch Luftdruckfluktuationen beeinflusst.(H4) Der Austausch und Umsatz von Methan in Böden von Mittelgebirgswäldern wird durch den PP-Effekt verstärkt. Die Hypothesen 1, 3 und 4 werden mittels Laboruntersuchungen von Proben verschiedener Böden und Bodenfeuchtebedingungen überprüft. Die Hypothese 2 wird durch Freilandmessungen an verschiedenen Standorten überprüft. Ziele des Vorhabens sind: (Z1) Modelle zu entwickeln, die die Quantifizierung des Einflusses der Bodenstruktur auf den PP-Effekt ermöglichen, (Z2) den Effekt der Oberflächenrauigkeit auf Luftdruckschwankungen zu quantifizieren, (Z3) Schwellenwerte zu definieren, die die Bestimmung von Standorten mit ausgeprägtem PP-Effekt ermöglichen, (Z4) Faktoren für die Berücksichtigung des PP-Effekts für Kammermessungen zu entwickeln, (Z5) Faktoren für die Berücksichtigung des PP-Effekts für die Gradienten Methode zu entwickeln, (Z6) den Einfluss des PP-Effekts auf die Methanaufnahme von Böden in Mittelgebirgswäldern zu bestimmen. Ein besseres Verständnis des bisher nur unzureichend untersuchten PP-Effekts wird wesentlich dazu beitragen, die Verlässlichkeit und Präzision von Messungen von Bodengasflüssen zu steigern, die die Grundlage für weitergehende Forschung darstellen.

Flugzeuggetragene und bodengebundene Messungen von Albedo, BRDF und Schneeeigenschaften in der Antarktis und deren Kopplung zur Verbesserung prognostischer Schneemodelle

Das Projekt "Flugzeuggetragene und bodengebundene Messungen von Albedo, BRDF und Schneeeigenschaften in der Antarktis und deren Kopplung zur Verbesserung prognostischer Schneemodelle" wird vom Umweltbundesamt gefördert und von Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung durchgeführt. We propose to investigate the temporal and spatial variability of surface albedo, bidirectional reflectivity BRDF and snow properties in Antarctica. The overall goal of the project is to improve prognostic snow models and parameterizations of snow albedo used in regional and global climate models. The parameterizations will be formulated in dependence on snow grain size, snow surface roughness and atmospheric parameters. To achieve this goal we will couple ground based in situ (temporal variability) and airborne remote sensing measurements (spatial variability). Airborne data will include spectral surface albedo, BRDF, surface roughness and snow grain size. Corresponding remote sensing retrieval algorithms will be improved and developed in the project. The same quantities will be measured in situ on the Antarctic plateau by ground based instruments installed at Kohnen Station. The ground based measurements covering the temporal variability of snow and atmospheric properties will allow validating and improving prognostic snow models coupled to a radiative transfer code. By implementing measurement data in the models and comparing simulated and measured snow albedo and by sensitivity studies, snow albedo parameterizations for use in radiative transfer and climate models will be validated and improved. This will reduce uncertainties in predicting future climate change in Antartica.

Fingerprinting Art and Cultural Heritage - In Situ 3D Non- Contact Microscale Documentation and Identification of Paintings and Polychrome Objects

Das Projekt "Fingerprinting Art and Cultural Heritage - In Situ 3D Non- Contact Microscale Documentation and Identification of Paintings and Polychrome Objects" wird vom Umweltbundesamt gefördert und von NanoFocus AG durchgeführt. A project is proposed for the development of a system for the non-contact high-resolution fingerprinting of paintings and polychrome objects of art and cultural heritage. The compact system will consist of the in situ measurement of the roughness of selected areas of a painted surface at (sub)micron scale, spectral pigment and dye identification, and accurate colour digital documentation of the entire object. This will provide a long sought after non-destructive method for 'marking' and identifying valuable painted objects of art and cultural heritage by using the 3D micro-characteristics of the otherwise 2D surface of the object. Specifically, the (sub)micron roughness and spectral information at a certain (proprietary) location in an object's surface is a true 'marking', unique to the painted object, and, in fact, the artist's 'signature/fingerprint'. Combined with an accurate colour digital image of the object, this information can be used to develop a comprehensive digital archiving system for museum collections, and vastly improve the traceability of objects on loan and in transport. The objectives of this project clearly fit into Task 2 of the Policy oriented research Priority 8.1.B.3.6 - 'The protection of cultural heritage and associated conservation strategies'. However, FING-ART-PRINT will also be an excellent tool for the non-destructive analysis and detection of forgeries of objects, the objective of Task 1. For objects which are already known to be authentic, FING-ART-PRINT will provide an identification method which will be virtually impossible to forge, given the resolution attainable by the system, and the fact that the location, size and orientation of the fingerprint will only be known to the owner of the object. Finally, FING-ART-PRINT will provide an excellent non-destructive tool for studying the effect of conservation treatments and/or aging on the surface condition of painted surfaces, and their reversibility, as required by Task 4. Prime Contractor: Instituut Collectie Nederland; Amsterdam; Netherlands.

Airborne in-situ characterisation of the microphysical and optical properties of small ice crystals and large hydrometeors (AMOSIL): HALO implementation and analysis methodology

Das Projekt "Airborne in-situ characterisation of the microphysical and optical properties of small ice crystals and large hydrometeors (AMOSIL): HALO implementation and analysis methodology" wird vom Umweltbundesamt gefördert und von Johannes Gutenberg-Universität Mainz, Institut für Physik der Atmosphäre durchgeführt. The overall goal of this joint project renewal proposal is to develop and characterize four recently devised optical methods for the determination of the microphysical and optical properties of ice cloud elements and make them available for in situ measurements with the new research aircraft HALO. The four instruments are the PHIPS (Particle Habit Imaging and Polar Scattering) and the SID-3 (Small Ice Detector Mk 3) probes from Karlsruhe Institute of Technology as well as the CIP (Cloud Imaging Probe) and the holographic instrument HALOHOLO from the University and the Max-Planck-Institute for Chemistry in Mainz. The aircraft approved instruments SID-3 and CIP have been delivered and deployed on aircraft, and inside the cloud simulation chamber AIDA of KIT within the 36 month of the first grant period. The in-house developed instruments PHIPS and HALOHOLO have been developed and built during the first funding period. After some modifications they will be aircraft ready within the first year of the renewal period. The prototype instruments have already been used during ground based free atmospheric measurements and inside the cloud simulation chamber AIDA. With this set of instruments a comprehensive characterization of ice cloud particles can be obtained including the size, the external and internal morphology, the surface roughness, and the angular light scattering properties of ice crystals over a broad size range extending from one micron to one millimeter and above. To reach this goal and deploy the instruments in the HALO demonstration missions ML-CIRRUS, POLSTRACC, and ACRIDICON in 2011 and 2012 it is essential to: (1) Develop fully automated control systems and data acquisition software. (2) Test these instruments under real atmosphere conditions. (3) Develop automated image data analysis tools that extract microphysical particle parameters from the instrument data sets. (4) Compile the certification documentation for PHIPS and HALOHOLO and conduct the flight safety certification. The tasks (2) and (3) can be achieved through dedicated test campaigns at the cloud simulation chamber AIDA. The development task inherent in (3) requires major efforts as it is the key to the final instrument deliverables of SID-3, PHIPS and HALOHOLO.

Herstellung und in-situ-Funktionalisierung von Polymerpartikeln in der flüssigen Phase

Das Projekt "Herstellung und in-situ-Funktionalisierung von Polymerpartikeln in der flüssigen Phase" wird vom Umweltbundesamt gefördert und von Universität Erlangen-Nürnberg, Lehrstuhl für Kunststofftechnik, Sonderforschungsbereich 814 - Additive Fertigung durchgeführt. Dieses Projekt verfolgt das Ziel neue, optimierte Partikelsysteme für die additive Fertigung in der Flüssigphase zu erzeugen. Für die Herstellung der Ausgangsstoffe werden zwei alternative Prozessrouten untersucht. Über die Nassmahlung sowie die Schmelzemulgierung mit jeweils integrierter Oberflächenfunktionalisierung werden Partikelsysteme zwischen etwa 2 und 50 Mykrometer mit optimalen Fließ- und Packungseigenschaften hergestellt und damit die Voraussetzungen geschaffen, die verarbeitbaren Partikelgrößen in der additiven Fertigung deutlich abzusenken. Im ersten Projektteil werden Polymermaterialien unterhalb ihrer Glastemperatur in einer Rührwerkskugelmühle zerkleinert. Die Verwendung von Alkoholen erlaubt ein Kaltmahlen im Temperaturbereich bis herunter zu minus 80 Grad C. Beim Schmelzemulgierverfahren wird der Polymerausgangsstoff in einem flüssigen Medium, in dem er schlecht löslich ist, geschmolzen. Die Schmelze wird infolge hoher Scher- und Dehnbeanspruchung unter Zusatz entsprechender Hilfsstoffe zur Tropfenstabilisierung emulgiert. Nach Abkühlung der Emulsion, Erstarren des Polymers und Abtrennung der flüssigen Phase stehen pulverförmige Ausgangswerkstoffe zur Verfügung. Besonderer Vorteil der Schmelzemulgierung ist es, dass sphärische Partikeln hergestellt werden können. Die erzeugten Partikelgrößenverteilungen hängen in beiden Herstellungsverfahren von der Beanspruchungsintensität und von der Verweilzeitverteilung des Produktes ab. In beiden Fällen geht es darum optimal auf die additive Fertigung hin zugeschnittene Partikelgrößenverteilungen zu erzeugen. Erfolgt die Stabilisierung und Oberflächenfunktionalisierung über Nanopartikel, die an der Oberfläche der festen oder flüssigen Polymerpartikel angelagert werden, können zusätzlich die Haftkräfte durch Steuerung der Oberflächenrauheit maßgeblich reduziert werden und damit optimale Fließeigenschaften eingestellt werden. Beide Prozesse werden im Hinblick auf die nötige massespezifische Zerkleinerungsenergie, um die bestimmte Produktpartikelgrößenverteilung zu erhalten, optimiert.

Mesoscale Ocean Radar Signature Experiments (MORSE)

Das Projekt "Mesoscale Ocean Radar Signature Experiments (MORSE)" wird vom Umweltbundesamt gefördert und von Universität Hamburg, Zentrum für Meeres- und Klimaforschung, Institut für Meereskunde (IfM) durchgeführt. MORSE was a joint European project, carried out by six partner institutions in France, Great Britain, and Germany. It was financially supported by the Commission of the European Community as a part of the Marine Science and Technology (MAST) program under contract no. MAS3-CT95-0027. The objective of the project was to gain an understanding of the physical processes involved in radar signatures of internal waves using laboratory tank, airborne radar, and satellite imagery. To achieve the ultimate goal, independent numerical models are needed which are capable of predicting radar backscattering for all radar bands, extracting ocean surface characteristics at high spatial resolution, predicting internal wave fields in time and space, and inverting radar signatures into geophysical parameters. Existing models were not sufficiently reliable to produce quantitative results in order to retrieve the three-dimensional structure of the ocean's hydrodynamic processes. Progress in the understanding and mathematical description of different processes and increasing capacity of modern computers opens doors towards much more detailed, comprehensive models. The activities of the Satellite Oceanography group of the University of Hamburg within the framework of MORSE focused on theoretical considerations regarding the hydrodynamic modulation of ocean waves by spatially varying current fields over internal waves and the radar imaging of the resulting roughness variations. This research was based on our advanced radar imaging model which describes the modulation of the complete two-dimensional ocean wave spectrum according to wave-current interaction theory and the backscattered radar signal by a composite surface model. In addition, the Satellite Oceanography group has wide experience regarding the analysis of radar signatures of internal waves. A large number of ERS-1 / ERS-2 SAR images of internal waves in the Strait of Gibraltar and in the Strait of Messina was analyzed. Furthermore, numerical hydrodynamical models were developed, which are capable of describing the generation and propagation of internal tides and their disintegration into internal solitary waves. The MORSE project has provided an opportunity to exploit and extend the knowledge obtained in previous remote sensing projects and to calibrate and validate the corresponding numerical models.

Ermittlung einer oekologisch begruendeten Mindestwasserfuehrung hinsichtlich der aquatischen Lebensbereiche

Das Projekt "Ermittlung einer oekologisch begruendeten Mindestwasserfuehrung hinsichtlich der aquatischen Lebensbereiche" wird vom Umweltbundesamt gefördert und von Arbeitsgemeinschaft Landschaftsökologie durchgeführt. Ziel war die praxisgerechte Aufbereitung und Weiterentwicklung der von Statzner und Mueller 1989 entwickelten FST-Halbkugelmethode zur Ermittlung oekologisch begruendeter Mindestwassermengen an Ausleitungsstrecken, bzw. von Wasserkraftanlagen. Folgende Punkte wurden bearbeitet: - Optimierung der FST-Halbkugelmethode, - Erhebung ergaenzender Daten zur Gewaessertypologie und Biologie, - Kriterien zur oekologischen Bewertung erstellen, - Entwicklung eines Modells zur Vereinfachung des Verfahrens, - Erstellung eines Handbuches, in dem die Methode anschaulich fuer die Anwender in der Wasserwirtschaft beschrieben ist.

1 2