API src

Found 787 results.

Related terms

Untersuchung des Anregungsmechanismus der Natrium-D Nightglow-Emission

Das Projekt "Untersuchung des Anregungsmechanismus der Natrium-D Nightglow-Emission" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Universität Greifswald, Institut für Physik.Die Natrium D-Linien stellen eine der wichtigsten Emissionen des terrestrischen Nightglow-Spektrums dar. Die Na-Emission wurde 1929 durch Vesto Slipher erstmals beschrieben. Sydney Chapman schlug im Jahre 1939 einen Anregungsmechanismus für die Na-D Emission vor, der durch die Reaktion von Na und Ozon initiiert wird. Obwohl die Na-D Nightglow-Emission seit über 80 Jahren Gegenstand wissenschaftlicher Untersuchungen ist, ist das Verständnis ihres Anregungsmechanismus noch immer unvollständig. Neuere Studien identifizierten zeitliche Variationen des D2/D1-Linienverhältnisses, das nicht mit dem ursprünglichen Chapman-Mechanismus vereinbar ist. Ein modifizierter Chapman-Mechanismus wurde 2005 durch Slanger et al. vorgeschlagen, der explizit zwischen den verschiedenen elektronischen Anregungszuständen des beteiligen NaO-Moleküls differenziert. Dieser Mechanismus wurde mit Boden-gestützten Messungen des D2/D1-Linienverhältnisses getestet, aber die vertikale Variation des Linienverhältnisses - ein kritischer Test des modifizierten Chapman-Mechanismus - wurde bisher nicht durchgeführt.Das Hauptziel der hier vorgeschlagenen Untersuchungen besteht darin, das wissenschaftliche Verständnis des Na-D Nightglow-Anregungsmechanismus mit Hilfe Satelliten-gestützter Messungen zu testen und eine Methode zur Ableitung von Na Profilen in der Mesopausenregion aus Messungen der Na-D Nightglow-Emission zu konsolidieren. Hierzu sollen Messungen der Instrumente OSIRIS auf dem Odin Satelliten, sowie SCIAMACHY auf Envisat verwendet werden. Die Synergie der beiden Datensätze ermöglicht auf einzigartige Weise die Untersuchung des Na-D Nightglow-Anregungsmechanismus. Konkret sollen die Satellitenmessungen für folgende Zwecke verwendet werden: 1) Die OSIRIS Messungen, die ein sehr hohes Signal-zu-Rausch-Verhältnis besitzen, sollen verwendet werden um das Verzweigungsverhältnis f für die Produktion von Na(2P) über die Reaktion von NaO und O - entsprechend dem ursprünglichen oder effektiven Chapman-Mechanismus - empirisch zu bestimmen. Hierzu werden unabhängige Na-Profilmessungen mit Boden-gestützten LIDARs und anderen verfügbaren Na Datensätzen eingesetzt. 2) Die SCIAMACHY Nightglow Limb-Messungen erlauben die spektrale Trennung der beiden Na D-Linien und sollen eingesetzt werden, um die vertikale Variation des D2/D1-Verhältnisses in der realen Atmosphäre abzuleiten. Die SCIAMACHY Messungen sind hierfür auf einzigartige Weise geeignet. Die hier vorgeschlagenen Ansätze ermöglichen wichtige und neue Beiträge, um das wissenschaftliche Verständnis des Na-D Nightglow-Anregungsmechanismus zu verbessern. Darüber hinaus tragen die erwarteten Ergebnisse dazu bei, die Methode zur Ableitung von Na-Profilen in der Mesopausenregion aus Messungen der Na-D Nightglow-Emission zu konsolidieren. Letzteres wird erreicht durch die Bereitstellung eines optimalen Verzweigungsverhältnisses f (sowie dessen Unsicherheit) des ursprünglichen Chapman-Anregungsmechanismus.

Nutzung von Wasserstoff als klimaneutrales Prozessgas für den Tunnelofenbetrieb in der keramischen Industrie

Das Projekt "Nutzung von Wasserstoff als klimaneutrales Prozessgas für den Tunnelofenbetrieb in der keramischen Industrie" wird/wurde ausgeführt durch: Wienerberger GmbH.Das Ziel des Projektes besteht in der Nutzung von Wasserstoff als klimaneutrales Prozessgas für den Tunnelofenbetrieb in der keramischen Industrie. Der Bundesverband der Deutschen Ziegelindustrie e. V. hat im März 2021 eine Roadmap für eine treibhausgasneutrale Ziegelindustrie in Deutschland - Ein Weg zur Klimaneutralität der Branche bis 2050- herausgegeben. Die Treibhausgasemissionen der deutschen Ziegelindustrie betragen rund 1,74 Mio. t CO2 im Jahr. Bis zum Jahr 2050 soll das Ziel der Treibhausgasneutralität, mit dann nur noch Emissionen von rund 0,5 Mio. t CO2/a, erreicht sein. Ein großes Problem bei der Herstellung keramischer Erzeugnisse wie Ziegel, Dachziegel, Klinker etc. ist der hohe Energieverbrauch. Der Sekundärenergieträger Wasserstoff kann durch seine CO2-freie Verbrennung sehr gut als Brennstoff eingesetzt werden. Wasserstoff ist ein brennbares Gas das exotherm mit Sauerstoff zu Wasser reagiert. Durch die Veränderung der Gasatmosphäre im Ofen gibt es jedoch Auswirkungen auf die Eigenschaften des Brennproduktes, die keramischen Eigenschaften, die Brennfarbe, die Puzzolanität und schädliche Emissionen im Ofenraum. Schwerpunkt ist es, derzeit noch offene Fragestellungen zum Wasserstoff-verfahren zu lösen, d.h. Kenntnisse über die Reaktionsmechanismen in den Rohstoffen bei wasserdampfhaltiger Atmosphäre zu erlangen und ein Konzept für die Verfahrenstechnik zu entwickeln, mit der es nach dem heutigen Stand der Technik möglich wird, ein solches Brennverfahren sicher und wirtschaftlich in einem kontinuierlichen Prozess einzusetzen. Die Projektergebnisse sollen im Werk Rietberg der Wienerberger GmbH in einem Pilotofen umgesetzt und erprobt werden.

Nutzung von Wasserstoff als klimaneutrales Prozessgas für den Tunnelofenbetrieb in der keramischen Industrie, Teilvorhaben: Umsetzung und Erprobung anhand eines Pilotofens

Das Projekt "Nutzung von Wasserstoff als klimaneutrales Prozessgas für den Tunnelofenbetrieb in der keramischen Industrie, Teilvorhaben: Umsetzung und Erprobung anhand eines Pilotofens" wird/wurde gefördert durch: Bundesministerium für Wirtschaft und Klimaschutz. Es wird/wurde ausgeführt durch: Wienerberger GmbH.Das Ziel des Projektes besteht in der Nutzung von Wasserstoff als klimaneutrales Prozessgas für den Tunnelofenbetrieb in der keramischen Industrie. Der Bundesverband der Deutschen Ziegelindustrie e. V. hat im März 2021 eine Roadmap für eine treibhausgasneutrale Ziegelindustrie in Deutschland - Ein Weg zur Klimaneutralität der Branche bis 2050- herausgegeben. Die Treibhausgasemissionen der deutschen Ziegelindustrie betragen rund 1,74 Mio. t CO2 im Jahr. Bis zum Jahr 2050 soll das Ziel der Treibhausgasneutralität, mit dann nur noch Emissionen von rund 0,5 Mio. t CO2/a, erreicht sein. Ein großes Problem bei der Herstellung keramischer Erzeugnisse wie Ziegel, Dachziegel, Klinker etc. ist der hohe Energieverbrauch. Der Sekundärenergieträger Wasserstoff kann durch seine CO2-freie Verbrennung sehr gut als Brennstoff eingesetzt werden. Wasserstoff ist ein brennbares Gas das exotherm mit Sauerstoff zu Wasser reagiert. Durch die Veränderung der Gasatmosphäre im Ofen gibt es jedoch Auswirkungen auf die Eigenschaften des Brennproduktes, die keramischen Eigenschaften, die Brennfarbe, die Puzzolanität und schädliche Emissionen im Ofenraum. Schwerpunkt ist es, derzeit noch offene Fragestellungen zum Wasserstoff-verfahren zu lösen, d.h. Kenntnisse über die Reaktionsmechanismen in den Rohstoffen bei wasserdampfhaltiger Atmosphäre zu erlangen und ein Konzept für die Verfahrenstechnik zu entwickeln, mit der es nach dem heutigen Stand der Technik möglich wird, ein solches Brennverfahren sicher und wirtschaftlich in einem kontinuierlichen Prozess einzusetzen. Die Projektergebnisse sollen im Werk Rietberg der Wienerberger GmbH in einem Pilotofen umgesetzt und erprobt werden.

Reaktionen von 3,4 Benzpyren mit Proteinen im Licht

Das Projekt "Reaktionen von 3,4 Benzpyren mit Proteinen im Licht" wird/wurde ausgeführt durch: Universität Frankfurt, Institut für Physikalische Biochemie.Modellversuche zur Karzinogenese; 3,4 Benzpyren zerstoert Proteine in Gegenwart von Sauerstoff und Licht; angegriffene Gruppe ist Tryptophan; Ziel: Aufklaerung des Reaktionsmechanismus und Auffindung von Schutzmassnahmen; 3,4 Benzpyren ist Bestandteil von Abwaessern und Abgasen.

Nutzung von Wasserstoff als klimaneutrales Prozessgas für den Tunnelofenbetrieb in der keramischen Industrie, Teilvorhaben: Bewertung anhand von Werkstoff- und Produktuntersuchungen

Das Projekt "Nutzung von Wasserstoff als klimaneutrales Prozessgas für den Tunnelofenbetrieb in der keramischen Industrie, Teilvorhaben: Bewertung anhand von Werkstoff- und Produktuntersuchungen" wird/wurde gefördert durch: Bundesministerium für Wirtschaft und Klimaschutz. Es wird/wurde ausgeführt durch: IAB - Institut für Angewandte Bauforschung Weimar gemeinnützige GmbH.Das Ziel des Projektes besteht in der Nutzung von Wasserstoff als klimaneutrales Prozessgas für den Tunnelofenbetrieb in der keramischen Industrie. Der Bundesverband der Deutschen Ziegelindustrie e. V. hat im März 2021 eine Roadmap für eine treibhausgasneutrale Ziegelindustrie in Deutschland - Ein Weg zur Klimaneutralität der Branche bis 2050- herausgegeben. Die Treibhausgasemissionen der deutschen Ziegelindustrie betragen rund 1,74 Mio. t CO2 im Jahr. Bis zum Jahr 2050 soll das Ziel der Treibhausgasneutralität, mit dann nur noch Emissionen von rund 0,5 Mio. t CO2/a, erreicht sein. Ein großes Problem bei der Herstellung keramischer Erzeugnisse wie Ziegel, Dachziegel, Klinker etc. ist der hohe Energieverbrauch. Der Sekundärenergieträger Wasserstoff kann durch seine CO2-freie Verbrennung sehr gut als Brennstoff eingesetzt werden. Wasserstoff ist ein brennbares Gas das exotherm mit Sauerstoff zu Wasser reagiert. Durch die Veränderung der Gasatmosphäre im Ofen gibt es jedoch Auswirkungen auf die Eigenschaften des Brennproduktes, die keramischen Eigenschaften, die Brennfarbe, die Puzzolanität und schädliche Emissionen im Ofenraum. Schwerpunkt ist es, derzeit noch offene Fragestellungen zum Wasserstoff-verfahren zu lösen, d.h. Kenntnisse über die Reaktionsmechanismen in den Rohstoffen bei wasserdampfhaltiger Atmosphäre zu erlangen und ein Konzept für die Verfahrenstechnik zu entwickeln, mit der es nach dem heutigen Stand der Technik möglich wird, ein solches Brennverfahren sicher und wirtschaftlich in einem kontinuierlichen Prozess einzusetzen. Die Projektergebnisse sollen im Werk Rietberg der Wienerberger GmbH in einem Pilotofen umgesetzt und erprobt werden.

Nutzung von Wasserstoff als klimaneutrales Prozessgas für den Tunnelofenbetrieb in der keramischen Industrie, Teilvorhaben: Entwicklung des klimaneutralen Brennverfahrens

Das Projekt "Nutzung von Wasserstoff als klimaneutrales Prozessgas für den Tunnelofenbetrieb in der keramischen Industrie, Teilvorhaben: Entwicklung des klimaneutralen Brennverfahrens" wird/wurde gefördert durch: Bundesministerium für Wirtschaft und Klimaschutz. Es wird/wurde ausgeführt durch: KB Engineering GmbH.Das Ziel des Projektes besteht in der Nutzung von Wasserstoff als klimaneutrales Prozessgas für den Tunnelofenbetrieb in der keramischen Industrie. Der Bundesverband der Deutschen Ziegelindustrie e. V. hat im März 2021 eine Roadmap für eine treibhausgasneutrale Ziegelindustrie in Deutschland - Ein Weg zur Klimaneutralität der Branche bis 2050- herausgegeben. Die Treibhausgasemissionen der deutschen Ziegelindustrie betragen rund 1,74 Mio. t CO2 im Jahr. Bis zum Jahr 2050 soll das Ziel der Treibhausgasneutralität, mit dann nur noch Emissionen von rund 0,5 Mio. t CO2/a, erreicht sein. Ein großes Problem bei der Herstellung keramischer Erzeugnisse wie Ziegel, Dachziegel, Klinker etc. ist der hohe Energieverbrauch. Der Sekundärenergieträger Wasserstoff kann durch seine CO2-freie Verbrennung sehr gut als Brennstoff eingesetzt werden. Wasserstoff ist ein brennbares Gas das exotherm mit Sauerstoff zu Wasser reagiert. Durch die Veränderung der Gasatmosphäre im Ofen gibt es jedoch Auswirkungen auf die Eigenschaften des Brennproduktes, die keramischen Eigenschaften, die Brennfarbe, die Puzzolanität und schädliche Emissionen im Ofenraum. Schwerpunkt ist es, derzeit noch offene Fragestellungen zum Wasserstoff-verfahren zu lösen, d.h. Kenntnisse über die Reaktionsmechanismen in den Rohstoffen bei wasserdampfhaltiger Atmosphäre zu erlangen und ein Konzept für die Verfahrenstechnik zu entwickeln, mit der es nach dem heutigen Stand der Technik möglich wird, ein solches Brennverfahren sicher und wirtschaftlich in einem kontinuierlichen Prozess einzusetzen. Die Projektergebnisse sollen im Werk Rietberg der Wienerberger GmbH in einem Pilotofen umgesetzt und erprobt werden.

Untersuchungen zu den Abbau-Mechanismen der Sprengstoffe RDX und TNT durch bodenbewohnende Pilze

Das Projekt "Untersuchungen zu den Abbau-Mechanismen der Sprengstoffe RDX und TNT durch bodenbewohnende Pilze" wird/wurde ausgeführt durch: Institut für Biotechnologie und Wirkstoff-Forschung (IBWF) e.V. an der TU Kaiserslautern.Sprengstoffe, v.a. TNT und Hexogen (RDX), sind als Kontaminationen in den Boden eingetragen worden und gelangen aufgrund ihrer geringen Wasserlöslichkeit langsam in das Grundwasser. Aufgrund ihrer Umwetlttoxizität ist eine Sanierung kontaminierter Standorte nötig. Bisherige Untersuchungen zum Abbau dieser Xenobiotika haben sich auf die oxidativen Enzyme von Pilzen aus fremden Habitaten (v.a. Weißfäule-Pilzen) konzentriert. Unter Ansatz basiert hingegen auf der Charakterisierung des Abbau-Potentials der nativen Bodenmycota. TNT wird durch Nitratreduktase-Aktivität reduziert und in die Humus-Schicht eingebunden, während das instabile heterozyklische RDX-Moleküle durch Reduktion gespalten und somit mineralisiert wird. TNT-Reduktion und RDX-Abbau werden durch eine große Diversität an bodenbewohnenden Pilzen durchgeführt, v.a. Zygomyceten (Cuninghamella, Absidia) und imperfekte Stadien von Ascomyceten (Penicillium, Trichoderma). Unsere derzeitigen Studien befassen sich mit der Einbringung der RDX-Fragmente in den pilzlichen Sekundärmetabolismus.

Experimental investigations into the influence of organic complexing agents and inorganic anions (Cl-, NO3-, SO42- und PO43-) on the transformation behaviour and the mobility of metallic palladium (Pd) and PdO

Das Projekt "Experimental investigations into the influence of organic complexing agents and inorganic anions (Cl-, NO3-, SO42- und PO43-) on the transformation behaviour and the mobility of metallic palladium (Pd) and PdO" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Johann Wolfgang Goethe-Universität Frankfurt am Main, Institut für Atmosphäre und Umwelt.The projects goal is to examine the Mobility and transformation behaviour of emitted palladium from automobile exhaust catalysts into the environment. To achieve this, I will examine the influence of commonly present organic complexing agents like citric acid, amino acid (L-Methionin) and ethylenediamine tetra acetic acid (EDTA), as well as inorganic anion species (Cl-, NO3-, SO42- und PO43-), on the chemical behaviour and transformation of metallic palladium (Pd-Mohr) and PdO into more soluble species. The analytical experiments will be conducted over different time periods (1, 10, 20, 30, 40, 50 and 60 days), involving different concentrations of the various complexing agents under examination (0.001, 0.01 and 0.1 M). The results will help clarify the extent to which Pd Mobility is influenced by time and the presence of various complexing agents at different concentrations. In addition, surface analyses of isolated particles using X-ray photoelectron spectroscopy (XPS) will be used to examine the influence of organic compounds and inorganic anion species, on the transformation of metallic palladium and PdO. The proposed study will significantly help to shed light on questions related to the environmental transformation of Pd into more toxic species following emission in car exhausts, a poorly understood process to date.

Schwerpunktprogramm (SPP) 1803: EarthShape: Earth Surface Shaping by Biota, DeepEarthshape - Reaktionsfronten in tiefem Regolith und deren Bildungsmechanismen

Das Projekt "Schwerpunktprogramm (SPP) 1803: EarthShape: Earth Surface Shaping by Biota, DeepEarthshape - Reaktionsfronten in tiefem Regolith und deren Bildungsmechanismen" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Helmholtz-Zentrum Potsdam Deutsches GeoForschungsZentrum.Die meisten Ökosysteme der Erde kommen in der 'tiefen Biosphäre' in permanenter Dunkelheit vor. Die Verwitterungszone - der unterirdische Teil der 'Critical Zone' - bildet einen aktiven Teil dieses Lebensraums. Wir werden die Formung dieser Zone mittels innovativer Isotopen- und geochemischer Methoden erforschen. Dieses Vorhaben ist Teil der 'DeepEarthshape' Projektgruppe, die Geochemie, Mikrobiologie, Geophysik, Geologie und Biogeochemie verbindet. 'DeepEarthshape' beruht auf den Erkenntnissen der ersten EarthShape Phase. An allen vier untersuchten Standorten ist die Verwitterungszone so tief, dass deren Basis in keinem der Bodenprofile angetroffen wurde. Jedoch wurden im gesamten Saprolith beträchtliche Mengen an mikrobieller Biomasse gefunden.Die Frage ist nun: wie trägt Niederschlag und Pflanzenbedeckung entlang des Earthshape-Transekts zur Formung der tiefen Verwitterungszone bei? Folgende Hypothesen werden geprüft: 1) die Verwitterungsfronten an den EarthShape-Standorten sind heute aktiv; 2) die Massenverluste durch Erosion und chemische Verwitterung werden durch die Abtiefung der Verwitterungsfront ausgeglichen; und 3) die Verwitterungszone umfasst eine Reihe von unterscheidbaren, komplexen Fronten, die unterschiedliche biogeochemische Prozesse widerspiegeln (z. B. Wasserinfiltration, Eisenoxidation, mikrobielle Aktivität und organischem Kohlenstoffkreislauf).Im Mittelpunkt aller DeepEarthshape Projekte steht eine Bohrkampagne, die durch geophysikalische Bildgebung der tiefen 'Critical Zone' ergänzt wird. An allen vier Standorten werden wir Bohrkerne entnehmen, die durch Boden und Saprolith hindurch bis in das unverwitterte Ausgangsgestein führen. Durch die innovative Kombination von Methoden der Uran-Zerfallsreihen (Bestimmung der Abtiefunggeschwindigkeit der Verwitterungsfront) mit in situ kosmogenem Beryllium-10 (Bestimmung der Abtragungsrate) werden wir das Gleichgewicht zwischen der Produktion von verwittertem Material in der Tiefe und dessen Verlust an der Oberfläche ermitteln. Zusätzlich werden wir die Tiefenverteilung von meteorischem kosmogenen 10Be als Proxy für die Wasserinfiltration und die des stabilen 9Be als Proxy für die silikatische Verwitterung in der Tiefe verwenden. Wir werden die mineralogische und chemische Zusammensetzung der Kerne beschreiben und Elementabreicherung, Dichte, Porosität, Öberfläche und den Redoxzustand von Eisen messen, um die Verwitterungsfronten zu lokalisieren. Mit den Ergebnissen können wir den Einfluss von Klima und Vegetation auf die Bildungsmechanismen der einzelnen Verwitterungsfronten bestimmen. Der relative Einfluss dieser zwei Faktoren wird anhand eines Massenbilanzmodells ermittelt, welches Verwitterungskinetik und Nährstoffbedarf der nachwachsenden Pflanzenmasse verknüpft. Dieses Vorhaben leitet somit einen Beitrag, mit dem der Einfluss der tiefen Biosphäre und der tiefen 'Critical Zone' auf den CO2-Entzug aus der Atmosphäre und damit das Klima der Erde bilanziert werden kann.

Modellierung der CH4 und N2O Spurengasemissionen aus Reisanbaugebieten in China

Das Projekt "Modellierung der CH4 und N2O Spurengasemissionen aus Reisanbaugebieten in China" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Forschungszentrum Karlsruhe GmbH Technik und Umwelt, Institut für Meteorologie und Klimaforschung, Teilinstitut für Atmosphärische Umweltforschung.Im Rahmen des Forschungsvorhabens soll ein prozessorientiertes Modell zur Beschreibung von biogeochemischen Stoffumsetzungen in landwirtschaftlich genutzten Böden derart weiterentwickelt werden, daß es zur Prognose von CH4- und N2O-Spurengasemissionen aus dem Reisanbau eingesetzt werden kann. Insbesondere soll die numerische Beschreibung der in der CH4- und N2O-Produktion und Konsumption involvierten mikrobiologischen Prozesse Methanogenese, Methan-Oxidation, Nitrifikation und Denitrifikation und deren Abhängigkeit von Änderungen des Redoxpotentials im Boden implementiert bzw. verbessert werden. Zudem sollen die verschiedenen Mechanismen, die zur Emission von Spurengasen aus dem Reisanbau beitragen (Diffusion, Gasblasenbildung bei Überstauung, Pflanzentransport) sowie die Auswirkung von radialen Sauerstoffverlusten der Reiswurzeln auf die mikrobiologischen Prozesse in einer durch Anaerobiosis dominierten Umgebung in das Modell implementiert werden.

1 2 3 4 577 78 79