API src

Found 175 results.

Related terms

leitfadenelement-mikrobiologieb1dd.pdf

Leitfaden zur radiologischen Untersuchung und Bewertung bergbaulicher Altlasten Leitfadenelement Grundwasserpfad – Mikrobiologie (Grundlage: Anlage zum Bericht „Methodische Weiterentwicklung des Leitfadens zur radiologischen Untersuchung und Bewertung bergbaulicher Altlasten – Mikrobiologisch induzierte Freisetzung von natürlichen Radionukliden aus Halden mit dem Sickerwasser“ (StSch 4555) vom Oktober 2008 der G:E:O:S: Freiberg Ingenieurgesellschaft mbH) Bundesamt für Strahlenschutz, Dezember 2008 Leitfadenelement Grundwasserpfad Anlage - Mikrobiologie Inhaltsverzeichnis 1Einleitung.................................................................................................................... 2 2Vorrausetzungen und Lebensbedingungen von Mikroorganismen ....................... 2 3Orientierungsuntersuchung Sickerwasserpfad - Durchführung von experimentellen Untersuchungen zur Relevanz mikrobiologischer Prozesse ...... 2 3.1Ermittlung der Wasserhaltekapazität nach DIN ISO 11274 ....................................... 2 3.2Ermittlung der mikrobiellen Aktivität durch Bestimmung der Bodenatmung nach DIN ISO 16072................................................................................................. 2 3.3Ermittlung der mikrobiellen Aktivität durch Bestimmung der Enzymaktivität ............. 2 3.4Ermittlung der mikrobiellen Aktivität durch Mikrokalorimetrie, .................................... 2 4Hauptuntersuchungen Sickerwasserpfad ................................................................ 2 5Spezialuntersuchungen Sickerwasserpfad - Quantifizierung mikrobiologischer Prozesse...................................................................................... 2 5.1Anreicherung von Mikroorganismen auf Nährmedien ............................................... 2 5.2Mikroskopische Aufnahmen...................................................................................... 2 5.3Durchführung von Desoxyribonukleinsäure-basierten (DNA) Methoden ................... 2 6 Parameterbestimmung zur Quelltermbeschreibung auf der Grundlage der Spezialuntersuchungen, Prognoserechnungen....................................................... 2 6.1Chemische und physikalische Untersuchung des Materials und Analyse von Bindungsformen ....................................................................................................... 2 6.2Identifizierung möglicher Energielieferanten für mikrobiologische Prozesse ............ 2 6.3Auswahl von Mikroorganismenkulturen für Elutionsversuche.................................... 2 6.4Durchführung von parallelen Suspensionsversuchen ............................................... 2 6.5Nachrechnung der Suspensionslaugungsversuche .................................................. 2 6.6Durchführung von parallelen Perkolationsversuchen ................................................ 2 6.6.1 „Kleine“ Säulen............................................................................................. 2 6.6.2 „Große“ Säulen ............................................................................................ 2 6.7Modellierung der Radionuklidfreisetzung aus Säulenversuchen und Präzisierung der Modellparameter ............................................................................ 2 6.8Durchführung einer Freisetzungsprognose ............................................................... 2 7Quellenverzeichnis..................................................................................................... 2 8Glossar........................................................................................................................ 2 Seite 1 von 26 Leitfadenelement Grundwasserpfad Anlage - Mikrobiologie 1 Einleitung Um Entscheidungen über die Sanierung von Halden und Absetzanlagen des Alt- und Uran- erzbergbaus auf der Grundlage einheitlicher, wissenschaftlich begründeter und zugleich ökonomisch vernünftiger Methoden zu treffen, hat das Bundesamt für Strahlenschutz den „Leitfaden zur radiologischen Untersuchung und Bewertung bergbaulicher Altlasten“ entwi- ckelt. Im Forschungsvorhaben StSch „Mikrobiologie in Halden und Absetzanlagen“ [BMU 2005] wurde aufgezeigt, dass mikrobiell induzierte Stoffumsätze einen wesentlichen Beitrag zur Radionuklidfreisetzung über den Wasserpfad leisten können und bei einer Sanierungs- entscheidung ggf. zu berücksichtigen sind. In einem Expertengespräch zur „Mikrobiologie in Halden und Absetzanlagen“ wurden folgende Positionen erarbeitet: I. In allen Halden und Absetzanlagen des Alt- und Uranbergbaus sind Mikroorganismen aktiv, die die Freisetzung von Schwermetallen/Radionukliden kontrollieren, indem sie Redoxreaktionen steuern, die Schwermetalle/Radionuklide mobilisieren oder fixieren und/oder Schwermetalle/Radionuklide in ihrer Biomasse akkumulieren. Insofern bildet ei- ne vornehmlich geochemisch geprägte Betrachtungsweise die in der Natur ablaufenden Prozesse unzureichend ab. II. Mikrobielle Populationen sind in Abhängigkeit vom Nährstoff- und Energieangebot und damit immer standortspezifisch ausgeprägt. Es existieren Methoden zur effektiven Erfas- sung der freisetzungsrelevanten Mikroorganismen und ihrer Stoffwechselaktivität (Metall- sulfidoxidation) sowie der Schadstoff-/ Radionuklidmobilisierung. III. Es gibt eine Reihe von Rechencodes, von denen einige über die Option zur Transportsi- mulation verfügen (gekoppelte Modelle). Für die mathematische Erfassung der mikrobiel- len Prozesse werden speziell abzuleitende Quell- und Senkenglieder in diese Rechenco- des implementiert. Diese Vorgehensweise ist bereits heute in der Praxis üblich. IV. Einige mikrobiologische, aber auch geochemische Phänomene und Transportprozesse, die für die Freisetzung von Schwermetallen/Radionukliden relevant sind, sind heute zwar bekannt, für die Einbeziehung in Freisetzungsprognosen aber nicht ausreichend gut un- tersucht (z. B. Grenzflächenchemie, Transportphänomene wie Biofilme und Kolloide). V. Die Berücksichtigung der Mikrobiologie und die Durchführung einer biogeochemischen Modellierung erhöht die Sicherheit der Freisetzungsprognose und stellt die Dosisermitt- lung als eine Grundlage für die Sanierungsentscheidung auf eine zuverlässigere Basis. Den Ausgangspunkt für sämtliche Betrachtungen bildet der „Leitfaden zur radiologischen Bewertung bergbaulicher Altlasten“. Dieser Leitfaden beinhaltet eine einfach handhabbare, Seite 2 von 26

phosphin.pdf

Landesanstalt für Umweltschutz Baden-Württemberg Freisetzung von Phosphorwasserstoff bei der Oberflächenreinigung von Aluminiumteilen Dipl.-Chem. Hubert Faller Dipl.-Ing. (FH) Gerhard Ott OChR Ulrich Wurster* *Korrespondenzadresse: Landesanstalt für Umweltschutz Baden-Württemberg Referat Arbeitsschutz/Chemikalien Postfach 210752 76157 Karlsruhe Landesanstalt für Umweltschutz Baden-Württemberg Referat Arbeitsschutz/Chemikalien Postfach 210752 76157 Karlsruhe 2 Freisetzung von Phosphorwasserstoff bei der Oberflächenreinigung von Aluminiumteilen Zusammenfassung Die Entstehung von Phosphorwasserstoff (Phosphin , PH3) in relevanten Konzentrationen aus phosphathaltiger alka- lischer Reinigungslösung bei der Reinigung von Alumini- umteilen in einer handelsüblichen Industriespülmaschine unter üblichen Betriebsbedingungen konnte nachgewie- sen werden. Im stark alkalischen Milieu wird offenbar Phosphat des Reinigers im Kontakt mit Aluminium reduziert. Die für Phosphorwasserstoff existierende Maximale Ar- beitsplatz Konzentration (MAK-Wert) von 0,15 mg/m³ (0,1 ppm) kann hierbei zeitweise überschritten werden – ent- sprechende Arbeitsschutzmaßnahmen sind deshalb zu beachten. 1 Einleitung Beim Entladen einer Spülmaschine, die zur Reinigung von Aluminiumblechen eingesetzt wurde, klagte der Maschi- nenbediener über starkes Unwohlsein mit Schwindelgefühl und Atembeschwerden. Es wurde eine intensivmedizini- sche Behandlung nötig und ein ”Reizgasinhalationstrau- ma” diagnostiziert. Mitarbeiter hatten schon vor diesem Unfallereignis mehr- fach über einen carbidähnlichen Geruch (nach Knoblauch) beim Betrieb der Spülmaschine berichtet - ein Zusammen- hang mit einer möglichen Entwicklung von Phosphorwas- serstoff während des Reinigungsvorganges wurde jedoch zunächst nicht in Betracht gezogen. Aufgrund des auch bei dem Arbeitsunfall deutlich wahr- nehmbaren Geruches sollte auf Anforderung des zu- ständigen Staatlichen Gewerbeaufsichtsamtes durch Untersuchungen der Landesanstalt für Umweltschutz Ba- den-Württemberg (LfU) geklärt werden, ob bei dem ange- wendeten Oberflächenreinigungsprozess unter den übli- chen Betriebsbedingungen (Aluminiumbleche, alkalischer Phosphatreiniger, Temperatur ca. 60 °C) möglicherweise eine Freisetzung von PH3 (oder anderer Gefahrstoffe) statt- gefunden haben könnte. 2 Toxikologie von Phosphorwasserstoff Phosphorwasserstoff ist in die Kategorie I der lokal rei- zenden Stoffe eingeteilt, so dass der MAK-Wert von 0,1 ppm zu keinem Zeitpunkt überschritten werden soll (Über- schreitungsfaktor =1=) [1]. Phosphorwasserstoff ist ein hochgiftiges Gas mit Wir- kung auf wichtige Zellenzyme („Stoffwechselgift“), das bei akuter Vergiftung unter den Anzeichen der inneren Ersti- ckung zum Tode führen kann. Nach Inhalation ist ein to- xisches Lungenödem möglich. Dabei treten bei mittle- ren Konzentrationen (10 bis 100 ppm; Expositionszeit 0,5 bis 1 h) meist erst nach Stunden Vergiftungserschei- nungen auf. Bei Expositionszeiten von sechs Stunden sind schon 7 ppm wirksam. LfU Eine chronische Vergiftung ist nicht möglich, da im Orga- nismus üblicherweise eine Entgiftung kleiner Konzentrati- onen bis 2,5 ppm erfolgt [2]. Die Geruchsschwelle für die Phosphorwasserstoffwahr- nehmung liegt mit ca. 0,02 ppm [4] unter dem derzeit gülti- gen MAK-Wert von 0,1 ppm. 3 Beschreibung des Reinigungsverfahren Die Reinigung von Aluminiumblechen erfolgt im vorlie- genden Fall in einer handelsüblichen Industriespülma- schine. Die Reinigungslösung wird aus einem Spültank bei einer Solltemperatur von 55 bis 60 °C über 18 Düsen von unten auf die zu reinigendem Teile sprüht. Das Reini- gungsprogramm dauert fünf Minuten, wobei in der letzten Minute das Spülgut mit demineralisiertem Wasser nach- gespült wird. Ein Nachdosieren des Reinigerkonzentrates ist nach jedem Spülprozess erforderlich, da ein Teil des Spültankinhaltes während der Nachspülphase durch das demineralisierte Wasser ersetzt wird. Eine Dosiereinrich- tung soll gewährleisten, dass die empfohlene Konzentra- tion des Reinigerkonzentrates von ca. 4 g/l bei allen Spül- vorgängen in der Reinigungslösung konstant bleibt. Damit wird ein mittlerer pH-Wert von 10,8 erreicht (Mittelwert der Messwerte aus neun Spülvorgängen). Die Zusammensetzung des unverdünnten Reinigerkon- zentrats laut Sicherheitsdatenblatt ist in Tabelle 1 wieder- gegeben. Tabelle 1: Zusammensetzung eines Reinigerkonzentrats Stoff Anteil in Gew.-% Kaliumhydroxid1–5 Phosphate15 – 30 Alkalisilikate> 10 Amphotere Tenside<5 pH-Wert14 Die zu reinigenden Aluminiumbleche bestehen aus den Legierungen AlMg1 und AlMg3 eingesetzt, die sich im we- sentlichen durch ihren Anteil von ca. 1 bzw. 3 Gew.-% Ma- gnesium unterscheiden. Der Summenanteil anderer Ele- mente (somit auch der Gehalt an Phosphor) ist mit < 0,05 Gew.-% spezifiziert. 4 Phosphorwasserstoff- Entstehung 4.1 Phosphorquelle Für eine potenzielle Phosphorwasserstoff-Freisetzung in der Industriespülmaschine war zunächst die Herkunft des Phosphors zu klären. Bei einer typischen Beladung der Spülmaschine mit 30 Aluminiumblechen (Masse ca. 230 g; Oberfläche ca. 80 cm²) ergibt sich eine Gesamtmasse von LfU Freisetzung von Phosphorwasserstoff bei der Oberflächenreinigung von Aluminiumteilen ca. 6,9 kg. Darin können entsprechend der Spezifikation max. 3,5 g Phosphor enthalten sein, die jedoch nur zu ei- nem kleinen Teil (an der Blechoberfläche) für eine Reakti- on zur Verfügung stehen können. Bei einer gemessenen Aluminiumkonzentration von max. 10 mg/l in der Reinigungslösung (ca. 80 l) dürf- ten insgesamt nur ca. 0,4 mg Phosphor aus den Aluminiumblechen gelöst worden sein. Bei einer Reinigerkonzentration von ca. 4 g/l in der Rei- nigungslösung ergibt sich aus dem Gehalt an Phospha- ten eine Sollkonzentration von ca. 0,2 g/l Phosphor in der Reinigungslösung. In einer Maschinenfüllung dieser Rei- nigungslösung liegt somit eine Phosphormenge von 16 g vor. Dieser Phosphor steht für Reaktionen zur Verfügung und wird ständig nachdosiert – die dominierende Phos- phorquelle während des Spülprozesses ist demnach das Phosphat aus dem Reiniger. 4.2 Redoxreaktion Als starkes Reduktionsmittel für die Reduktion von Phos- phat zu Phosphorwasserstoff kommt Wasserstoff (”in sta- tu nascendi”) in Frage, der aus der Reaktion von Alumini- um mit der Reinigungslösung bei hohem pH-Wert stammt. Da bei kleinen wie bei hohen pH-Werten die Oxidschutz- schicht des Aluminiums nicht beständig ist, wird Alumini- um bei alkalischen Bedingungen unter Wasserstoffent- wicklung als Aluminat gelöst [1; 4; 5]. Nur im Bereich von 3 4,5 < pH < 8,5 ist die schützende Schutzschicht weitge- hend unlöslich (sieheBild 1). Wesentliche Faktoren für die Reaktion dürften aber, neben Reaktionszeit, pH-Wert und Konzentration von Fremdio- nen [6], die Reaktionstemperatur sein, da Phosphorwas- serstoff in einer endothermen Reaktion gebildet wird [4]. Bei pH-Werten im alkalischen Bereich kann durch Zusatz von Inhibitoren (z.B.: Alkalisilikate) der Angriff gehemmt werden [7]. In Bild 1 ist für die üblichen Betriebsbedingungen (pH ? 11; Temperatur ca. 60 °C; Aluminiumkonzentration in der Reinigungslösung von ca. 3,5 mg/l) die überschlägig er- mittelte flächenbezogene Massenverlustrate des Reini- gungsprozesses aufgetragen. Der Punkt liegt oberhalb des eingezeichneten Kurvenastes, da bei erhöhter Tem- peratur gearbeitet wird. 4.3 MAK-Wert-Überschreitung: Zum Erreichen des für Phosphorwasserstoff festgeleg- ten MAK-Wertes von 0,1 ppm im nur ca. 0,4 m³ großen Spülraum der Maschine sind nur 0,06 mg PH3 erforder- lich. Ein Vergleich mit der tatsächlichen in der Reinigungs- lösung vorhandenen Phosphormasse zeigt, dass ein mehr als 105-facher Überschuss an verfügbarem Phosphor bei Solldosierung des Reinigerkonzentrates vorhanden ist. Ein nur geringfügiges Ausmaß der o.g. Redoxreaktion dürfte demnach ausreichen, um relevante PH3-Konzentrationen im Bereich des MAK-Wertes im Spülraum zu erreichen. flächenbezogene Massenverlustrate [g°m-2°h-1] 1,0 0,8 0,6 0,4 0,2 0,0 0 2 4 6 8 10 12 pH-Wert Abbildung 1: Einfluss des pH-Wertes auf die flächenbezogene Massenverlustrate für die Aluminiumoxidschutzschicht (Daten aus [5]). Der eingetra- gene Punkt zeigt die überschlägig ermittelte Massenverlustrate im Reinigungsprozess bei den üblichen Betriebsbedingungen.

Photochemie organischer Komplexe von Übergangsmetallionen (TMI) in troposphärischen Aerosolen und Wolken

Das Projekt "Photochemie organischer Komplexe von Übergangsmetallionen (TMI) in troposphärischen Aerosolen und Wolken" wird vom Umweltbundesamt gefördert und von Deutsche Forschungsgemeinschaft durchgeführt. Seit 1992 und dem ersten Erdgipfel haben verschiedene Länder erkannt, dass durch menschliche Aktivitäten das Klima stark beeinflusst wird, und sie planten, dieses Problem im Rahmen einer internationalen Konvention anzugehen. So brachten COPs (Conference of parties) viele Länder unter der Schirmherrschaft der Vereinten Nationen zusammen, um sich gegenseitig zu verpflichten, dieses Problem zu lösen. Bevor jedoch sinnvolle Maßnahmen ergriffen werden können, ist es wichtig, dass sich Wissenschaftler auf der ganzen Welt zusammentun, um für die Politik nützlichen Daten bereitzustellen. In diesem Zusammenhang wird das REACTE-Projekt vorgeschlagen, an dem international anerkannte französische und deutsche Forscher in jeweils sehr komplementären wissenschaftlichen Bereichen tätig sind.Die Atmosphäre ist ein komplexes und hoch reaktives System, in dem viele bio-physikochemische Prozesse ablaufen. Deshalb ist es von entscheidender Bedeutung, dieses System gut zu verstehen und zu wissen, wie es sich als Reaktion auf die verschiedenen Belastungen entwickelt, denen es ausgesetzt ist. Einer der wichtigsten Punkte ist daher die Kenntnis der Reaktionsfähigkeit eines solchen Systems in Abhängigkeit von den vorhandenen Spezies. Redoxreaktionen gehören zu den wichtigsten Transformationspfaden, die berücksichtigt werden müssen, um die Entwicklung der Atmosphäre besser zu verstehen. Das REACTE-Projekt konzentriert sich auf die (Photo-) Chemie von Übergangsmetallen (TMIs), die eine Hauptquelle für hochreaktive Spezies in Aerosolen und der wässrigen Phase troposphärischer Wolken darstellt. Tatsächlich gibt es derzeit nur sehr wenige Daten über die genaue Rolle und Reaktivität dieser Metalle, die derzeit fast ausschließlich in freier Form betrachtet werden, während bekannt ist, dass sie in natürlicher Umgebung als Komplexe vorliegen. Das REACTE-Projekt konzentriert sich auf die Beantwortung folgender Fragen: i) Wie beeinflusst die Komplexierung von TMIs deren Photoreaktivität, deren Redoxreaktionen und/oder die "Fenton"-Typ-Reaktionen mit H2O2? ii) Welche reaktiven Spezies werden mit diesen Reaktionen assoziiert, H2O2, HyOx Radikale und ihre jeweiligen Bildungsausbeuten? Welchen Einfluss haben sie auf die Oxidationskapazität der Atmosphäre und damit auf die chemische Zusammensetzung im Allgemeinen? Diese Ergebnisse werden in einen Modellmechanismus zu Prozessierung von chemischen Radikalreaktionen in wässriger Phase (CAPRAM) implementiert werden, um den Einfluss auf die Transformation organischer Stoffe, die HOx-Bilanz und den Oxidationszustand von TMIs in atmosphärischen Tröpfchen oder Aerosolen vorherzusagen. Das REACTE-Projekt verbindet komplementäre wissenschaftliche Kompetenzen, und ermöglicht damit die TMIs-Komplexchemie besser zu verstehen, sowie ihren Einfluss auf die Atmosphärenchemie zu erfassen. Es wird Daten liefern, um die Auswirkungen auf das Klima bzw. auf die Luftverschmutzung zu verstehen und abzuschätzen, welche derzeit stark unterschätzt werden.

Zyklische Redoxreaktionen organischer Kohlenstoffverbindungen in Binnengewässern

Das Projekt "Zyklische Redoxreaktionen organischer Kohlenstoffverbindungen in Binnengewässern" wird vom Umweltbundesamt gefördert und von Forschungsverbund Berlin, Leibniz-Institut für Gewässerökologie und Binnenfischerei durchgeführt. Das vorliegende Forschungsprojekt zielt auf die Verknüpfung zweier, bisher als unabhängig angesehener, aquatischer Transport- und Transformationsprozesse:(a) In tiefen Gewässern können sich Wasserkörper unterschiedlicher Dichte stabil übereinander schichten. Die dort ablaufenden Umsatzprozesse werden so räumlich entkoppelt und es kommt zur Bildung einer aquatischen Grenzzone. Bei deren Durchtritt können sich physikochemische Parameter, wie etwa die Sauerstoffverfügbarkeit, abrupt ändern.(b) Die Verfügbarkeit des Elektronen-Akzeptors Sauerstoff entscheidet über die Reaktionspfade, auf denen aquatische Mikroorganismen Energie gewinnen. Unter Ausschluss von Sauerstoff können sie gelöstes organisches Material als alternativen Elektronen-Akzeptor nutzen. Die Elektronen werden von redox-aktiven Verbindungen innerhalb des organischen Materials (Quinone) aufgenommen die daraufhin antioxidativ, also empfindlich auf Änderungen der Sauerstoffverfügbarkeit reagieren. Die hohe räumliche- und zeitliche Dynamik aquatischer Grenzzonen in Binnengewässern haben zur Folge, dass antioxidatives organisches Material vom sauerstoffarmen in sauerstoffreiche Wasserkörper transportiert werden kann. Die dort rasch ablaufende Re Oxidation macht gelöstes organisches Material daher zu einem vollständig regenerierbaren Elektronenakzeptorsystem. Mikrobielle Konsortien, die ihre Energiegewinnung an diesen zyklisch regenerierten organischen Elektronenakzeptor koppeln, könnten einen entscheidenden Beitrag zum Kohlenstoffumsatz in aquatischen Grenzzonen leisten. Mikroorganismen beeinflussen maßgeblich, zu welchem Anteil umgesetztes organisches Material als Kohlendioxid oder als Methan in die Atmosphäre entweicht oder stattdessen dem Kohlenstoffkreislauf durch Sedimentation entzogen wird. Da Grenzzonen durch überproportional hohe Reaktionsraten und Biodiversität gekennzeichnet sind, ist die Kenntnis der dort ablaufenden Material- und Energieflüsse von großer Bedeutung für das grundlegende Verständnis des Kohlenstoffumsatzes in Binnengewässern. Die Binnenseen der borealen Zone haben großen Anteil an den globalen Süßwasservorräten und sind durch zukünftig steigende Frachten terrestrischen organischen Kohlenstoffs gefährdet. Das beantragte Forschungsprojekt hat daher zum Ziel, durch Prozessstudien auf verschiedenen Skalen und mechanistische Modellierung einen wichtigen Beitrag zu einem besseren Verständnis der Rolle organischen Materials als Elektronendonor und -akzeptor in diesen dynamischen Ökosystemen zu leisten.

Biochemische Rückgewinnung von Kupfer (Kreislaufwirtschaft) aus Abwasseremissionen (z.B. Leiterplattenfertigung)

Das Projekt "Biochemische Rückgewinnung von Kupfer (Kreislaufwirtschaft) aus Abwasseremissionen (z.B. Leiterplattenfertigung)" wird vom Umweltbundesamt gefördert und von Universität Bremen, Fachgebiet Umweltverfahrenstechnik durchgeführt. Die gekoppelte Eliminierung und Rückgewinnung von Kupfer aus Abwassergemischen stellt ein zukünftig nur noch durch produktionsintegrierte Maßnahmen lösbares verfahrenstechnisches Problem dar, da zunehmend neben der Reinigung des Wassers auch die Wertstoffrückgewinnung und damit die ressourcenminimierte Produktion in den Vordergrund der Zielsetzung steht (Kreislaufwirtschaft). Hierbei gilt es, auf die schwierigen Reaktionsbedingungen bei kupferbelasteten Abwässern (extrem niedrige pH-Werte) und die notwendige Produktreinheit des Kupfers zu achten. Den biologischen Prozessen wurde daher bisher nur wenig Aufmerksamkeit geschenkt, obwohl gerade hier ein großes Potential zur Problemlösung bei Vermeidung der Nachteile andrer Verfahren gegeben ist. In Vorversuchen konnte gezeigt werden, dass eine solche Kupferrückgewinnung möglich wird, wenn eine gekoppelte chemische/ biochemische Redoxreaktion zur Anwendung kommt. Dem im Wasser sulfidisch gelösten Kupfer wird Eisen aus z.B. Eisenschrott zur Substitution angeboten, so dass Kupfer in reiner Form ausfällen kann (Bestandteil des hier beantragten Forschungszeitraums). Das entstehende Eisensulfat wird hierzu durch Mikroorganismen (thiobacillus ferrooxidans) oxidiert und der Gleichgewichtsreaktion entzogen. Allerdings liegen bisher keine hinreichenden Grundlagenkenntnisse zur detaillierten Beschreibung und Modellierung der dieses Verfahren bestimmenden Reaktionen und reaktionsbeeinflussenden Parameter vor. Die Erarbeitung von Auslegungskriterien sind Inhalt dieses Antrages.

Teilprojekt D

Das Projekt "Teilprojekt D" wird vom Umweltbundesamt gefördert und von Technische Universität München, Fakultät für Chemie, Lehrstuhl für Theoretische Chemie durchgeführt. Bentonit-basierte Nahfeldbarrieren können in einem Endlager für hoch-radioaktive Abfälle aufgrund erhöhter Temperaturen und einer Wechselwirkung mit wässrigen Lösungen aus dem umliegenden Wirtsgestein eine für die Langzeitsicherheit des Endlagers relevante Umwandlung erfahren. Im Projekt UMB wurde festgestellt, dass bei 25, 90 und 120 Grad Celsius eine erhebliche pH-Absenkung sowie eine CO2-Gasbildung durch eine teilweise bis vollständige Zersetzung der in Bentoniten vorhandenen Karbonate ablaufen kann. Im Projekt UMB-II sollen die beteiligten Reaktionsmechanismen aufgeklärt werden. Weitere Arbeitsschwerpunkte sind (i) die Abhängigkeit der Lösungsrate der Smektite vom Bentonit-Typ, (ii) der Einfluss der Fe(II)/Fe(III)-Redoxreaktion (experimenteller und quantenchemischer Ansatz), (iii) die Unterschiede in Korrosionsraten und -produkten an einer Eisen-Bentonit-Grenzfläche (mit Einsatz einer zu optimierenden Mößbauerspektroskopie) und (iv) der Einfluss der bentoniteigenen mikrobiellen Population. Das Teilprojekt widmet sich vor allem der Charakterisierung der Fe(II)/Fe(III)-Redoxchemie in Tonmineralen mit Hilfe quantenchemischer Modellierungen. Geometrie und Energie struktureller Fe(II)-Substitutionen in Smectiten werden modelliert und zur Bestimmung relativer Redoxpotentiale verwendet. Daneben werden Zwischenschichtionen der Smektite untersucht, auch um die verwendeten Mineralmodelle zur Charakterisierung der Eisenredoxchemie zu verbessern.

Teilprojekt A

Das Projekt "Teilprojekt A" wird vom Umweltbundesamt gefördert und von Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) gGmbH - Bereich Endlagerung durchgeführt. Bentonit-basierte Nahfeldbarrieren können in einem Endlager für hoch-radioaktive Abfälle aufgrund erhöhter Temperaturen und einer Wechselwirkung mit wässrigen Lösungen aus dem umliegenden Wirtsgestein eine für die Langzeitsicherheit des Endlagers relevante Umwandlung erfahren. Im Projekt UMB wurde festgestellt, dass bei 25, 90 und 120 Grad Celsius eine erhebliche pH-Absenkung sowie eine CO2-Gasbildung durch eine teilweise bis vollständige Zersetzung der in Bentoniten vorhandenen Karbonate ablaufen kann. Im Projekt UMB-II sollen die beteiligten Reaktionsmechanismen aufgeklärt werden. Weitere Arbeitsschwerpunkte sind (i) die Abhängigkeit der Lösungsrate der Smektite vom Bentonit-Typ, (ii) der Einfluss der Fe(II)/Fe(III)-Redoxreaktion (experimenteller und quantenchemischer Ansatz), (iii) die Unterschiede in Korrosionsraten und -produkten an einer Eisen-Bentonit-Grenzfläche (mit Einsatz einer zu optimierenden Mößbauerspektroskopie) und (iv) der Einfluss der Bentonit-eigenen mikrobiellen Population.

Teilprojekt E

Das Projekt "Teilprojekt E" wird vom Umweltbundesamt gefördert und von Leibniz Universität Hannover, Institut für Anorganische Chemie (ACI) durchgeführt. Bentonit-basierte Nahfeldbarrieren können in einem Endlager für hoch-radioaktive Abfälle aufgrund erhöhter Temperaturen und einer Wechselwirkung mit wässrigen Lösungen aus dem umliegenden Wirtsgestein eine für die Langzeitsicherheit des Endlagers relevante Umwandlung erfahren. Im Projekt UMB wurde festgestellt, dass bei 25, 90 und 120 Grad Celsius eine erhebliche pH-Absenkung sowie eine CO2-Gasbildung durch eine teilweise bis vollständige Zersetzung der in Bentoniten vorhandenen Karbonate ablaufen kann. Im Projekt UMB-II sollen die beteiligten Reaktionsmechanismen aufgeklärt werden. Weitere Arbeitsschwerpunkte sind (i) die Abhängigkeit der Lösungsrate der Smektite vom Bentonit-Typ, (ii) der Einfluss der Fe(II)/Fe(III)-Redoxreaktion (experimenteller und quantenchemischer Ansatz), (iii) die Unterschiede in Korrosionsraten und -produkten an einer Eisen-Bentonit-Grenzfläche (mit Einsatz einer zu optimierenden Mößbauerspektroskopie) und (iv) der Einfluss der Bentonit-eigenen mikrobiellen Population.

Teilprojekt F

Das Projekt "Teilprojekt F" wird vom Umweltbundesamt gefördert und von Leibniz Universität Hannover, Institut für Bodenkunde durchgeführt. Bentonit-basierte Nahfeldbarrieren können in einem Endlager für hoch-radioaktive Abfälle aufgrund erhöhter Temperaturen und einer Wechselwirkung mit wässrigen Lösungen aus dem umliegenden Wirtsgestein eine für die Langzeitsicherheit des Endlagers relevante Umwandlung erfahren. Im Projekt UMB wurde festgestellt, dass bei 25, 90 und 120 Grad Celsius eine erhebliche pH-Absenkung sowie eine CO2-Gasbildung durch eine teilweise bis vollständige Zersetzung der in Bentoniten vorhandenen Karbonate ablaufen kann. Im Projekt UMB-II sollen die beteiligten Reaktionsmechanismen aufgeklärt werden. Weitere Arbeitsschwerpunkte sind (i) die Abhängigkeit der Lösungsrate der Smektite vom Bentonit-Typ, (ii) der Einfluss der Fe(II)/Fe(III)-Redoxreaktion (experimenteller und quantenchemischer Ansatz), (iii) die Unterschiede in Korrosionsraten und -produkten an einer Eisen-Bentonit-Grenzfläche (mit Einsatz einer zu optimierenden Mössbauerspektroskopie) und (iv) der Einfluss der Bentonit-eigenen mikrobiellen Population.

Teilprojekt C

Das Projekt "Teilprojekt C" wird vom Umweltbundesamt gefördert und von Universität Greifswald, Institut für Geographie und Geologie - Ökonomische Geologie und Mineralogie durchgeführt. Bentonit-basierte Nahfeldbarrieren können in einem Endlager für hoch-radioaktive Abfälle aufgrund erhöhter Temperaturen und einer Wechselwirkung mit wässrigen Lösungen aus dem umliegenden Wirtsgestein eine für die Langzeitsicherheit des Endlagers relevante Umwandlung erfahren. Im Projekt UMB wurde festgestellt, dass bei 25, 90 und 120 Grad Celsius eine erhebliche pH-Absenkung sowie eine CO2-Gasbildung durch eine teilweise bis vollständige Zersetzung der in Bentoniten vorhandenen Karbonate ablaufen kann. Im Projekt UMB-II sollen die beteiligten Reaktionsmechanismen aufgeklärt werden. Weitere Arbeitsschwerpunkte sind (i) die Abhängigkeit der Lösungsrate der Smektite vom Bentonit-Typ, (ii) der Einfluss der Fe(II)/Fe(III)-Redoxreaktion (experimenteller und quantenchemischer Ansatz), (iii) die Unterschiede in Korrosionsraten und -produkten an einer Eisen-Bentonit-Grenzfläche (mit Einsatz einer zu optimierenden Mößbauerspektroskopie) und (iv) der Einfluss der Bentonit-eigenen mikrobiellen Population. Die Arbeitsschwerpunkte der Universität Greifswald sind die Veränderungen der Smektitzusammensetzung sowohl in natürlichen als auch in synthetisch gemischten Bentonitproben. Die Raten und Reaktionsmechanismen der Smektitänderungen werden in mineralogischen und geochemischen Vergleichsstudien untersucht. Zusätzlich wird der Einfluss verschiedener akzessorischer Mineralien, bei der CO2-Freisetzung, pH Änderungen und zum Fe-Redoxzustand bestimmt. Änderungen der Smektitzusammensetzung werden auch in Bezug auf die mikrobielle Aktivität sowie die Korrosion des Fe-Metallkanisters untersucht. Das übergeordnete Ziel wird darin bestehen, ein detaillierteres Smektitreaktionsmodell in Bezug auf den Grad der stöchiometrischen gegenüber der nichtstöchiometrischen Auflösung zu erstellen, die unter für das Endlager relevanten Bedingungen auftritt.

1 2 3 4 516 17 18