API src

Found 1269 results.

GcBÜK400 - Kupfer im Oberboden

Kupfer ist ein für die Ernährung aller Lebewesen essentielles Element, das jedoch bei einem extremen Überangebot zu toxischen Wirkungen führen kann. Der mittlere Cu-Gehalt der Gesteine der oberen kontinentalen Erdkruste (Clarkewert) beträgt 14 mg/kg. Analog zu Chrom und Nickel ist es vor allem in basischen Gesteinen angereichert (Diabase, Basalte, Metabasite). Die mittleren Cu-Gehalte (Mediane) der sächsischen Haupt-gesteinstypen reichen von 2 bis 67 mg/kg, der regionale Clarke des Erzgebirges/Vogtlandes beträgt 23 mg/kg. Geogene Cu-Anreicherungen sind vor allem im Erzgebirge über den hier weit verbreiteten Mineralisationen zu finden. Chalkopyrit (Kupferkies) ist nahezu in allen Mineralassoziationen als sog. Durchläufermineral verbreitet. Starke anthropogene Cu-Einträge werden vor allem durch die Buntmetallurgie verursacht. Durch die vielfältige Verwendung von Cu, u. a. in der Elektrotechnik, als Legierungsmetall, Rohrleitungsmaterial und Regenrinnen, wird das Element auch verstärkt in das Abwasser eingetragen. Für unbelastete Böden gelten Cu-Gehalte von 2 bis 40 mg/kg als normal. Die regionale Verteilung der Cu-Gehalte im Oberboden wird vor allem durch den geogenen Anteil der Substrate bestimmt. Auf Grund der erhöhten Cu-Gehalte der im Vogtland weit verbreiteten Diabase (58 mg/kg), der punktförmig auftretenden tertiären Basaltoide (60 mg/kg) und der lokal eingelagerten Amphibolite (46 mg/kg) des metamorphen Grundgebirges, kommt es zu anomal hohen Cu-Gehalten in den Verwitterungsböden über den genannten Festgesteinen. Durch eine verstärkte Lössbeeinflussung (mit relativ niedrigen Cu-Gehalten von ca. 12 mg/kg), kann es über Cu-reichen Substraten, je nach Lössanteil, zu einem "Verdünnungseffekt" kommen (z. B. über den Monzonitoiden bei Meißen). Extrem niedrige Cu-Konzentrationen sind in den Verwitterungsböden über sauren Magmatiten (Granit von Ei-benstock, Teplice-Rhyolith), Metagranitoiden (Erzgebirgs-Zentralzone), Sandsteinen (Elbsandstein- und Zittauer Gebirge) und bei Bodengesellschaften aus periglaziären sandigen Decksedimenten in Nordsachsen zu beobachten. Bedeutende regionale Anomalien befinden sich vor allem im Freiberger Raum, dem wichtigsten früheren Standort des Bergbaus und der Verhüttung polymetallischer Erze. Die anthropogenen Einträge sind aber i. W. auf die unmittelbare Umgebung der Hüttenstandorte beschränkt. Dabei kommt es zu Überlagerung mit geogenen Anteilen im Boden, die in ursächlichem Zusammenhang mit der Verbreitung von Kupferkies führenden Mineralassoziationen stehen. Analoge Verhältnisse finden sich, wenn auch in abgeschwächter Form, im Raum Schneeberg - Schwarzenberg - Annaberg-Buchholz - Marienberg. Besonders hohe Cu-Gehalte weisen die Auenböden der Freiberger Mulde auf. Nach Eintritt der Freiberger Mulde in das Freiberger Bergbau- und Hüttenrevier kommt es zu einer nachhaltigen stofflichen Belastung der Auenböden, die über die Aue der Vereinigten Mulde bis an die nördliche Landesgrenze reicht. Erhöhte Cu-Gehalte, jedoch auf deutlich niedrigerem Niveau, treten auch in den Auenböden der Zwickauer Mulde auf, wo sich im Einzugsgebiet die polymetallischen Vererzungen des Westerzgebirges befinden. Infolge der beschriebenen geogenen und anthropogenen Prozesse werden in den Auenböden der Freiberger und der Vereinigten Mulde die Maßnahmenwerte der Bundes-Bodenschutz- und Altlastenverordnung (BBodSchV) für Grünlandnutzung (Schafhaltung) teilweise überschritten.

Kraftwerke: konventionelle und erneuerbare Energieträger

Kraftwerke: konventionelle und erneuerbare Energieträger Die Energiewende ändert die Zusammensetzung des deutschen Kraftwerksparks. Die Anzahl an Kraftwerken zur Nutzung erneuerbarer Energien nimmt deutlich zu. Kraftwerke mit hohen Treibhausgas-Emissionen werden vom Netz genommen. Gleichzeitig muss eine sichere regionale und zeitliche Verfügbarkeit der Stromerzeugung zur Deckung der Stromnachfrage gewährleistet sein. Kraftwerkstandorte in Deutschland Die Bereitstellung von Strom aus konventionellen Energieträgern verteilt sich unterschiedlich über die gesamte Bundesrepublik. Das ⁠ UBA ⁠ stellt verschiedene Karten mit Informationen zu Kraftwerken in Deutschland zur Verfügung. In der Karte „Kraftwerke und Verbundnetze in Deutschland“ sind Kraftwerke der öffentlichen Stromversorgung und Industriekraftwerke mit einer elektrischen Bruttoleistung ab 100 ⁠ MW ⁠ verzeichnet. Basis ist die Datenbank „Kraftwerke in Deutschland“ . Weiterhin sind die Höchstspannungsleitungstrassen in den Spannungsebenen 380 Kilovolt (kV) und 220 kV eingetragen. In der Karte „ Kraftwerke mit Kraft-Wärme-Kopplung (KWK) in Deutschland “ sind Kraftwerke der öffentlichen Stromversorgung und Industriekraftwerke ab einer elektrischen Bruttoleistung von 50 MW bzw. mit einer Wärmeauskopplung ab 100 MW verzeichnet. Auch hier ist die Basis die Datenbank „Kraftwerke in Deutschland“ . Die Karte „Kraftwerke und Windleistung in Deutschland“ zeigt die installierte Windleistung pro Bundesland und die Kraftwerke ab 100 MW. Die Karte „Kraftwerke und Photovoltaikleistung in Deutschland“ vermittelt ein Bild des Zusammenspiels von Photovoltaikleistung und fossilen Großkraftwerken. Aus der Karte "Kraftwerksleistung in Deutschland" werden bundeslandscharf die jeweiligen Kraftwerksleistungen ersichtlich. Kraftwerke und Verbundnetze in Deutschland Kraftwerke und Verbundnetze in Deutschland, Stand Januar 2025. Das Umweltbundesamt weist ausdrücklich darauf hin, dass diese Karte dem Urheberrecht unterliegt und nur zur nichtkommerziellen Nutzung verwendet werden darf. Quelle: Umweltbundesamt Karte als pdf herunterladen Kraftwerke und Verbundnetze in Deutschland, Stand Januar 2025. Das Umweltbundesamt weist ausdrücklich darauf hin, dass diese Karte dem Urheberrecht unterliegt und nur zur nichtkommerziellen Nutzung verwendet werden darf. Kraftwerke mit Kraft-Wärme-Kopplung (KWK) in Deutschland Kraftwerke mit Kraft-Wärme-Kopplung (KWK) in Deutschland, Stand Januar 2025 Das Umweltbundesamt weist ausdrücklich darauf hin, dass diese Karte dem Urheberrecht unterliegt und nur zur nichtkommerziellen Nutzung verwendet werden darf. Quelle: Umweltbundesamt Karte als PDF herunterladen Kraftwerke mit Kraft-Wärme-Kopplung (KWK) in Deutschland, Stand Januar 2025 Das Umweltbundesamt weist ausdrücklich darauf hin, dass diese Karte dem Urheberrecht unterliegt und nur zur nichtkommerziellen Nutzung verwendet werden darf. Kraftwerke und Windleistung in Deutschland Karte Kraftwerke und Windleistung in Deutschland, Stand Dezember 2024 Das Umweltbundesamt weist ausdrücklich darauf hin, dass diese Karte dem Urheberrecht unterliegt und nur zur nichtkommerziellen Nutzung verwendet werden darf. Quelle: Umweltbundesamt Karte als pdf herunterladen Karte Kraftwerke und Windleistung in Deutschland, Stand Dezember 2024 Das Umweltbundesamt weist ausdrücklich darauf hin, dass diese Karte dem Urheberrecht unterliegt und nur zur nichtkommerziellen Nutzung verwendet werden darf. Kraftwerke und Photovoltaikleistung in Deutschland Karte Kraftwerke und Photovoltaikleistung in Deutschland, Stand Dezember 2024 Das Umweltbundesamt weist ausdrücklich darauf hin, dass diese Karte dem Urheberrecht unterliegt und nur zur nichtkommerziellen Nutzung verwendet werden darf. Quelle: Umweltbundesamt Karte als pdf herunterladen Karte Kraftwerke und Photovoltaikleistung in Deutschland, Stand Dezember 2024 Das Umweltbundesamt weist ausdrücklich darauf hin, dass diese Karte dem Urheberrecht unterliegt und nur zur nichtkommerziellen Nutzung verwendet werden darf. Kraftwerksleistung in Deutschland Installierte Kraftwerksleistung in Deutschland 2024 (Stand: Januar 2025) Das Umweltbundesamt weist ausdrücklich darauf hin, dass diese Karte dem Urheberrecht unterliegt und nur zur nichtkommerziellen Nutzung verwendet werden darf. Quelle: Umweltbundesamt Karte als pdf herunterladen Installierte Kraftwerksleistung in Deutschland 2024 (Stand: Januar 2025) Das Umweltbundesamt weist ausdrücklich darauf hin, dass diese Karte dem Urheberrecht unterliegt und nur zur nichtkommerziellen Nutzung verwendet werden darf. Kraftwerke auf Basis konventioneller Energieträger Der deutsche Kraftwerkspark beruhte vor der Energiewende vor allem auf konventionellen Erzeugungsanlagen auf Grundlage eines breiten, regional diversifizierten, überwiegend fossilen Energieträgermixes (Stein- und Braunkohlen, Kernenergie, Erdgas, Mineralölprodukte, Wasserkraft etc.). Die gesamte in Deutschland installierte Brutto-Leistung konventioneller Kraftwerke ist basierend auf Daten des Umweltbundesamtes in der Abbildung „Installierte elektrische Leistung von konventionellen Kraftwerken ab 10 Megawatt nach Energieträgern“ dargestellt. Die aktuelle regionale Verteilung der Kraftwerkskapazitäten ist in der Abbildung „Kraftwerksleistung aus konventionellen Energieträgern ab 10 Megawatt nach Bundesländern“ dargestellt. In den letzten Jahrzehnten hat sich die Energiebereitstellung aus erneuerbaren Energien sehr dynamisch entwickelt. Gleichzeitig wurden mit dem im Jahr 2023 erfolgten gesetzlichen Ausstieg Deutschlands aus der Nutzung der Kernenergie und dem fortschreitenden Ausstieg aus der Braun- und Steinkohle konkrete Zeitpläne zur Reduktion konventioneller Kraftwerkskapazitäten festgelegt (siehe Tab. „Braunkohlen-Kraftwerke in Deutschland gemäß Kohleausstiegsgesetz“ im letzten Abschnitt). Unabhängig davon übt der ⁠ CO2 ⁠-Preis einen wesentlichen Einfluss auf die Rentabilität und insofern den Einsatz fossiler Kraftwerke aus. Braunkohlenkraftwerke : Mit Einsetzen der „Kommission für Wachstum, Strukturwandel und Beschäftigung“ wurde der Prozess zum Ausstieg aus der Kohlestromerzeugung in Deutschland gestartet. Im Januar 2020 wurde im Rahmen des Kohleausstiegsgesetzes ein Ausstiegspfad für die Braunkohlestromerzeugung zwischen Bund, Ländern und beteiligten Unternehmen erarbeitet, welcher Entschädigungsregelungen für die Unternehmen und Förderung für die betroffenen Regionen enthält. Die Leistung von Braunkohlenkraftwerken als typische Grundlastkraftwerke lässt sich nur unter Energieverlust kurzfristig regeln. Sie produzieren Strom in direkter Nähe zu den Braunkohlenvorkommen im Rheinischen und Lausitzer Revier sowie im Mitteldeutschen Raum. Steinkohlenkraftwerke: Im Rahmen des Kohleausstiegs wird auch der Ausstieg aus der Steinkohle angestrebt. 2019 wurde bereits aus ökonomischen Gründen der Abbau von Steinkohle in Deutschland eingestellt. Im Gegensatz zur Braunkohle wird der Ausstieg aus der Steinkohle durch einen Auktionsmechanismus geregelt, der die Entschädigungszahlungen bestimmt. Steinkohlenkraftwerke produzieren Strom in den ehemaligen Steinkohle-Bergbaurevieren Ruhr- und Saarrevier, in den Küstenregionen und entlang der Binnenwasserstraßen, da hier kostengünstige Transportmöglichkeiten für Importsteinkohle vorhanden sind. (Weitere Daten und Fakten zu Steinkohlenkraftwerken finden sie in der Broschüre „Daten und Fakten zu Braun- und Steinkohle“ des Umweltbundesamtes.) Gaskraftwerke: Die Strom- und Wärmeerzeugung mit Gaskraftwerken erzeugt niedrigere Treibhausgasemissionen als die mit Kohlenkraftwerken. Des Weiteren ermöglichen sie durch ihre hohe Regelbarkeit und hohe räumliche Verfügbarkeit eine Ergänzung der Stromerzeugung aus erneuerbaren Energien. Dennoch muss zum Erreichen der Klimaziele die gesamte Stromerzeugung dekarbonisiert werden, etwa durch Umrüstung auf Wasserstoffkraftwerke. Kraftwerksleistung aus konventionellen Energieträgern ab 10 Megawatt nach Bundesländern Quelle: Umweltbundesamt Diagramm als PDF Installierte elektrische Leistung von konventionellen Kraftwerken ab 10 Megawatt nach Energieträgern Quelle: Umweltbundesamt Diagramm als PDF Tab: Braunkohlenkraftwerke in Deutschland gemäß Kohleausstiegsgesetz Quelle: UBA-Kraftwerksliste und BMWi Diagramm als PDF Kraftwerke auf Basis erneuerbarer Energien Im Jahr 2023 erreichte der Ausbau der erneuerbaren Energien in Deutschland einen neuen Höchststand: In diesem Jahr wurden 18,5 Gigawatt (GW) an erneuerbarer Kraftwerkskapazität zugebaut. Dieser Zubau liegt 70 % höher als die vorherige Ausbauspitze aus dem Jahr 2011. Insgesamt stieg damit die Erzeugungskapazität erneuerbarer Kraftwerke auf 168,4 GW (siehe Abb. „Installierte Leistung zur Stromerzeugung aus erneuerbaren Energien“). Getragen wurde der Erneuerbaren-Zubau in den vergangenen vier Jahren vor allem von einem starken Ausbau der Photovoltaik (PV). Seit Anfang 2020 wurden mehr als 33 GW PV-Leistung zugebaut, davon mit 15,1 GW allein 45 % im Jahr 2023. Nach den Ausbaustarken Jahren 2011 und 2012 war der Photovoltaikausbau in den Folgejahren zunächst stark eingebrochen, seit etwa 10 Jahren wächst der Zubau aber kontinuierlich und übertraf im Jahr 2023 die Rekordjahre 2011 und 2012 deutlich. Um das im EEG 2023 formulierte PV-Ausbauziel von 215 GW im Jahr 2030 zu erreichen, wurde ein Ausbaupfad festgelegt. Das Zwischenziel von 89 GW zum Ende des Jahres 2024 wurde bereits im August des Jahres 2024 erreicht. In den Folgejahren bis 2030 bleibt allerdings ein weiterer Zubau von jährlich etwa 20 GW zur Zielerreichung notwendig. Auch wenn das Ausbautempo bei Windenergie zuletzt wieder zulegt hat, sind die aktuelle zugebauten Anlagenleistungen weit von den hohen Zubauraten früherer Jahre entfernt. Im Jahr 2023 wurden 3,3 GW neue Windenergie-Leistung zugebaut (2022: 2,4 GW; 2021: 1,6 GW). In den Jahren 2014 bis 2017 waren es im Schnitt 5,5 GW. Insgesamt lag die am Ende des Jahres 2023 installierte Anlagenleistung von Windenergieanlagen an Land und auf See bei 69,5 GW. Um die im EEG 2023 festgelegte Ausbauziele von 115 GW (an Land) und 30 GW (auf See) im Jahr 2030 zu erreichen, ist jeweils eine deutliche Beschleunigung des Ausbautempos notwendig. Durch die Abhängigkeit vom natürlichen Energiedargebot unterscheidet sich die Stromerzeugung der erneuerbaren Erzeugungsanlagen teilweise beträchtlich. So kann eine Windenergieanlage die vielfache Menge Strom erzeugen wie eine PV-Anlage gleicher Leistung. Ein einfacher Vergleich der installierten Leistungen lässt deshalb noch keinen Schluss über die jeweils erzeugten Strommengen zu. Neben Photovoltaik- und Windenergieanlagen mit stark witterungsabhängiger Stromerzeugung liefern Wasserkraftwerke langfristig konstant planbaren erneuerbaren Strom, sowie Biomassekraftwerke flexibel steuerbare Strommengen. Beide Energieträger haben in Deutschland aber nur ein begrenztes weiteres Ausbaupotential. Weitere Informationen und Daten zu erneuerbaren Energien finden Sie auf der Themenseite „Erneuerbare Energien in Zahlen“ . Wirkungsgrade fossiler Kraftwerke Im ⁠ Brutto-Wirkungsgrad ⁠ ist im Vergleich zum Netto-Wirkungsgrad der Eigenverbrauch der Kraftwerke enthalten. Insgesamt verbesserte sich der durchschnittliche Brutto-Wirkungsgrad des eingesetzten deutschen Kraftwerksparks seit 1990 um einige Prozentpunkte (siehe Abb. „Durchschnittlicher Brutto-Wirkungsgrad des fossilen Kraftwerksparks“). Diese Entwicklung spiegelt nicht zuletzt die kontinuierliche Modernisierung des Kraftwerksparks und die damit verbundene Außerbetriebnahme alter Kraftwerke wider. Der Brennstoffausnutzungsgrad von Kraftwerken kann durch eine gleichzeitige Nutzung von Strom und Wärme (Kraft-Wärme-Kopplung, KWK) gesteigert werden. Dies kann bei Großkraftwerken zur Wärmebereitstellung in Industrie und Fernwärme, aber auch bei dezentralen kleinen Kraftwerken wie Blockheizkraftwerken lokal erfolgen. Dabei müssen neue Kraftwerke allerdings auch den geänderten Flexibilitätsanforderungen an die Strombereitstellung genügen, dies kann beispielsweise über die Kombination mit einem thermischen Speicher erfolgen. Obwohl bei konventionellen Kraftwerken in den letzten Jahren technisch eine Steigerung der Wirkungsgrade erreicht werden konnte, werden die dadurch erzielbaren Brennstoffeinsparungen nicht ausreichen, um die erforderliche Treibhausgasreduktion im Kraftwerkssektor für die Einhaltung der Klimaschutzziele zu erreichen. Dafür ist ein weiterer Ausbau der erneuerbaren Stromerzeugung notwendig. Kohlendioxid-Emissionen Folgende Aussagen können zum Kohlendioxid-Ausstoß von Großkraftwerken für die Stromerzeugung getroffen werden: Braunkohlen : Die spezifischen Kohlendioxid-Emissionen von Braunkohlenkraftwerken variieren je nach Herkunft des Energieträgers aus einem bestimmten Braunkohlerevier und der Beschaffenheit der mitverbrannten Sekundärbrennstoffe (siehe „Emissionsfaktoren eingesetzter Energieträger zur Stromerzeugung“). Mit mindestens 103.153 kg Kilogramm Kohlendioxid pro Terajoule (kg CO 2 / TJ) war der Emissionsfaktor von Braunkohlen im Jahr 2023 höher als der der meisten anderen Energieträger. Steinkohlen : Der Kohlendioxid-Emissionsfaktor von Steinkohlenkraftwerken betrug im Jahr 2023 94.326 kg CO 2 / TJ. Erdgas : Erdgas-GuD-Anlagen haben mit derzeit 56.221 kg CO 2 / TJ den geringsten spezifischen Emissionsfaktor fossiler Kraftwerke (abgesehen von Kokerei-/Stadtgas): Bei der Verbrennung von Erdgas entsteht pro erzeugter Energieeinheit weniger Kohlendioxid als bei der Verbrennung von Kohle. Weitere Entwicklung des deutschen Kraftwerksparks Um die Klimaschutzziele zu erreichen, ist ein weiterer Ausbau der erneuerbaren Kraftwerkskapazitäten notwendig. Um den Herausforderungen der Energiewende begegnen zu können, wird es außerdem einen zunehmenden Fokus auf Flexibilisierungsmaßnahmen geben. Dabei handelt es sich um einen Ausbau von Speichern (etwa Wasserkraft, elektro-chemische Speicher, thermische Speicher) sowie um den Ausbau der Strominfrastruktur (Netzausbau, Außenhandelskapazitäten) und Anreize zur Flexibilisierung des Stromverbrauchs.

Stickstoffeintrag aus der Landwirtschaft und Stickstoffüberschuss

Stickstoffeintrag aus der Landwirtschaft und Stickstoffüberschuss Stickstoff ist ein essenzieller Nährstoff für alle Lebewesen. Im Übermaß in die Umwelt eingebrachter Stickstoff führt aber zu enormen Belastungen von Ökosystemen. Stickstoffüberschuss der Landwirtschaft Eine Maßzahl für die Stickstoffeinträge in Grundwasser, Oberflächengewässer, Böden und die Luft aus der Landwirtschaft ist der aus der landwirtschaftlichen Stickstoff-Gesamtbilanz ermittelte Stickstoffüberschuss (siehe Abb. „Saldo der landwirtschaftlichen Stickstoff-Gesamtbilanz in Bezug auf die landwirtschaftlich genutzte Fläche“). Die Stickstoff-Gesamtbilanz setzt sich zusammen aus den Komponenten Flächenbilanz (Bilanzierung der Pflanzen- bzw. Bodenproduktion), Stallbilanz (Bilanzierung der tierischen Erzeugung) und der Biogasbilanz (Bilanzierung der Erzeugung von Biogas in landwirtschaftlichen Biogasanlagen). Der Stickstoffüberschuss der Gesamtbilanz ergibt sich aus der Differenz von Stickstoffzufuhr in und Stickstoffabfuhr aus dem gesamten Sektor Landwirtschaft (siehe Schaubild „Schema der Stickstoff-Gesamtbilanz der Landwirtschaft“). Der ⁠ Indikator ⁠ wird vom Institut für Pflanzenbau und Bodenkunde des Julius Kühn-Instituts und dem Umweltbundesamt berechnet und jährlich vom ⁠ BMEL ⁠ veröffentlicht (siehe BMEL, Tabellen zur Landwirtschaft, MBT-0111-260-0000 ). Der Stickstoffüberschuss der Gesamtbilanz ist als mittlerer Überschuss aller landwirtschaftlicher Betriebe in Deutschland zu interpretieren. Regional können sich die Überschüsse jedoch sehr stark unterscheiden. Grund dafür sind vorrangig unterschiedliche Viehbesatzdichten und daraus resultierende Differenzen beim Anfall von Wirtschaftsdünger. Um durch ⁠ Witterung ⁠ und Düngerpreis verursachte jährliche Schwankungen auszugleichen wird ein gleitendes 5-Jahresmittel errechnet. ___ * jährlicher Überschuss bezogen auf das mittlere Jahr des 5-Jahres-Zeitraums (aus gerundeten Jahreswerten berechnet) ** 1990: Daten zum Teil unsicher, nur eingeschränkt vergleichbar mit Folgejahren. *** Ziel der Nachhaltigkeitsstrategie der Bundesregierung, bezogen auf das 5-Jahres-Mittel, d.h. auf den Zeitraum 2028 bis 2032 Bundesministerium für Ernährung und Landwirtschaft (BMEL) 2024, Statistischer Monatsbericht Kap. A Nährstoffbilanzen und Düngemittel, Nährstoffbilanz insgesamt von 1990 bis 2022 (MBT-0111260-0000) Die Ergebnisse der Bilanzierung zeigen einen abnehmenden Trend bei den Stickstoffüberschüssen über die erfasste Zeitreihe (siehe Abb. „Saldo der landwirtschaftlichen Stickstoff-Gesamtbilanz in Bezug auf die landwirtschaftlich genutzte Fläche“). Im Zeitraum 1992 bis 2020 ist der Stickstoffüberschuss im gleitenden 5-Jahresmittel von 117 Kilogramm Stickstoff pro Hektar landwirtschaftlich genutzter Fläche und Jahr (kg N/ha*a) auf 77 kg N/ha*a gesunken. Das entspricht einem jährlichen Rückgang von 1 % sowie einem Rückgang über die Zeit um 34 %. Die Reduktion des Stickstoffüberschusses zu Beginn der 1990er Jahre ist größtenteils auf den Abbau der Tierbestände in den neuen Bundesländern zurückzuführen. Der durchschnittliche Rückgang des Stickstoffüberschusses über die gesamte Zeit von 1992 bis 2020 beruht auf Effizienzgewinnen bei der Stickstoffnutzung (Effizienterer Einsatz von Stickstoff-Düngemitteln, Ertragssteigerungen in der Pflanzenproduktion und höhere Futterverwertung bei Nutztieren). In den Jahren seit 2015 ist der Überschuss besonders stark gesunken. Grund dafür sind neben einer veränderten und wirksameren Gesetzgebung, gesunkene Tierzahlen sowie Dürrejahre und höhere Mineraldüngerpreise und der damit einhergehende verminderte Einsatz von Mineraldüngern. Im Jahr 2016 wurde in der Deutschen Nachhaltigkeitsstrategie der Bundesregierung (BReg 2016) ein Zielwert von 70 kg N/ha*a für das gleitende 5-Jahresmittel von 2028-2032 verankert. Von 2016 bis 2020, also in 4 Jahren, wurde somit bereits etwa dreiviertel der angestrebten Reduktion erreicht. Bewertung der Entwicklung Wenn die Stickstoffüberschüsse weiterhin so schnell sinken wie in den letzten Jahren bzw. auf dem aktuellen Niveau bleiben wird das Ziel der Deutschen Nachhaltigkeitsstrategie voraussichtlich in den nächsten zwei bis drei Jahren erreicht werden. Für einen umfassenden Schutz von Umwelt und ⁠ Klima ⁠ ist dies aber noch nicht ausreichend. Die in 2016 in Kraft getretene EU-Richtlinie über nationale Emissionshöchstmengen für bestimmte Luftschadstoffe (⁠ NEC-Richtlinie ⁠) verpflichtet Deutschland bis 2030 dazu 29 % der Ammoniak-Emissionen im Vergleich zum Jahr 2005 zu reduzieren. Bis zum Jahr 2022 wurde hier nur eine Minderung von 18 % erreicht. Da der Sektor Landwirtschaft der größte Verursacher von Ammoniak-Emissionen ist, sind hier also noch weitere Maßnahmen für die Zielerreichung nötig. Aber auch für das Erreichen von weiteren Zielen, wie Nitrat im Grundwasser, Stickstoffeintrag über die Zuflüsse in Nord- und Ostsee und ⁠ Eutrophierung ⁠ der Ökosysteme wird voraussichtlich das Erreichen des 70 kg-Ziels nicht ausreichen, denn hier kommt es weniger auf den durchschnittlichen nationalen Stickstoffüberschuss, sondern eher auf die regionale Verteilung der Stickstoffüberschüsse an. Einen Überblick über die Verteilung der Überschüsse finden Sie hier . Stickstoffzufuhr und Stickstoffabfuhr in der Landwirtschaft Die Stickstoffzufuhr zur landwirtschaftlichen Gesamtbilanz berücksichtigt Mineraldünger, Wirtschaftsdüngerimporte, Kompost und Klärschlamm, atmosphärische Stickstoffdeposition, Stickstoffbindung von Leguminosen, Co-Substrate für die Bioenergieproduktion sowie Futtermittelimporte. Die Stickstoffabfuhr berücksichtigt pflanzliche und tierische Marktprodukte. Im Durchschnitt lag die Stickstoffzufuhr zwischen 1990 und 2022 bei 187 Kilogramm pro Hektar landwirtschaftlich genutzter Fläche und Jahr (kg N/ha*a), mit einem Maximum von 209 kg N/ha*a im Jahr 1990 und einem Minimum von 151 kg N/ha*a im Jahr 2022. Die Zufuhr hat sich bis 2017 kaum verändert. Lediglich in den letzten 5 Jahren gab es einen mittleren Rückgang von 8 kg N/ha*a. Die Stickstoffabfuhr betrug im gesamten Betrachtungszeitraum durchschnittlich 87 kg N/ha*a, mit einem Maximum von 103 kg N/ha*a im Jahr 2014 und einem Minimum von 67 kg N/ha*a im Jahr 1990. Im gleitenden 5-Jahresmittel stieg die Abfuhr von 73 kg N/ha*a im Jahr 1992 auf 88 kg N/ha*a im Jahr 2020 an. Dies entspricht einem Anstieg des über tierische und pflanzliche Produkte abgefahrenen Stickstoffs von etwa 21 %. 2022 stammten 44 % der Stickstoffzufuhr der Landwirtschaft aus Mineraldüngern, 25 % aus inländischem Tierfutter sowie 14 % aus Futtermittelimporten. Wirtschaftsdünger und betriebseigene Futtermittel werden in der Flächenbilanz, nicht aber in der Gesamtbilanz berücksichtigt. 3 % des Stickstoffs wurden über den Luftpfad eingetragen (⁠ Deposition ⁠ aus Verkehrsabgasen und Verbrennungsanlagen) und 2 % stammte aus Kofermenten für die Biogasproduktion. 10 % sind der biologischen Stickstofffixierung von Leguminosen (zum Beispiel Klee oder Erbsen) anzurechnen, die Luftstickstoff in erheblichem Maße binden. Etwa 1 % der Stickstoffzufuhr stammte aus Saat- und Pflanzgut. Die Stickstoffabfuhr fand zu 32 % über Fleisch, Schlachtabfälle und sonstige Tierprodukte und zu 68 % über pflanzliche Marktprodukte statt. Umweltwirkungen der Stickstoffüberschüsse Überschüssiger Stickstoff aus landwirtschaftlichen Quellen gelangt als Nitrat in Grund- und Oberflächengewässer und als Ammoniak und Lachgas in die Luft. Lachgas trägt als hochwirksames ⁠ Treibhausgas ⁠ zur Klimaerwärmung bei. Der Eintrag von Nitrat und Ammoniak in Land- oder Wasser-Ökosysteme kann weitreichende Auswirkungen auf den Naturhaushalt haben. Diese sind unter anderem eine Nitratbelastung des Grundwassers, eine ⁠ Versauerung ⁠ der Böden und Gewässer und somit eine Beeinträchtigung der biologischen Vielfalt sowie eine Nährstoffanreicherung (⁠ Eutrophierung ⁠) in Wäldern, Mooren, Heiden, Oberflächengewässern und Meeren. Im Mittel der Jahre 2012 bis 2016 wurden rund 480 Kilotonnen Stickstoff pro Jahr in die deutschen Oberflächengewässer eingetragen (siehe „Einträge von Nähr- und Schadstoffen in die Oberflächengewässer“ ). Durchschnittlich stammten in diesem Zeitraum 74 % dieser Einträge aus landwirtschaftlich genutzten Flächen. Die Düngeverordnung Die Düngeverordnung definiert „die gute fachliche Praxis der Düngung“ und gibt vor, wie die mit der Düngung verbundenen Risiken zu minimieren sind. Sie ist wesentlicher Bestandteil des nationalen Aktionsprogramms zur Umsetzung der EU-Nitratrichtlinie . Nach der Düngeverordnung dürfen Landwirtinnen und Landwirte Pflanzen nur entsprechend ihres Nährstoffbedarfs düngen. Die Düngeverordnung wurde 2017 und 2020 novelliert um Strafzahlungen als Folge des Urteils des EuGHs gegen Deutschland wegen Verletzung der EU-Nitratrichtlinie zu verhindern. Dieses Ziel wurde vorerst erreicht. Die kurzfristige Wirkung der Maßnahmen der novellierten Düngeverordnung werden aktuell im Rahmen eines Effizienzmonitorings geprüft, um die mit Nitrat belasteten und von ⁠ Eutrophierung ⁠ betroffenen Gebiete zu identifizieren und eine schnelle Nachsteuerung von Maßnahmen in diesen Gebieten zu erreichen. Informationen zu den Novellierungen finden Sie hier . Weitere Maßnahmen zur Verringerung der Überschüsse Um das Ziel der Bundesregierung zum Stickstoffüberschuss und der damit untrennbar verbundenen Umweltziele zu Nitrat im Grundwasser, ⁠ Eutrophierung ⁠ von Ökosystemen sowie Oberflächengewässern und zu Emissionen von Luftschadstoffen zu erreichen, muss die Gesamtstickstoffzufuhr in der Landwirtschaft verringert und der eingesetzte Stickstoff effizienter genutzt werden. Die Voraussetzung dafür ist das Schließen des Stickstoffkreislaufs. Dafür müssen Maßnahmen umgesetzt werden, die dazu führen, dass die Anwendung von Mineraldünger reduziert wird, importierte Futtermittel durch heimische ersetzt werden und die Anzahl von Nutztieren reduziert wird. Zudem muss die Effizienz der Stickstoffnutzung durch weitere Optimierungen des betrieblichen Nährstoffmanagements, wie standortangepasste Bewirtschaftungsmaßnahmen, geeignete Nutzpflanzensorten und passende, vielfältige Fruchtfolgen verbessert werden. Dabei ist am Ende nicht nur die Verringerung der durchschnittlichen Überschüsse entscheidend, sondern auch die Verteilung der Nährstoffe in die Fläche, denn nur so können die genannten Umweltziele erreicht werden. Um diese Verteilung zu erreichen müssen große Tierbestände reduziert und die Tiere gleichmäßiger auf die gesamte landwirtschaftliche Fläche verteilt werden.

Radon im Boden

Radon im Boden Wie sich Radon im Erdreich ausbreitet, hängt davon ab, wie durchlässig der Boden ist. Bis zu einer Tiefe von zirka einem Meter beeinflusst auch die Witterung die Ausbreitung von Radon . Radon kommt regional in unterschiedlicher Konzentration im Boden vor. Beim radioaktiven Zerfall von Uran -238 in der Erde entsteht Radium, das wiederum zu Radon zerfällt. Ein Teil des Radons wird in die Poren der Böden und Gesteine freigesetzt. Je uranhaltiger der Boden ist, desto mehr Radon kommt darin vor. Radon im Boden Gemeinsam mit anderen Bodengasen gelangt Radon durch Strömungen und Diffusion aus dem Boden an die Erdoberfläche und wird in die Atmosphäre freigesetzt. Witterung beeinflusst Radon-Konzentration im Boden Bis zu einer Tiefe von weniger als einem Meter schwankt die Radon -Konzentration im Boden abhängig von den Witterungsverhältnissen erheblich: So sorgen Regen, Schnee oder Frost dafür, dass die Poren der Böden und Gesteine sich verstärkt mit Wasser füllen bzw. einfrieren. Dadurch kann radonhaltige Luft schwerer aus dem Boden entweichen und bleibt dort; so dass die Radon -Konzentration in den obersten Schichten des Bodens steigt. Auch bei steigendem Luftdruck erhöht sich die Radon -Konzentration im Boden: Der atmosphärische Druck drückt zusätzlich Luft aus der Atmosphäre in die Poren von Böden und Gesteinen und sorgt so dafür, dass die radonhaltige Luft den Boden schlechter verlassen kann und dort zurückbleibt. Bei fallendem Luftdruck wird verstärkt Radon freigesetzt. Erst in tieferen Bodenschichten ist die Radon -Konzentration stabil. Je gasdurchlässiger der Boden ist, desto größer ist der Einfluss von Witterungsverhältnissen – und desto tiefer ist erst eine stabile Radon -Konzentration anzutreffen. Radium, bei dessen Zerfall im Erdboden Radon entsteht, hat eine lange Halbwertzeit von etwa 1.600 Jahren. Durch diese lange Halbwertzeit ist die Radon -Konzentration in der Bodenluft auch längerfristig stabil. Ist die Radon -Konzentration an einem Standort bekannt, sind erneute Messungen deshalb nur sinnvoll, wenn größere Eingriffe im Untergrund vorgenommen wurden. Bodenbeschaffenheit beeinflusst Ausbreitung von Radon Der Transport von Radon aus der Tiefe an die Erdoberfläche wird von der Gasdurchlässigkeit der Böden sowie lokal vorkommenden Strömungswegen bestimmt. Je mehr Spalten und Risse der Untergrund aufweist, desto leichter breitet Radon sich aus. An manchen Stellen kann die Radon -Konzentration in der Bodenluft deutlich über den für die Region typischen Werten liegen – zum Beispiel an Klüften: Klüfte sind geologische Verwerfungen im Boden, die Wegsamkeiten für Wasser bieten. Im Wasser gelöstes Radium, das beim Zerfall von Uran entsteht, kann sich an den Rändern von Klüften ablagern, wo es bei seinem radioaktiven Zerfall Radon freisetzt. an Bergsenkungen: An Bergsenkungen ist das Gestein in der Regel aufgelockert und damit durchlässiger für radonhaltige Bodenluft. an der Grenze zweier Gesteinsarten: Grenzen zwei verschiedene Gesteinsarten aneinander, kann sich dort mehr Uran als an anderen Stellen abgesetzt haben. Bei seinem Zerfall entsteht Radon . Wie die Radonsituation beispielsweise an einem Bauplatz ist, können Bauherren oder Bauplaner bei Bedarf über das Baugrundgutachten ermitteln lassen. Grundwasser transportiert Radon Radon kann sich auch im Grundwasser lösen und mit diesem im geologischen Untergrund transportiert werden. Wo kommt Radon in Deutschland im Boden vor? In Deutschland sind die Konzentrationen von Radon im Boden unterschiedlich, da Uran und Radium-226, bei dessen Zerfall Radon entsteht, in Deutschland regional in unterschiedlichem Maße vorkommen. Das gilt auch für die Durchlässigkeit des Bodens. Das Bundesamt für Strahlenschutz ( BfS ) hat Karten zur regionalen Verteilung von Radon im Boden erstellt. Aussagen zu Einzelgebäuden oder Baugrundstücken sind aus den Prognosekarten niemals ableitbar. Medien zum Thema Broschüren und Video downloaden : zum Download: Radon - ein kaum wahrgenommenes Risiko (PDF, Datei ist barrierefrei⁄barrierearm) … PDF 3 MB Broschüre Radon - ein kaum wahrgenommenes Risiko downloaden : zum Download: Radon in Innenräumen (PDF, Datei ist barrierefrei⁄barrierearm) … PDF 853 KB Broschüre Radon in Innenräumen Video Radon Zu viel Radon im Haus kann Lungenkrebs verursachen. Aber woher weiß ich, ob ich betroffen bin? Wie kann ich es messen? Was kann ich gegen zu viel Radon tun? mehr anzeigen Stand: 04.12.2024 Ionisierende Strahlung Häufige Fragen Was ist Radon? Wie breitet sich Radon aus und wie gelangt es in Häuser? Welche Radon-Konzentrationen treten in Häusern auf? Alle Fragen

Lungenkrebs: Über 6 Prozent der Todesfälle könnten von Radon verursacht sein

Lungenkrebs: Über 6 Prozent der Todesfälle könnten von Radon verursacht sein Studie unterstreicht Bedeutung von Radon als Gesundheitsrisiko Ausgabejahr 2024 Datum 14.11.2024 Radon im menschlichen Körper Das radioaktive Gas Radon ist nach dem Rauchen einer der häufigsten Auslöser von Lungenkrebs . Was das konkret bedeutet, zeigt eine aktuelle Untersuchung von Wissenschaftler*innen des Bundesamtes für Strahlenschutz ( BfS ): Demnach gehen rechnerisch etwa 6,3 Prozent aller Lungenkrebstodesfälle in Deutschland auf Radon in Wohnungen zurück. Das sind rund 2.800 Fälle pro Jahr. Die Wissenschaftler*innen veröffentlichten ihre Ergebnisse im renommierten Fachmagazin "Radiation and Environmental Biophysics". Radon entsteht überall im Erdboden. Bereits geringste Undichtigkeiten eines Gebäudes im Bodenbereich reichen aus, damit das radioaktive Gas eindringen kann. Sammelt sich auf diesem Wege Radon in Wohnräumen an, atmen ihre Bewohner*innen das Gas über längere Zeiträume regelmäßig ein und ihr Lungenkrebsrisiko steigt. Je höher die Radon -Konzentration in der Raumluft ist, desto höher ist auch das Risiko . Erhöhte Radon -Konzentrationen treten vorwiegend in Keller- und Erdgeschossen auf. Wirksamer Schutz gegen Radon ist möglich Dr. Inge Paulini "Die Zahlen belegen eindrücklich, dass Radon ein ernstzunehmendes Gesundheitsrisiko ist" , sagt BfS -Präsidentin Inge Paulini. "Das Bundesamt für Strahlenschutz setzt sich seit langem für den Schutz vor Radon ein und informiert darüber, was jede und jeder Einzelne tun kann, um sich selbst und die Familie zu schützen. Der erste Schritt ist eine Radon-Messung in den eigenen vier Wänden. Sie ist einfach und kostengünstig zu haben. Sind die Radon-Werte zu hoch, ist wirksamer Schutz möglich." Studie zeigt regionale Unterschiede Geschätzte durchschnittliche Radon-Aktivitätskonzentrationen (arithmetischer Mittelwert) der Raumluft, der Einwohner*innen einer Gemeinde in ihren Wohnungen ausgesetzt sind. Wie viel Radon die Einwohner*innen einer Gemeinde in ihren Wohnungen durchschnittlich ausgesetzt sind, variiert von Region zu Region deutlich. Wesentliche Ursachen sind die geologische Beschaffenheit des Bodens und die Siedlungsstruktur. Erhöhte Radon -Konzentrationen in Wohnungen treten in Deutschland insbesondere in Mittelgebirgsregionen und im Alpenvorland auf. Die Auswertung der BfS -Wissenschaftler*innen zeigt entsprechende Unterschiede zwischen den Bundesländern: In Ländern mit höheren durchschnittlichen Radon -Konzentrationen in Wohnungen ist der Anteil der Lungenkrebstodesfälle, der Radon -bedingt ist, höher als in Ländern mit niedrigeren Durchschnittswerten. Spitzenreiter sind Thüringen (10,0 % ) und Sachsen (9,5 % ). Am niedrigsten liegt die Quote in den Stadtstaaten Berlin (3,2 % ), Hamburg und Bremen (jeweils 3,3 % ). Radon -Werte in der Breite senken Auch wenn die Auswertung nach Bundesländern regionale Schwerpunkte zeigt, können überall in Deutschland erhöhte Radon -Werte in Wohnungen auftreten. Paulini empfiehlt: "Wer in der eigenen Wohnung erhöhte Radon-Werte feststellt, sollte aktiv werden. Die Studie zeigt, wie wichtig das ist. Es gibt wirksame und zumeist auch kostengünstige Maßnahmen , um die Radon-Konzentration zu senken." Über die Studie Wieviel Radon in Wohnungen in Deutschland durchschnittlich vorkommt, ließ das BfS erforschen. Mit ihrer Untersuchung bauten die BfS -Wissenschaftler*innen auf Forschungsprojekten ihrer Kolleg*innen auf: In den Jahren 2019 bis 2023 hatte das BfS umfangreiche Arbeiten zur Erhebung der Radon -Situation in Wohnungen in Deutschland teils durchführen lassen, teils selbst durchgeführt. Paulini lobt dieses gemeinsame Vorgehen als hervorragendes Beispiel für die interdisziplinäre Zusammenarbeit und die langfristige Forschungsplanung im Bundesamt für Strahlenschutz . Neben den Daten zur regionalen Verteilung der Radon -Konzentrationen in Wohnungen nutzten die Forscher*innen unter anderem aktuelle Daten zur Lungenkrebssterblichkeit und zum Rauchverhalten der Bevölkerung sowie Risikomodelle zur Beschreibung des Zusammenhangs zwischen Radon und Lungenkrebs und zwischen Rauchen und Lungenkrebs. Um die Auswirkungen jährlicher Schwankungen der Todesfallzahlen auszugleichen, wurde die Gesamtzahl der Lungenkrebstodesfälle über die Jahre 2018 bis 2022 gemittelt. Methodisch lehnten sich die Wissenschaftler*innen des BfS eng an eine Veröffentlichung aus dem Jahr 2008 an. Ihr zufolge gingen Mitte der 2000er Jahre durchschnittlich 5 Prozent aller Lungenkrebstodesfälle – rund 1.900 Fälle pro Jahr – auf Radon zurück. Die Neuberechnung der BfS -Wissenschaftler*innen nutzte eine aktuelle und verbesserte Datenbasis und bildet damit die heutige Situation ab. Die Studie "Lung cancer mortality attributable to residential radon in Germany" ist als Open-Access-Publikation hier abrufbar. Schutz gegen Radon Als Erstmaßnahme gegen Radon hilft verstärktes Lüften Quelle: britta60/Stock.adobe.com Schutzmaßnahmen gegen Radon zielen darauf ab, dass das radioaktive Gas gar nicht erst in ein Gebäude eintritt oder es schnell wieder verlässt. Als Sofortmaßnahme bei erhöhten Radon -Werten hilft daher regelmäßiges Lüften. Wenn sich dadurch die Radon -Konzentration ausreichend senken lässt, ist als dauerhafte Lösung eine technische Lüftungsanlage sinnvoll. Um den Eintritt von Radon in ein Gebäude zu verhindern, können Eintrittsstellen wie Risse oder Rohrdurchführungen im erdberührenden Bereich eines Gebäudes abgedichtet werden. In schwerwiegenderen Fällen lässt sich die Radon -haltige Luft unterhalb des Gebäudes absaugen. Radon -Fachpersonen können bei der Planung und Umsetzung von Schutzmaßnahmen unterstützen. Stand: 14.11.2024

Emissionen aus Betrieben der Metallindustrie

Emissionen aus Betrieben der Metallindustrie Deutschland verpflichtete sich mit der Zeichnung des PRTR-Protokolls 2003 dazu, ein Register über Schadstofffreisetzungen und -transporte aufzubauen. Hierzu berichten viele Industriebetriebe jährlich dem UBA über Schadstoffemissionen und die Verbringung von Abwässern und Abfällen. Das UBA bereitet diese Daten dann in einer Datenbank für Bürgerinnen und Bürger auf. Das Schadstofffreisetzungs- und -verbringungsregister (PRTR) in Deutschland Das Umweltbundesamt (⁠ UBA ⁠) sammelt die von Industriebetrieben gemeldeten Daten in einer Datenbank: dem Schadstofffreisetzungs- und -verbringungsregister ⁠ PRTR ⁠ ( P ollutant R elease and T ransfer R egister). Das UBA leitet die Daten dann an die Europäische Kommission weiter und macht sie im Internet unter der Adresse www.thru.de der Öffentlichkeit frei zugänglich. Es gibt drei Rechtsgrundlagen für die PRTR-Berichterstattung: das PRTR-Protokoll der Wirtschaftskommission der Vereinten Nationen für Europa (⁠ UNECE ⁠) vom 21. Mai 2003, die Europäische Verordnung 166/2006/EG vom 18. Januar 2006 und das deutsche PRTR-Gesetz vom 6. Juni 2007, das durch Artikel 1 des Gesetzes vom 9. Dezember 2020 geändert worden ist. Erfasst werden im PRTR industrielle Tätigkeiten in insgesamt neun Sektoren. Einer davon ist der Metallsektor. Die Aussagekraft des PRTR ist jedoch begrenzt. Zwei Beispiele: Unternehmen berichten nicht Schadstoffemissionen einer einzelnen Industrieanlage, sondern über die Gesamtheit aller Anlagen einer „Betriebseinrichtung“. Unter einer Betriebseinrichtung versteht man eine oder mehrere Anlagen am gleichen Standort, die von einer natürlichen oder juristischen Person betrieben werden. Zum Beispiel kann eine Betriebseinrichtung in der Stahlindustrie („integriertes Hüttenwerk“) eine Vielzahl unterschiedlichster Anlagen beinhalten (Kokerei, Sinteranlage, Hochofen, Oxygenstahlwerk, Walzwerk, Gichtgaskraftwerk), deren Emissionen dann der sogenannten „Haupttätigkeit“ der Betriebseinrichtung zugerechnet werden. Das PRTR gibt Auskunft über die Emissionsmengen der einzelnen Betriebsstandorte. Es macht aber keine Angaben zu den Kapazitäten, zur Effizienz oder zu Umweltstandards von Betrieben. Umweltbelastende Emissionen aus der Metallindustrie Industrieanlagen zur Herstellung und Verarbeitung von Metallen sind bedeutende Verursacher von umweltbelastenden Emissionen mit negativen Umweltauswirkungen entlang der Wertschöpfungskette. Zur Metallindustrie werden die Bereiche Eisen- und Stahlerzeugung, die Gewinnung von Nichteisenrohmetallen, die Gießerei-Industrie sowie die metallverarbeitende Industrie gezählt. Die deutsche Metallindustrie nimmt innerhalb der Europäischen Union eine bedeutende Rolle ein, da Deutschland hinsichtlich der Produktion von Stahl und Nichteisenmetallen führend ist. Industriebetriebe müssen jährlich dem Umweltbundesamt über ihre Emissionen in die Luft, in die Gewässer und in den Boden berichten, wie auch darüber, wie viele Schadstoffe sie in externe Abwasserbehandlungsanlagen weiterleiten und wie viele gefährliche Abfälle sie entsorgen. Die Betriebe müssen nicht über jeden Ausstoß und jede Entsorgung berichten, sondern nur dann, wenn der Schadstoffausstoß einen bestimmten Schwellenwert (vgl. Anhang II der europäischen Schadstofffreisetzungs- und -verbringungsregister-Verordnung (E-PRTR-VO) ) oder der Abfall eine gewisse Mengenschwelle überschreitet. In diesem Artikel werden Industriebetriebe aus der Metallbranche, die eine Tätigkeit nach der europäischen PRTR-Verordnung ausüben und Emissionen in die Luft und in Gewässer freisetzen, die den gesetzlich vorgegebenen Schwellenwert überschreiten, betrachtet. Für das PRTR-Berichtsjahr 2022 haben insgesamt 93 berichtspflichtige PRTR-Betriebe der Metallindustrie Freisetzungen in Luft und in Gewässer berichtet. Die Karte „Betriebe der Metallindustrie mit Luft- und Wasseremissionen im deutschen PRTR 2022“ zeigt die Verteilung aller Metallbetriebe mit Luft- und Wasseremissionen im deutschen PRTR. Im Wesentlichen wurde die Freisetzung von Schadstoffen in die Luft und in Gewässer aus folgenden Tätigkeitsbereichen der Metallbranchen berichtet: 30 Eisenmetallgießerei en mit einer Produktionskapazität > 20 Tonnen pro Tag (t/d) (PRTR-Tätigkeit Nr.2.d der E-PRTR-VO) 23 Industriebetrieben der Roheisen- und Stahlerzeugung mit einer Kapazität > 2,5 Tonnen pro Stunde (t/Std.) (PRTR-Tätigkeit Nr.2.b der E-PRTR-VO) 13 Industriebetrieben zur Gewinnung von Nichteisenrohmetallen aus Erzen (PRTR-Tätigkeit 2.e.i der E-PRTR-VO) Daten zu Freisetzungen von Schadstoffen in die Luft und in die Gewässer aus Röst- oder Sinteranlagen für Metallerz inklusive sulfidische Erze (PRTR-Tätigkeit 2.a) werden im PRTR nicht gesondert ausgewiesen, weil diese Anlagen Teil einer Betriebseinrichtung mit einer anderen „Haupttätigkeit“ (nämlich der Roheisen- und Stahlerzeugung mit einer Kapazität > 2,5 t/Std.) sind. Betriebe zum „Aufbringen von schmelzflüssigen, metallischen Schutzschichten (PRTR-Tätigkeit 2.c.iii)“ werden zwar unter dieser Haupttätigkeit im PRTR geführt, aber es sind dem PRTR keine Daten zu Freisetzungen von Schadstoffen in die Luft und in die Gewässer aus diesen Anlagen zu entnehmen, weil die ermittelten Schadstofffrachten die in der E-PRTR-VO festgelegten Schwellenwerte nicht überschreiten. Emissionen aus Eisenmetallgießereien Eisenmetallgießereien mit einer Produktionskapazität von mehr als 20 Tonnen pro Tag (t/d) stoßen vorwiegend die Schadstoffe Kohlendioxid, Kohlenmonoxid, flüchtige organische Verbindungen ohne Methan, Benzol und Naphthalin in die Luft aus (siehe Tab. „TOP 9 Emissionen von Luftschadstoffen aus Eisenmetallgießereien 2022“). Im Jahr 2022 wurden zum Beispiel 175.000 t Kohlendioxid von berichtspflichtigen ⁠ PRTR ⁠-Betrieben der Eisenmetallgießerei in die Luft abgegeben. Dies entspricht jedoch nur einem Anteil von 0,05 % an der Gesamtmenge der im PRTR berichteten Kohlendioxid-Emissionen in die Luft. Aus Eisenmetallgießereien werden keine Schadstofffreisetzungen in Gewässer an das PRTR berichtet. Eine Liste von Eisenmetallgießereien im PRTR, die Emissionen der oben angeführten Schadstoffe berichteten, erhalten Sie über das Suchformular auf www.thru.de . Die Karte „Eisenmetallgießereien mit Luftemissionen im deutschen PRTR 2022“ zeigt die regionale Verteilung der Eisenmetallgießereien mit Luftemissionen im deutschen PRTR. Dargestellt sind alle 31 Betriebe, die im Jahr 2022 Schadstofffreisetzungen in die Luft berichteten. Die meisten Eisenmetallgießereien liegen in dem Bundesland Bayern (BY). Tab: TOP 9 Emissionen von Luftschadstoffen aus Eisenmetallgießereien 2022 Quelle: Thru.de Tabelle als PDF Tabelle als Excel Karte: Betriebe der Eisenmetallgießerei mit Luftemissionen im deutschen PRTR 2022 Quelle: Schadstoffemissionsregister PRTR Emissionen aus PRTR-Betrieben der Roheisen- und Stahlerzeugung Anlagen zur Herstellung von Roheisen oder Stahl einschließlich Stranggießen mit einer Kapazität von mehr als 2,5 Tonnen pro Stunde (t/h) stoßen u.a. erhebliche Mengen an Kohlendioxid, Kohlenmonoxid, Stickoxiden, Feinstaub und Schwefeloxiden in die Luft aus (siehe Tab. „TOP 10 Emissionen von Luftschadstoffen aus ⁠ PRTR ⁠-Betrieben der Roheisen- und Stahlerzeugung 2022“). Im Jahr 2022 wurden z.B. 23,5 Millionen Tonnen (Mio. t) Kohlendioxid von berichtspflichtigen PRTR-Betrieben der Roheisen- und Stahlerzeugung in die Luft abgegeben. Dies entspricht einem Anteil von 6,7 % an der Gesamtmenge der im PRTR berichteten Kohlendioxid-Emissionen in die Luft. Darüber hinaus werden Chloride, organischer Kohlenstoff (TOC), und Fluoride vor allem in Gewässer freigesetzt (siehe Tab. „TOP 10 Emissionen von Wasserschadstoffen aus PRTR-Betrieben der Roheisen- und Stahlerzeugung im 2022“). Im Jahr 2022 wurden z.B. Einleitungen von 3.510 t Chloriden von berichtspflichtigen PRTR-Betrieben der Roheisen- und Stahlerzeugung berichtet; gemessen an der Gesamtmenge der im PRTR berichteten Freisetzungen von Chloriden in die Gewässer, ist dies jedoch nur ein Anteil von etwa 0,08 %. Eine Liste von Betrieben der Roheisen- und Stahlerzeugung im PRTR, die Emissionen der oben angeführten Schadstoffe berichteten, erhalten Sie über das Suchformular auf www.thru.de . Die Karte „Betriebe der Roheisen- und Stahlerzeugung mit Luft- und Wasseremissionen im deutschen PRTR 2022“ zeigt die regionale Verteilung der Roheisen- und Stahlerzeugungs-Betriebe mit Luft- und Wasseremissionen im deutschen PRTR 2022. Dargestellt sind alle 23 Betriebe, die im Jahr 2022 Schadstofffreisetzungen in die Luft und in die Gewässer berichteten. Die meisten Eisen- und Stahlerzeugungs-Betriebe liegen im Bundesland Nordrhein-Westfalen (NW). Tab: TOP 10 Emissionen von Luftschadstoffen aus der Roheisen- und Stahlerzeugung 2022 Quelle: Thru.de Tabelle als PDF Tabelle als Excel Tab: TOP 10 Emissionen von Wasserschadstoffen aus der Roheisen- und Stahlerzeugung 2022 Quelle: Thru.de Tabelle als PDF Tabelle als Excel Karte: Betriebe der Roheisen- und Stahlerzeugung mit Luft- und Wasseremissionen im deutschen PRTR... Quelle: Schadstoffemissionsregister PRTR Emissionen aus der Gewinnung von Nichteisenrohmetallen Anlagen zur Gewinnung von Nichteisenrohmetallen aus Erzen, Konzentraten oder sekundären Rohstoffen durch metallurgische, chemische oder elektrolytische Verfahren stoßen vorwiegend die Schadstoffe Kohlendioxid, Kohlenmonoxid, Schwefeloxide, Stickoxide und anorganische Fluorverbindungen in die Luft aus (siehe Tab. „TOP 10 Emissionen von Luftschadstoffen aus der Nichteisenrohmetall-Industrie 2022“). Im Jahr 2022 wurden z.B. 1,03 Millionen Tonnen (Mio. t) Kohlendioxid von berichtspflichtigen Betrieben der Nichteisenmetall-Industrie in die Luft abgegeben. Dies entspricht einem Anteil von 0,3 % an der Gesamtmenge der im ⁠ PRTR ⁠ berichteten Kohlendioxid-Emissionen in die Luft. Außerdem werden von der Nichteisenmetall-Industrie Freisetzungen von sieben Wasserschadstoffen berichtet (siehe Tab. „TOP 7 Emissionen von Wasserschadstoffen aus der Nichteisenrohmetall-Industrie 2022“). Im Jahr 2022 wurden z.B. 120.380 Kilogramm Fluoride von berichtspflichtigen PRTR-Betrieben der Nichteisenmetall-Industrie in Gewässer abgegeben; gemessen an der Gesamtmenge der im PRTR berichteten Freisetzungen von Fluoriden in die Gewässer, machte der Anteil 10 % aus. Eine Liste von Betrieben der Nichteisenmetall-Industrie im PRTR, die Freisetzungen der oben angeführten Schadstoffe berichteten, erhalten Sie über das Suchformular auf www.thru.de . Die Karte „Betriebe der Nichteisenrohmetall-Industrie mit Luft- und Wasseremissionen im deutschen PRTR 2022“ zeigt die regionale Verteilung der Nichteisenmetall-Industrie mit Luft- und Wasseremissionen im deutschen PRTR. Dargestellt sind alle 13 Betriebe, die im Jahr 2022 Schadstofffreisetzungen in die Luft und in die Gewässer berichteten. Die meisten dieser Betriebe liegen im Bundesland Nordrhein-Westfalen (NW). Tab: TOP 10 Emissionen von Luftschadstoffen aus der Nichteisenrohmetall-Industrie 2022 Quelle: Thru.de Tabelle als PDF Tabelle als Excel Tab: TOP 6 Emissionen von Wasserschadstoffen aus der Nichteisenrohmetall-Industrie 2022 Quelle: Thru.de Tabelle als PDF Tabelle als Excel Karte: Betriebe der Nichteisenrohmetall-Industrie mit Luft- und Wasseremissionen im deutschen PRTR.. Quelle: Schadstoffemissionsregister PRTR

Radon in der Boden-Luft in Deutschland

Radon in der Boden-Luft in Deutschland Radon kommt in Deutschland im Boden regional in unterschiedlichen Konzentrationen vor. Ursache ist, dass Uran und Radium, bei deren Zerfall Radon entsteht, in Deutschland regional in unterschiedlichem Maße vorkommen und der Boden regional unterschiedlich durchlässig für Radon ist. Das BfS hat Karten zur regionalen Verteilung von Radon im Boden erstellt. Aussagen zu Einzelgebäuden sind aus den Prognosekarten niemals ableitbar, sondern können nur durch Messungen im jeweiligen Gebäude getroffen werden. Zerfällt das in allen Böden und Gesteinen in unterschiedlichem Maße vorhandene Uran und Radium, entsteht Radon , das sich im Erdboden ausbreitet und schließlich an die Erdoberfläche gelangt. Durch Undichtigkeiten eines Gebäudes kann Radon in Innenräume von Häusern gelangen, sich dort anreichern und Lungenkrebs verursachen . Messwerte und Prognosen Wie gut sich Radon im Boden ausbreiten kann, hängt von dessen Gasdurchlässigkeit ab. Auf der Basis von Messwerten der Radon -Konzentration in der Luft im Boden (Bodenluft), der Gasdurchlässigkeit des Bodens und mittels geologischer Karten hat das Bundesamt für Strahlenschutz ( BfS ) Prognosen zur regionalen Verteilung von Radon in der Bodenluft erstellt. Die Karten " Radon -Konzentration im Boden" und "Radonpotenzial" zeigen in einem groben Raster, wieviel Radon im Boden vorkommt bzw. in welchem Maße Radon aus dem Boden freigesetzt werden kann. Karte "Radon-Konzentration im Boden" Karte "Radon-Potenzial" Karte "Radon-Konzentration im Boden" Die Karte " Radon -Konzentration im Boden" zeigt in einem Raster von 1 x 1 Kilometer, wieviel Radon im Boden vorkommt. Dabei stellt sie das neunzigste Perzentil der zu erwartenden Radon -Konzentration in der Bodenluft dar. Das bedeutet, dass der tatsächlich im Boden vorhandene Radon -Wert in 90 Prozent der Fälle niedriger oder identisch mit dem in der Karte angegebenen Wert ist. Für die restlichen zehn Prozent der Fälle kann nicht ausgeschlossen werden, dass aufgrund kleinräumiger geologischer Besonderheiten lokal höhere Radon -Werte als in der Karte angegeben im Boden gemessen werden können. Damit gibt die Karte eine Orientierung darüber, wie Radon in der Bodenluft einen Meter unter der Erdoberfläche regional verteilt ist. Schätzung der Radon-Aktivitätskonzentration in der Bodenluft für ein Raster von 1x1 Kilometer | Zum Vergrößern der Karte auf die Lupe klicken - zoombare Darstellung in der Fachanwendung BfS-Geoportal: www.bfs.de/geoportal-radon Prognose anhand von Messdaten und relevanter Naturraumeigenschaften Datenbasis für die Karte sind Messungen an insgesamt 6.293 Messpunkten in Deutschland, die zwischen 1992 und 2020 stattfanden. Die Daten stammen aus Messprogrammen des BfS und der Bundesländer. Die Prognosen erfolgten mit Hilfe maschinellen Lernens ("machine learning"), einem Teilgebiet der künstlichen Intelligenz (KI), in dem Algorithmen Muster und Gesetzmäßigkeiten in Datensätzen erkennen und darauf aufbauend Vorhersagen gemacht werden können. Für die Prognose der Radon -Konzentration im Boden wurden die Messdaten der rund 6.000 Messpunkte mit lokalen Naturraummerkmalen wie Geologie, Bodeneigenschaften und Klima verknüpft. Die Karte zeigt die so für ein Raster von 1 x 1 Kilometer für ganz Deutschland ermittelten Prognosen der Radon -Konzentration im Boden. Fachanwendung BfS -Geoportal zeigt Radon-Konzentration im Boden Das BfS-Geoportal Die für ein Raster von 1 x 1 Kilometer ermittelten Schätzungen der Radon -Konzentration in der Bodenluft können auch in der Fachanwendung BfS -Geoportal abgerufen werden. Wenn Sie die komplexe Kartenanwendung öffnen, schließen Sie bitte zunächst das Begrüßungsfenster. Mithilfe der Lupen-Symbole rechts oben können Sie in die Karte hinein- und hinauszoomen. Zur Bedienung des Geoportals steht eine Hilfe bereit, die Sie durch einen Klick auf das Fragezeichen oben rechts in der Legende öffnen können. Karte "Radon-Potenzial" Wie stark Radon aus dem Boden entweichen und potenziell in Innenräume von Häusern gelangen kann, wird als " Radon -Potenzial" bezeichnet. Seine Höhe hängt davon ab, wie viel Radon im Boden konzentriert ist und wie (gas-)durchlässig der Boden ist. Die Karte " Radon -Potenzial" berücksichtigt daher neben dem Radon -Vorkommen im Boden auch die Durchlässigkeit des Bodens. Karte Radon-Potenzial Abschätzung anhand repräsentativer Messdaten Da nicht jeder Quadratmeter in Deutschland auf seine Radonkonzentration und Gasdurchlässigkeit hin vermessen werden kann, hat das BfS eine Methode entwickelt, mit der das Radon -Potenzial für ganz Deutschland abgeschätzt werden kann. Von 1992 bis 2020 wurden an rund 6.000 Messpunkten in Deutschland die Radon -Konzentration im Boden und seine Gasdurchlässigkeit ermittelt. Mithilfe dieser Werte lässt sich das Radon -Potenzial auch für die Gebiete abschätzen, die zwischen den Messpunkten liegen. Dafür wurden die Messwerte in einer Deutschlandkarte anhand ihrer Geologie zusammengefasst und anschließend ähnliche Messwerte in nah beieinander liegenden Regionen zu einer Einheit verbunden. Das daraus entstandene Muster wurde danach mithilfe von mathematischen Simulationen für die zwischen den Messpunkten liegenden Gebiete analysiert und verfeinert. Die Methode basiert auf Vorgehensweisen, die in ähnlicher Form zum Beispiel in der Rohstofferkundung angewendet werden. Dort wird auf Grundlage von wenigen Probebohrungen auf zum Beispiel den Metallgehalt geschlossen. Auch in der Erdbebenforschung wird mithilfe von Messungen und dem Wissen um die geologische Beschaffenheit des Untergrunds auf ein potenzielles Erdbebenrisiko einzelner Regionen geschlossen. Radon-Situation vor Ort kann nur durch Messungen geklärt werden Die Karten " Radon -Konzentration im Boden" und " Radon -Potenzial" liefern eine erste Einschätzung zur Radonsituation in einer Region. Sie zeigen jeweils die regional zu erwartende Situation in einem groben Raster. Aussagen zu einzelnen Gebäuden oder Grundstücken können daraus nicht abgeleitet werden, da die für die Prognose verwendeten Parameter lokal stark variieren können. Über die Radon -Konzentration in der Bodenluft an einem bestimmten Standort (zum Beispiel einem Baugrundstück) können die Karten keine Aussage treffen - auch nicht über die Radon -Konzentration in einem einzelnen Haus. Wie hoch das Radonvorkommen an einem bestimmten Standort tatsächlich ist, lässt sich nur durch Messungen der bodennahen Luft oder durch Messungen der Radon-Konzentration in der Raumluft eines Gebäudes konkret ermitteln. Medien zum Thema Broschüren und Video downloaden : zum Download: Radon - ein kaum wahrgenommenes Risiko (PDF, Datei ist barrierefrei⁄barrierearm) … PDF 3 MB Broschüre Radon - ein kaum wahrgenommenes Risiko downloaden : zum Download: Radon in Innenräumen (PDF, Datei ist barrierefrei⁄barrierearm) … PDF 853 KB Broschüre Radon in Innenräumen Video Radon Zu viel Radon im Haus kann Lungenkrebs verursachen. Aber woher weiß ich, ob ich betroffen bin? Wie kann ich es messen? Was kann ich gegen zu viel Radon tun? mehr anzeigen Stand: 10.04.2024 Ionisierende Strahlung Häufige Fragen Was ist Radon? Wie breitet sich Radon aus und wie gelangt es in Häuser? Welche Radon-Konzentrationen treten in Häusern auf? Alle Fragen

Flurabstand des Grundwassers 2009

Die Flurabstände sind rechnerisch aus der Differenz zwischen der Geländehöhe und der Höhe der Grundwasseroberfläche bzw. der -deckfläche (bei gespannten Verhältnissen) ermittelt. Die vorliegende Ausgabe der Karte unterscheidet sich von der Ausgabe 2008 darin, dass für die Berechnung der Flurabstände ein wesentlich verbessertes Höhenmodell zur Verfügung stand. Den Angaben über die Geländehöhe liegt nun flächendeckend für das Land Berlin ein hoch aufgelöstes und verlässliches Modell der Geländeoberfläche zu Grunde. Für das Gebiet des Landes Berlin wurden die Daten des Digitalen Geländemodells DGM5 mit einer Gitterweite von 5 m und einer Genauigkeit von +/- 0,5 m verwendet. Sie sind Ergebnis der Auswertungen von Daten aus Laserscanbefliegungen. Für das Gebiet des Landes Brandenburg wurden die Daten des Digitalen Geländemodells DGM25 mit einer Gitterweite von 25 m und einer Genauigkeit von +/- 2 m verwendet. Da das Modell nur im System ETRS89 vorlag, wurden die Gitterpunkte in das System Soldner-Neu transformiert (max. Fehler 20 cm) und anschließend mittels der Software Surfer ein neues 5 m – Gitter berechnet. Die Ermittlung der Grundwasseroberfläche basiert auf Daten von 1.496 Grundwassermessstellen des Landesgrundwasserdienstes von Berlin und von den Berliner Wasserbetrieben vom Mai 2009. Zusätzlich wurden Messwerte des Landesumweltamtes Brandenburg sowie von Versorgungsunternehmen aus dem Umland in die Arbeiten integriert. Gebiete mit gespannter Grundwasseroberfläche in Berlin wurden unter Verwendung der digital vorliegenden Informationen zu den hydrogeologischen Schnitten des Geologischen Atlas (SenStadt 2002) von Berlin sowie ausgewählter Bohrungen des Bohrarchivs ermittelt (s. Abb. 6). In diesen Gebieten wurden nicht die Wasserstände der Messstellen, sondern die Unterflächen der Grundwasserhemmer digital ermittelt. Im brandenburgischen Umland innerhalb des “Sonderblattschnittes Berlin” wurden hierfür ebenfalls Bohrungen und zusätzlich teufenbezogene Informationen aus dem hydrogeologischen Kartenwerk verwendet (ZGI 1983). Des Weiteren wurden zahlreiche Hilfspunkte zu den Gewässerhöhen entlang der Oberflächenwasser in die Ermittlung der regionalen Verteilung der Grundwasseroberfläche einbezogen. Diese Hilfspunkte wurden ausschließlich in Gebieten ohne wasserwirtschaftlich induzierte Störung des Wasserhaushaltes verwendet, die sich in Berlin lediglich in den Außenbereichen (z. B. Dahme, Obere Havel) befinden. Hintergrund der Einbeziehung dieser Stützpunkte ist die angestrebte Vermeidung von errechneten Grundwasserständen über Flur entlang der Gewässer. Auch kleinere Fließgewässer, wie die Große Kuhlake im Spandauer Forst oder das Tegeler sowie das Neuenhagener Mühlenfließ (Erpe) wurden hierbei berücksichtigt. Die beschriebene Herleitung der flächenhaften Informationen zur Grundwasserspannung basiert einerseits auf den zeitlich “invariant” vorliegenden Daten zur räumlichen Verteilung der Grundwasserleiter und -hemmer im Untergrund und andererseits auf den zeitlich varianten Daten zur freien Grundwasseroberfläche in Gebieten ohne hemmende Deckschichten des oberflächennahen Grundwassers. Da die Höhe der freien Grundwasseroberfläche in den zuletzt genannten Gebieten in Abhängigkeit von den Zeiträumen, zwischen denen verglichen wird, in Berlin um mehrere Dezimeter variieren kann, ist es auch möglich, dass ein als “ungespannt” für den Zeitraum Mai 2006 markiertes Gebiet im Mai 2009 “gespannt” vorliegt und umgekehrt. Aus diesem Grund musste die o. g. Analyse der räumlichen Verteilung der Grundwasserspannung mit Hilfe der Informationen zum Grundwasserstand im Mai 2009 überprüft bzw. wiederholt werden. Das Ergebnis zeigt Abb. 6. Die Unterschiede im Ergebnis der Analyse für die beiden Zeiträume im Mai 2006 und Mai 2009 sind aufgrund der zumeist nur um wenige Zentimeter schwankenden Grundwasserstände nur geringfügig. Im südlichen Randbereich der Barnim-Hochfläche und dem nördlichen Randbereich der Teltow-Hochfläche im Süden sind einige Gebiete erkennbar, die 2006 als gespannt und 2009 als ungespannt ausgewiesen wurden. Im Bereich des Panketals sowie der “gespannten Gebiete mit nur isoliert vorkommendem quartärem Hauptgrundwasserleiter” wurden in den vergangenen Jahren seitens der Landesgeologie umfangreiche räumliche Modifizierungen durchgeführt, so dass hier kein direkter Vergleich mit dem Zeitraum Mai 2006 mehr möglich ist.

Flurabstand des Grundwassers 2006

Die Flurabstände sind rechnerisch aus der Differenz zwischen der Geländehöhe und der Höhe der Grundwasseroberfläche bzw. der -deckfläche (bei gespannten Verhältnissen) ermittelt. Die Ermittlung der Grundwasseroberfläche basiert auf Daten von 1 456 Grundwassermessstellen des Landesgrundwasserdienstes von Berlin und von Wasserversorgungsunternehmen sowie des Landesumweltamtes Brandenburg aus dem Umland vom Mai 2006. Gebiete mit gespannter Grundwasseroberfläche in Berlin wurden unter Verwendung der digital vorliegenden Informationen zu den hydrogeologischen Schnitten des Geologischen Atlas (SenStadt 2002) von Berlin sowie ausgewählter (Endtiefe > 10 Meter) Bohrungen des Bohrarchivs ermittelt (s. Abb. 6). In diesen Gebieten wurden nicht die Wasserstände der Messstellen, sondern die Unterflächen der Grundwasserhemmer digital ermittelt. Die vorliegende Ausgabe der Karte unterscheidet sich von der Ausgabe 2007 darin, dass für die Berechnung der Flurabstände ein wesentlich verbessertes Höhenmodell zur Verfügung stand. Den Angaben über die Geländehöhe liegt nun ein Modell der Geländeoberfläche zu Grunde, das auf unterschiedlichen Datengrundlagen mit zum Teil wesentlich höheren Genauigkeiten beruht (vgl. Abb. 5). Für etwa 70 % des Gebietes wurden die Daten des Digitalen Geländemodells DGM5 mit einer Gitterweite von 5 m und einer Genauigkeit von+/- 0,5 m verwendet. Diese Daten lagen für große Teile der Innenstadt, den Südwesten Berlins und das Gebiet um den Müggelsee vor und sind Ergebnis der Auswertungen von Daten aus Laserscanbefliegungen sowie photogrammetrischen Erhebungen. Für die anderen Bereiche wurden Daten aus dem Datenpool für das digitale Geländemodell des Informationssystems Stadt und Umwelt zugrunde gelegt. Diese Daten wurden aus überwiegend eingemessenen Punkten aus unterschiedlichen Quellen zusammengetragen. Aufgrund der Inhomogenität der Datenlage ist der Fehler im unbesiedelten Außenbereich höher als im besiedelten Innenbereich, da im Außenbereich – bedingt durch die geringe Punktdichte – teils über weite Strecken interpoliert werden musste. Die Daten sind insgesamt deutlich ungenauer als die des DGM5. Die Daten wurden mit Hilfe eines Rechenverfahrens (Surfer) interpoliert und auf ein einheitliches Raster mit 10 m Gitterweite bezogen. Des Weiteren wurden zahlreiche Hilfspunkte zu den Gewässerhöhen entlang der Oberflächenwasser in die Ermittlung der regionalen Verteilung der Grundwasseroberfläche einbezogen. Diese Hilfspunkte wurden ausschließlich in Gebieten ohne wasserwirtschaftlich induzierte Störung des Wasserhaushaltes verwendet, die sich in Berlin lediglich in den Außenbereichen (z. B. Dahme, Obere Havel) befinden. Hintergrund der Einbeziehung dieser Stützpunkte ist die angestrebte Vermeidung von errechneten Grundwasserständen über Flur entlang der Gewässer. Auch kleinere Fließgewässer, wie die Große Kuhlake im Spandauer Forst oder das Tegeler sowie das Neuenhagener Mühlenfließ (Erpe) wurden hierbei berücksichtigt. Die beschriebene Herleitung der flächenhaften Informationen zur Grundwasserspannung basiert einerseits auf den zeitlich „invariant“ vorliegenden Daten zur räumlichen Verteilung der Grundwasserleiter und -hemmer im Untergrund und andererseits auf den zeitlich varianten Daten zur freien Grundwasseroberfläche in Gebieten ohne hemmende Deckschichten des oberflächennahen Grundwassers. Da die Höhe der freien Grundwasseroberfläche in den zuletzt genannten Gebieten um mehrere Dezimeter bis Meter (in Abhängigkeit von den Zeiträumen, zwischen denen verglichen wird) variieren kann, ist es auch möglich, dass ein als „ungespannt“ für den Zeitraum Mai 2002 markiertes Gebiet im Mai 2006 „gespannt“ vorliegt und umgekehrt. Aus diesem Grund musste die o. g. Analyse der räumlichen Verteilung der Grundwasserspannung mit Hilfe der Informationen zum Grundwasserstand im Mai 2006 überprüft bzw. wiederholt werden. Das Ergebnis zeigt Abb. 5. Die Unterschiede im Ergebnis der Analyse für die beiden Zeiträume sind mit 2 % mehr gespannten Gebieten landesweit nur geringfügig. Im Bereich des Barnims und auch auf der Teltow-Hochfläche im Süden sind einige Gebiete erkennbar, die 2002 als ungespannt und 2006 als gespannt ausgewiesen wurden. Der umgekehrte Fall ist am westlichen Rand des Panketals erkennbar, wo aktuell ungespannte Zustände ermittelt wurden. Das hängt hier jedoch mit einer Modifizierung des Grenzbereichs des „Panke-Grundwasserleiters“ zusammen, wodurch sich der Bezugshorizont verändert.

Flurabstand des Grundwassers 2005

Die Flurabstände sind rechnerisch aus der Differenz zwischen der Geländehöhe und der Höhe der Grundwasseroberfläche bzw. der -deckfläche (bei gespannten Verhältnissen) ermittelt. Die Ermittlung der Grundwasseroberfläche basiert auf Daten von 1 456 Grundwassermessstellen des Landesgrundwasserdienstes von Berlin und von Wasserversorgungsunternehmen sowie des Landesumweltamtes Brandenburg aus dem Umland vom Mai 2006. Gebiete mit gespannter Grundwasseroberfläche in Berlin wurden unter Verwendung der digital vorliegenden Informationen zu den hydrogeologischen Schnitten des Geologischen Atlas (SenStadt 2002) von Berlin sowie ausgewählter (Endtiefe > 10 Meter) Bohrungen des Bohrarchivs ermittelt (s. Abb. 5). In diesen Gebieten wurden nicht die Wasserstände der Messstellen, sondern die Unterflächen der Grundwasserhemmer digital ermittelt. Die Geländehöhen wurden dem Höhenmodell des Informationssystems Stadt und Umwelt entnommen (Stand: 2006). Datengrundlagen und Methode zu diesem Modell sind im Begleittext zur Karte 01.08 beschrieben. Des Weiteren wurden zahlreiche Hilfspunkte zu den Gewässerhöhen entlang der Oberflächenwasser in die Ermittlung der regionalen Verteilung der Grundwasseroberfläche einbezogen. Diese Hilfspunkte wurden ausschließlich in Gebieten ohne wasserwirtschaftlich induzierte Störung des Wasserhaushaltes verwendet, die sich in Berlin lediglich in den Außenbereichen (z. B. Dahme, Obere Havel) befinden. Hintergrund der Einbeziehung dieser Stützpunkte ist die angestrebte Vermeidung von errechneten Grundwasserständen über Flur entlang der Gewässer. Auch kleinere Fließgewässer, wie die Große Kuhlake im Spandauer Forst oder das Tegeler sowie das Neuenhagener Mühlenfließ (Erpe) wurden hierbei berücksichtigt. Die beschriebene Herleitung der flächenhaften Informationen zur Grundwasserspannung basiert einerseits auf den zeitlich „invariant“ vorliegenden Daten zur räumlichen Verteilung der Grundwasserleiter und -hemmer im Untergrund und andererseits auf den zeitlich varianten Daten zur freien Grundwasseroberfläche in Gebieten ohne hemmende Deckschichten des oberflächennahen Grundwassers. Da die Höhe der freien Grundwasseroberfläche in den zuletzt genannten Gebieten um mehrere Dezimeter bis Meter (in Abhängigkeit von den Zeiträumen, zwischen denen verglichen wird) variieren kann, ist es auch möglich, dass ein als „ungespannt“ für den Zeitraum Mai 2002 markiertes Gebiet im Mai 2006 „gespannt“ vorliegt und umgekehrt. Aus diesem Grund musste die o. g. Analyse der räumlichen Verteilung der Grundwasserspannung mit Hilfe der Informationen zum Grundwasserstand im Mai 2006 überprüft bzw. wiederholt werden. Das Ergebnis zeigt Abb. 5. Die Unterschiede im Ergebnis der Analyse für die beiden Zeiträume sind mit 2 % mehr gespannten Gebieten landesweit nur geringfügig. Im Bereich des Barnims und auch auf der Teltow-Hochfläche im Süden sind einige Gebiete erkennbar, die 2002 als ungespannt und 2006 als gespannt ausgewiesen wurden. Der umgekehrte Fall ist am westlichen Rand des Panketals erkennbar, wo aktuell ungespannte Zustände ermittelt wurden. Das hängt hier jedoch mit einer Modifizierung des Grenzbereichs des „Panke-Grundwasserleiters“ zusammen, wodurch sich der Bezugshorizont verändert.

1 2 3 4 5125 126 127