API src

Found 407 results.

Related terms

Planungshinweiskarte Hitze und Trinkbrunnen Koeln

<p>Die Planungshinweiskarte Hitze ist eine Klimaanalysekarte, welche die zukünftig zu erwartenden stadtklimatischen Gegebenheiten in Köln als flächenhafte Übersicht darstellt.</p> <p>Die Ausweisung der klimatisch aktiven Flächen ist nicht parzellenscharf und es bedarf bei großmaßstäbigen Planungen (z.B. Bebauungsplänen) einer zusätzlichen Auswertung der Grundlagendaten auf Detailebene.</p> <p>Grundlage für die Karte sind die Berechnungen der Anzahl der heißen Tage für die Periode 2021 bis 2050, die der Deutsche Wetterdienst mit dem Stadtklimamodell MUKLIMO_3 simuliert hat. Zur Erstellung der Karte wurde die MUKLIMO-3 Simulation basierend auf dem Regionalmodell CLM mit dem Emissionsszenario A1B ausgewählt. Für den Zeitraum 2021 bis 2050 zeigt sich im Vergleich mit dem Referenzzeitraum (1971 bis 2000) eine deutliche Zunahme der Hitzebelastung. Für die Stadt Köln bedeutet dies, dass längere Hitzeperioden mit Temperaturen über 25°C (Sommertage) und über 30°C (heiße Tage) vermehrt auftreten. Die Trinkbrunnen sind als Punktmarkierungen in der Karte dargestellt, die interaktiv angeklickt oder unten in der Detailansicht angeschaut werden können.</p>

Flood risk in a changing climate (CEDIM)

Das Projekt "Flood risk in a changing climate (CEDIM)" wird vom Umweltbundesamt gefördert und von Karlsruher Institut für Technologie (KIT), Institut für Meteorologie und Klimaforschung, Department Troposphärenforschung durchgeführt. Aims: Floods in small and medium-sized river catchments have often been a focus of attention in the past. In contrast to large rivers like the Rhine, the Elbe or the Danube, discharge can increase very rapidly in such catchments; we are thus confronted with a high damage potential combined with almost no time for advance warning. Since the heavy precipitation events causing such floods are often spatially very limited, they are difficult to forecast; long-term provision is therefore an important task, which makes it necessary to identify vulnerable regions and to develop prevention measures. For that purpose, one needs to know how the frequency and the intensity of floods will develop in the future, especially in the near future, i.e. the next few decades. Besides providing such prognoses, an important goal of this project was also to quantify their uncertainty. Method: These questions were studied by a team of meteorologists and hydrologists from KIT and GFZ. They simulated the natural chain 'large-scale weather - regional precipitation - catchment discharge' by a model chain 'global climate model (GCM) - regional climate model (RCM) - hydrological model (HM)'. As a novel feature, we performed so-called ensemble simulations in order to estimate the range of possible results, i.e. the uncertainty: we used two GCMs with different realizations, two RCMs and three HMs. The ensemble method, which is quite standard in physics, engineering and recently also in weather forecasting has hitherto rarely been used in regional climate modeling due to the very high computational demands. In our study, the demand was even higher due to the high spatial resolution (7 km by 7 km) we used; presently, regional studies use considerably larger grid boxes of about 100 km2. However, our study shows that a high resolution is necessary for a realistic simulation of the small-scale rainfall patterns and intensities. This combination of high resolution and an ensemble using results from global, regional and hydrological models is unique. Results: By way of example, we considered the low-mountain range rivers Mulde and Ruhr and the more alpine Ammer river in this study, all of which had severe flood events in the past. Our study confirms that heavy precipitation events will occur more frequently in the future. Does this also entail an increased flood risk? Our results indicate that in any case, the risk will not decrease. However, each catchment reacts differently, and different models may produce different precipitation and runoff regimes, emphasizing the need of ensemble studies. A statistically significant increase of floods is expected for the river Ruhr in winter and in summer. For the river Mulde, we observe a slight increase of floods during summer and autumn, and for the river Ammer a slight decrease in summer and a slight increase in winter.

Teil 2

Das Projekt "Teil 2" wird vom Umweltbundesamt gefördert und von Universität Hohenheim, Institut für Landwirtschaftliche Betriebslehre (410), Fachgebiet Landwirtschaftliche Betriebslehre (410b) durchgeführt. Übergeordnetes Ziel des Projekts 'NawEnNat' ist es Rahmenbedingungen aufzuzeigen, unter denen die Förderung des Anbaus landwirtschaftlicher Bioenergieträger die Selbstversorgungsquote an Nahrungsmitteln nicht wesentlich verändert und die Belange des Naturschutzes nicht nachhaltig beeinträchtigt. Über die Modellierung von Szenarien mit variablem Ausbau der Bioenergie und variabler Berücksichtigung des Naturschutzes in der Agrarlandschaft werden 'Trade-offs' aber auch Synergieeffekte von Zielen der Bioenergiegewinnung und des Naturschutzes analysiert. Die Analysen beziehen sich auf Acker- und Grünlandnutzung, die Nutzung des Waldes wird nicht berücksichtigt. Für jedes Szenario werden Kennwerte zur Ökonomie und zur Emission von Treibhausgasen ermittelt und eine naturschutzfachliche Bewertung bzgl. des Schutzguts 'Arten und Biotope' erstellt. Zudem werden landesweite Flächenkulissen mit Vorbehalt bzw. Eignung 'neuer' Energiekulturen wie Miscanthus, Kurzumtriebsplantagen (KUP) aus Sicht des Naturschutzes erarbeitet. Im Rahmen des BWPLUS-Projekts 'Abschätzung der Produktionspotenziale für den Anbau von Energiepflanzen zur Reduktion der CO2-Emissionen in Baden-Württemberg und deren ökologische und ökonomische Bewertung' wird eine Folgenabschätzung hinsichtlich abiotischer Schutzgüter durchgeführt.

Sub project C

Das Projekt "Sub project C" wird vom Umweltbundesamt gefördert und von OpenGeoSys e.V. durchgeführt. Ziel des Vorhabens ist die Entwicklung von wasserwirtschaftlichen Systemlösungen für eine nachhaltige Verbesserung der Gewässerqualität in Chaohu (Stadt und See). Dabei wird als innovativer Ansatz das 'Urban Water Resources Management' (UWRM) Konzept verfolgt, das sowohl eine effiziente Siedlungswasserwirtschaft in den urbanen und suburbanen Räumen als auch die Wechselwirkung mit den aquatischen Ökosystemen einschließt. Mit Hilfe eines umfassenden online Umweltinformationssystems für Behörden und Wasserversorger werden Daten und Modelle für das regionale Wassermanagement zur Verfügung gestellt. Wir möchten darüber informieren und schulen, wie solche Modelle und Konzepte in den oben genannten Arbeitsgebieten verantwortungsbewusst entwickelt, erstellt, angewendet und im Anschluss vermittelt werden können. Die zukünftigen Anwender sollten nach Projektschluss in der Lage sein die gekoppelten Systemmodelle selbständig zu bearbeiten. Dazu müssen die Wissenslücken zwischen Grundlagenforschung und wissenschaftlicher Verwertung geschlossen werden. Beginn des Arbeitspakets ca. 12 Monate nach Projektstart. Der Zeitplan gliedert sich demzufolge wie folgt: Ausarbeitung des Konzepts 'Capacity Building - Umweltsystemanalyse', dann Vorbereitung und Durchführung von Aus- und Weiterbildung zur Datenintegration, Prozesssimulation sowie der Nutzung des im Vorfeld entwickelnden Umweltinformationssysteme mit spezifischen Anwendung auf dem Einzugsgebiet von Chaohu.

Modelling of the impact on ozone and other chemical compounds in the atmosphere from airplane emissions

Das Projekt "Modelling of the impact on ozone and other chemical compounds in the atmosphere from airplane emissions" wird vom Umweltbundesamt gefördert und von Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR), Institut für Physik der Atmosphäre Oberpfaffenhofen durchgeführt. General Information: Summary Observations have shown that ozone levels in the upper troposphere (UT) and the lower stratosphere (LS) have changed over the last two to three decades. The observed reductions in the LS, which has been seen in the Northern Hemisphere during the last decade most probably are caused by man made emissions (CFCs and bromine compounds) in conjunction with particles and PSCs formation. For the UT, observations have shown an ozone increase for at least two decades, but less so the last few years. The causes of these changes are poorly understood. Modelling studies have been used to estirnate the impact of different man made sources on the chemical composition, and on ozone in particular in the UT and the LS. These studies show that there are significant uncertainties in the estimates of the impact which are a result of limited knowledge of atmospheric processes and which have to be improved in order to come up with better estimates of the impact of aircraft emissions on ozone in the UT and the LS. Emissions from aircraft (NOx, H20, SO2 and soot) at cruising altitudes are likely to affect the ozone chemistry in the UT and the LS in two ways: directly through enhanced photochemical activity (emission of NOx and water vapour), and through enhanced particle formation from NOx, water vapour and SO2. The impact of aircraft emissions is of particular importance to study, as the emissions are projected to grow rapidly over the next two decades compared to emissions from most other sources, and because there are significant regional differences in the impact on ozone and in the projected growth in the emissions. It is therefore likely that future aircraft emissions have the potential to perturb ozone levels significantly. The overall objective of the study is to improve our scientific basis for estimates of the impact of aircraft emissions on the chemical composition in the UT and in the LS, and to perform 3-D model studies of the large scale (regional to hemispheric) perturbation of ozone from a projected future fleet of subsonic and supersonic aircraft. Focus in the study will be on two main areas: a) The role of heterogeneous processes in the UT and the LS and how these processes can be parameterised in global 3-D CTMs, and b) modelling studies of the future impact of subsonic as well as supersonic traffic on the ozone in the UT and the LS, with particular emphasis on the regional contribution to global scale ozone from regions with the largest projected traffic (Europe - US, South Asia and surrounding areas). The tools for these studies will be state of the art 3-D CTMs (Chemical Tracer Models) available among the participating groups. The CTMs have different spatial resolution, transport parameterisation, and parameterisation of the chemical processes, including heterogeneous chemistry,... Prime Contractor: University of Oslo, Department of Geophysics; Oslo; Norway.

Sub project F

Das Projekt "Sub project F" wird vom Umweltbundesamt gefördert und von Institut für technisch-wissenschaftliche Hydrologie GmbH durchgeführt. Die rasante wirtschaftliche Entwicklung und das Bevölkerungswachstum in China gehen einher mit zunehmender Verstädterung, wachsenden Mega-Cities, Industrialisierung und einer Intensivierung der Landwirtschaft. Die aktuelle Situation in der Region Chaohu ist gekennzeichnet durch eine extrem hohe Verschmutzung der Wasserressourcen (Schwermetalle, Alkylbenzene und Pestizide sind in See- und Flusssedimenten stark angereichert). Technische Lösungen für die Verbesserung der Gewässerqualität sind wenig erforscht. Der Chao-See dient als wichtigste Rohwasserquelle für die Region. Es besteht ein hohes Gesundheitsrisiko für die Bevölkerung und akuter Handlungsbedarf zur Verbesserung der Gewässerqualität. Die besondere Problematik von Chaohu-Stadt besteht darin, dass sie stromabwärts liegt und somit unter den Verschmutzungen der See-Anrainer besonders leidet. Das Gesamtziel des Vorhabens ist die Entwicklung von wasserwirtschaftlichen Systemlösungen für eine nachhaltige Verbesserung der Gewässerqualität in der Stadt Chaohu und im Chao See. Dabei wird als innovativer Ansatz das 'Urban Water Resources Management' (UWRM) Konzept verfolgt, das sowohl eine effiziente Siedlungswasserwirtschaft in den urbanen und suburbanen Räumen, als auch die Wechselwirkung mit den aquatischen Ökosystemen einschließt. Konzipiert und implementiert wird das Vorhaben in vier Teilprojekten: A 'Urbanes Wassermanagement': Die itwh GmbH erarbeitet integrierte Konzepte zur Verbesserung der Wasserqualität in urbanen Gewässern und zur Regenwasserbewirtschaftung, gestützt auf ein Online-Monitoringsystem und Demonstrationsanlagen zur naturnahen Regen- und Flusswasserbehandlung. B 'Dezentrales Abwassermanagement': Entwicklung und Erprobung eines GIS-basierten Erschließungs-Tools zur Erstellung regionaler Abwasserentsorgungsszenarien und Kosteneffizienzanalysen. C 'Chao-See': Konzeption eines Echtzeit-Monitoringnetzes zur kontinuierlichen Überwachung von physiko-chemischen und biologischen Messgrößen im See und wichtigen Zuflüssen sowie die Wasserqualitätsüberwachung an der Rohwasserentnahme. Daraus kann ein Frühwarnsystem entwickelt werden. Erstellt wird ein hydrodynamisches 3D-Modell für den Chao-See zur Charakterisierung von Schadstoffverbreitung und Resuspensionsereignissen mit Integration in das Umweltinformationssystem. D 'Umweltinformationssystem': Die itwh GmbH ist planerisch an der Entwicklung eines Umweltinformationssystems (UIS) für das urbane Einzugsgebiet des Chao-Sees zum operationellen und nachhaltigen Management der Gewässerqualität beteiligt. Die itwh GmbH liefert das Datenintegrationssystem zum Zusammenführen, Aktualisieren und Visualisieren aller relevanten Informationen zum aktuellen Zustand der aquatischen Kompartimente und der simulationsgestützten Entwicklung optimaler Monitoring- und Managementkonzepte (Modellierungsplattform).

Teilprojekt 2: Zustandsbestimmung mit COSMO-CLM

Das Projekt "Teilprojekt 2: Zustandsbestimmung mit COSMO-CLM" wird vom Umweltbundesamt gefördert und von Universität Berlin, Institut für Meteorologie WE03, MILIEU - Centre for Urban Earth Systen Studies durchgeführt. According to the main conclusion reached by the PMIP/PAGES/MARUM workshop COMPARE2012 (Kucera et al., 2012), paleoclimatic data-model comparison needs to be quantitative and 'intelligent', in the sense that it allows to identify and evaluate the processes that caused past climate changes. To achieve this, we want to develop and test methods that facilitate data-model comparison and data analysis and thereby enable an assessment of the Earth system models (ESMs) used in WG1 and the homogenized paleoclimatic data synthesis generated in WP3.1/WP3.2. Because water isotope data are among the most abundant paleoclimatic data, we focus the development of data-model interfaces on the implementation of stable water isotope diagnostics in global and regional climate models. Furthermore, we aim to assimilate time slice and time series products from WP3.1/WP3.2 for selected time in global and regional climate models, in order to provide steady-state as well as transient state estimates periods that are consistent with both data and models and their uncertainties. Finally, we intend to make use of regional climate models for dynamical downscaling of the results obtained by WG1 to facilitate local-scale data-model comparison.

Extreme events in the past and future - A comparative assessment for the Hai He river and the Poyang lake basins

Das Projekt "Extreme events in the past and future - A comparative assessment for the Hai He river and the Poyang lake basins" wird vom Umweltbundesamt gefördert und von Rheinische Friedrich-Wilhelms-Universität Bonn, Meteorologisches Institut durchgeführt. The impact of future climate change on land-use and water resource management is strongly dependent on the related changes in weather extremes. The future can only be assessed by the use of global climate models, which currently lack the necessary spatial resolution to represent such events. Moreover, global climate models are not able to incorporate all processes leading to extremes because of their low resolution. Thus downscaling of such runs is necessary, and only dynamical downscaling with high-resolution regional models is able to catch the necessary non-linear processes and process chains leading to extremes. The goal of this joint proposal is to provide estimates including their uncertainties of the behaviour of extreme weather events impacting land-use and water management for the 21st century for two climatically very different catchments, namely the Hai He river and the Poyang lake basins. To this goal we will first analyse the past of extreme events in both regions on the basis of observations and reanalysis data sets using state of the art extreme value statistics. Dynamical downscaling of global climate runs will be performed in order to evaluate the future of extreme events in the catchments. This necessitates first an evaluation of simulations of the current climate and its extremes by comparison with observations on a statistical basis. This will enable us to use the most appropriate regional climate model and to select the parametrisation setup most suitable for both regions, which might be different. While the Chinese partners will provide the observation data sets and perform the dynamical downscaling of global climate runs, the German partners will install the dynamical downscaling procedure at the Chinese partner institute, and generate the statistics of extremes both from observations and the simulations. The evaluation towards trends and uncertainties will be performed in close cooperation.

Sub project B

Das Projekt "Sub project B" wird vom Umweltbundesamt gefördert und von Technische Universität Dresden, Institut für Siedlungs- und Industriewasserwirtschaft, Professur Industriewasserwirtschaft durchgeführt. Ziel des Vorhabens ist die Entwicklung von wasserwirtschaftlichen Systemlösungen für eine nachhaltige Verbesserung der Gewässerqualität in Chaohu (Stadt und See, der die zentrale Rolle für die Trinkwasserversorgung der umliegenden Städte und Gemeinden spielt). Dabei wird als innovativer Ansatz das 'Urban Water Resources Management' (UWRM) Konzept verfolgt, das sowohl eine effiziente Siedlungswasserwirtschaft in den urbanen und suburbanen Räumen als auch die Wechselwirkung mit den aquatischen Ökosystemen einschließt. Mit Hilfe eines umfassenden online Umweltinformationssystems für Behörden und Wasserversorger werden Daten und Modelle für das regionale Wassermanagement zur Verfügung gestellt. Der Chao-See als ökologisches und ökonomisches Schutzgut und Rohwasserlieferant für die Trinkwasserversorgung der Bevölkerung der Stadt Chaohu spielt dabei eine zentrale Rolle. Das F&E Vorhaben liefert damit einen wichtigen Beitrag zur nachhaltigen Entwicklung der Region Chaohu im Rahmen des Masterplans 'Ökologische Seestadt Chaohu' der Anhui Provinzregierung. Die wissenschaftlichen-technischen Lösungsansätze werden in Demonstrationsvorhaben implementiert. Monitoring, Datenauswertung und Modellbausteine für integrierte Bewirtschaftung von Siedlungsentwässerung und urbanen Gewässern; Handlungsempfehlungen für Anpassung von Wasserinfrastruktur (TP A) Frühwarnsystem für Trinkwasserentnahme aus dem Chao See und Einbindung in Umweltinformationssystem (TP C) Aufbau Geodateninfrastruktur (TP D).

Sub project A

Das Projekt "Sub project A" wird vom Umweltbundesamt gefördert und von Helmholtz-Zentrum für Umweltforschung GmbH - UFZ, Department Umweltinformatik durchgeführt. Ziel des Vorhabens ist die Entwicklung von wasserwirtschaftlichen Systemlösungen für eine nachhaltige Verbesserung der Gewässerqualität in Chaohu (Stadt und See). Dabei wird als innovativer Ansatz das 'Urban Water Resources Management' (UWRM) Konzept verfolgt, das sowohl eine effiziente Siedlungswasserwirtschaft in den urbanen und suburbanen Räumen als auch die Wechselwirkung mit den aquatischen Ökosystemen einschließt. Mit Hilfe eines umfassenden online Umweltinformationssystems für Behörden und Wasserversorger werden Daten und Modelle für das regionale Wassermanagement zur Verfügung gestellt. Der Chao-See als ökologisches und ökonomisches Schutzgut und Rohwasserlieferant für die Trinkwasserversorgung der Bevölkerung der Stadt Chaohu spielt dabei eine zentrale Rolle - auch für die Umsetzung des Masterplans 'Ökologische Seestadt Chaohu'. Die wissenschaftlichen-technischen Lösungsansätze werden in Demonstrationsvorhaben implementiert. Das UFZ leistet folgende Beiträge im Verbundvorhaben: Regionale Abwasserentsorgungskonzepte für die suburbanen Gebiete von Chaohu auf der Basis eines GIS-basierten Erschließungs-Tools (Teilprojekt B), Hydrodynamisches 3D-Modell für den Chao-See zur Charakterisierung von Schadstoffverbreitung und Resuspensionsereignissen (Teilprojekt C), Entwicklung eines Umweltinformationssystems (UIS) für das urbane Einzugsgebiet des Chao-Sees zum operationellen und nachhaltigen Management der Gewässerqualität (Teilprojekt D), Projektmanagement (Teilprojekt Z).

1 2 3 4 539 40 41