Aims: Floods in small and medium-sized river catchments have often been a focus of attention in the past. In contrast to large rivers like the Rhine, the Elbe or the Danube, discharge can increase very rapidly in such catchments; we are thus confronted with a high damage potential combined with almost no time for advance warning. Since the heavy precipitation events causing such floods are often spatially very limited, they are difficult to forecast; long-term provision is therefore an important task, which makes it necessary to identify vulnerable regions and to develop prevention measures. For that purpose, one needs to know how the frequency and the intensity of floods will develop in the future, especially in the near future, i.e. the next few decades. Besides providing such prognoses, an important goal of this project was also to quantify their uncertainty. Method: These questions were studied by a team of meteorologists and hydrologists from KIT and GFZ. They simulated the natural chain 'large-scale weather - regional precipitation - catchment discharge' by a model chain 'global climate model (GCM) - regional climate model (RCM) - hydrological model (HM)'. As a novel feature, we performed so-called ensemble simulations in order to estimate the range of possible results, i.e. the uncertainty: we used two GCMs with different realizations, two RCMs and three HMs. The ensemble method, which is quite standard in physics, engineering and recently also in weather forecasting has hitherto rarely been used in regional climate modeling due to the very high computational demands. In our study, the demand was even higher due to the high spatial resolution (7 km by 7 km) we used; presently, regional studies use considerably larger grid boxes of about 100 km2. However, our study shows that a high resolution is necessary for a realistic simulation of the small-scale rainfall patterns and intensities. This combination of high resolution and an ensemble using results from global, regional and hydrological models is unique. Results: By way of example, we considered the low-mountain range rivers Mulde and Ruhr and the more alpine Ammer river in this study, all of which had severe flood events in the past. Our study confirms that heavy precipitation events will occur more frequently in the future. Does this also entail an increased flood risk? Our results indicate that in any case, the risk will not decrease. However, each catchment reacts differently, and different models may produce different precipitation and runoff regimes, emphasizing the need of ensemble studies. A statistically significant increase of floods is expected for the river Ruhr in winter and in summer. For the river Mulde, we observe a slight increase of floods during summer and autumn, and for the river Ammer a slight decrease in summer and a slight increase in winter.
The Northern Eurasia Earth Science Partnership Initiative, or NEESPI, is a currently active, yet strategically evolving program of internationally-supported Earth systems science research, which has as its foci issues in northern Eurasia that are relevant to regional and Global scientific and decision-making communities (see NEESPI Mission Statement). This part of the globe is undergoing significant changes - particularly those changes associated with a rapidly warming climate in this region and with important changes in governmental structures since the early 1990s and their associated influences on land use and the environment across this broad expanse. How this carbon-rich, cold region component of the Earth system functions as a regional entity and interacts with and feeds back to the greater Global system is to a large extent unknown. Thus, the capability to predict future changes that may be expected to occur within this region and the consequences of those changes with any acceptable accuracy is currently uncertain. One of the reasons for this lack of regional Earth system understanding is the relative paucity of well-coordinated, multidisciplinary and integrating studies of the critical physical and biological systems. By establishing a large-scale, multidisciplinary program of funded research, NEESPI is aimed at developing an enhanced understanding of the interactions between the ecosystem, atmosphere, and human dynamics in northern Eurasia. Specifically, the NEESPI strives to understand how the land ecosystems and continental water dynamics in northern Eurasia interact with and alter the climatic system, biosphere, atmosphere, and hydrosphere of the Earth. The contemporaneous changes in climate and land use are impacting the biological, chemical, and physical functions of the northern Eurasia, but little data and fewer models are available that can be used to understand the current status of this expansive regional system, much less the influence of the northern Eurasia region on the Global climate. NEESPI seeks to secure the necessary financial and related institutional support from an international cadre of sponsors for developing a viable understanding of the functioning of northern Eurasia and the impacts of extant changes on the regional and Earth systems. Many types of ground and integrative (e.g., satellite; GIS) data will be needed and many models must be applied, adapted or developed for properly understanding the functioning of this cold and diverse regional system. Mechanisms for obtaining the requisite data sets and models and sharing them among the participating scientists are essential and require international and active governmental participation. (abridged text)
Bisherige Ansätze zu Modellierung von Lachgasemissionen haben noch zu keinen zufriedenstellenden Ergebnissen geführt bzw. die Validierung von Modellen steht noch aus, da u.a. die Bestimmung der Gasdiffusion im Oberboden sowie der Gasübergang in Atmosphäre schwierig bestimmbar ist. Wir stellen für diesen Schritt einen empirischen Modellansatz zur Vorhersage von Lachgasemissionen aus oberflächennahen N2O-Gehalten des Bodens vor, der im Rahmen des Projektes zu einer allgemeinen Anwendbarkeit weiterentwickelt werden soll. Hierbei werden über empirische Transferfaktoren, die in Abhängigkeit von Bodenart, Wassergehalt und Temperatur ermittelt werden, die Emissionen aus Gasgehalten im Boden berechnet. Zur einfachen Bestimmung des N2O-Gehaltes im Oberboden steht ein in unserem Hause entwickeltes neuartiges Bodenprobenahmegerät zur Verfügung. Die Einfachheit der Probenahme und gleichzeitige Erfassung von Gas im Boden sowie den steuernden Größen Nmin und DOC, erlaubt zudem ein Monitoring der Spurengasemissionen auf regionaler Ebene sowie die Validierung bestehender Modelle.
Die natuerliche Belastung der Gesteine, Waesser und Boeden an umweltrelevanten Spurenstoffen im Vorfeld der anthropogenen Verschmutzung, soll fuer ein regionales Modell anhand von jungtaertiaeren Sedimentfallen und Quellwaessern aufgeklaert werden. Rezente Boeden, Sedimente und Waesser sollen zu den regionalen geochemischen Standard in Beziehung gesetzt werden.
Durch hochauflösende Ozeanmodellsimulationen sollen verbesserte Einblicke in die Mechanismen von multi-dekadischen Meeresspiegelschwankungen in den Schelfmeeren Südostasiens und des Indonesischen Archipels gewonnen werden und verfeinerte Projektionen möglicher Trends infolge der Klimaänderungen im 21. Jahrhundert erstellt werden.
Das böhmische Massiv als östlichster Teil des Variszischen Gebirgsgürtels ist eines der größten stabilen intrakontinentalen Einheiten in Zentraleuropa. Trotzdem finden sich im westlichen Teil geodynamische Aktivitäten, wie z.B. Schwarmbeben und erhöhter CO2 Fluss und Entgasungen, was auf tiefe magmatische Prozesse, Fluide aus dem Erdmantel und deren Aufstieg durch die Kruste hindeutet. Es scheint eine Verbindung zwischen dem Auftreten krustaler Erdbebenschwärme, und Änderungen des Gasflusses sowie der Isotopenzusammensetzung in den Mofetten und Quellen zu geben. Darüber hinaus, wurden in der Gegend quartäre Vulkane entdeckt; ihre magmatischen Aufstiegspfade und das Zusammenwirken mit tiefen magmatischen Prozessen und den tektonischen Rahmenbedingungen sind allerdings noch nicht vollständig verstanden. Diese offenen geowissenschaftlichen Fragen anzugehen, ist Teil des geförderten PIER-ICDP Eger Rift Projekts. In diesem Rahmen wurden in 2015/2016 magnetotellurische (MT) Experimente im Eger Rift durchgeführt, welche Auskunft über die elektrische Leitfähigkeit des Untergrundes geben. Dieser physikalische Parameter ist sensitive gegenüber gut leitenden Phasen wie Wässer und Fluide, partielle Schmelzen oder metallische Verbindungen. Mit diesen Messungen konnte zum ersten Mal ein regionales Modell der elektrischen Leitfähigkeit erstellt werden. Die auffälligsten Leitfähigkeitsanomalien waren tief reichende Kanäle, die als Wegsamkeiten für Fluide aus dem Mantel interpretiert wurden. Diese befanden sich unterhalb der Bublak und Hartousov Mofetten und unterhalb der Maare im südlichen Bereich des MT Profils. Da diese Messungen auf das Gebiet der Mofetten und Erdbebenschwärme fokussiert waren, ist die Stationsüberdeckung über den Maaren nicht ausreichend, um die beobachtete Leitfähigkeitsanomalie eindeutig zu interpretieren. Mögliche Interpretationen sind magmatische Zufuhrkanäle oder aber die Abbildung der nahegelegenen Tachov Störungszone oder der Suturzone zwischen Saxothuringikum und Tepla-Barrandium.Deshalb beantrage ich ein MT Experiment in der Region der quartären Vulkane, zumal zwei davon Kandidaten für geplante ICDP Bohrungen sind. Die Hauptziele sind (i) eine Untergrundcharakterisierung der PIER-ICDP Bohrungen durchzuführen, (ii) die Abbildung der regionalen und lokalen Leitfähigkeitsverteilung der Erdkruste und der erbohrbaren Tiefe, um besonders die flachen Maarstrukruren aber auch tektonische Strukturen, wie Scher- und Suturzonen aufzulösen, (iii) die Abbildung von Fluidwegsamkeiten und ihre Verbindung zu angenommenen tiefen magmatischen Reservoiren, (iv) die Untersuchung des Zusammenhangs zwischen quartärem Vulkanismus, der Tachov Störungszone und der nahegelegenen Suturzone zwischen Saxothuringikum und Tepla-Barrandium und (v) die Entwicklung eines konsistenten Untergrundmodells auf Basis von unterschiedlichen geophysikalischen, petrophysikalischen, geologischen und mikrobiologischen Beobachtungen.
Regionalisierte Agrarökosystemmodelle sind in der Lage die Konsequenzen menschlichen Wirtschaftens auf den Flächen in Bezug auf Stoffhaushalt und Stoffdynamik der Region zu beschreiben, zu analysieren und zu bewerten. Systematische Vergleiche zwischen Nutzungsarten werden i.d.R. mittels des Konzeptes der Szenariensimulationen untersucht. In diesem Projekt soll die Technik der Szenariensimulation für agrarökologische Standortmodell ersetzt werden durch die Integration der Simulationsmodell in Methoden der numerischen Kontrolltheorie. Die Anwendung der Kontrolltheorie liefert neben Aussagen über Stoffhaushalt und -dynamik auch Aussagen über die standortspezifisch optimale Managementstrategie und erlaubt so unterschiedliche Managementziele zu vergleichen und zu bewerten. Diese Methode soll systematisch für ein regionales Modell weiterentwickelt und angewendet werden. Konkreter Untersuchungsgegenstand ist das regionale Patuxent Watershed Landscape Modell der University of Maryland, USA. Die nötigen Methoden zur optimalen Kontrolle ökologischer Modelle sind in der Arbeitsgruppe des Antragstellers im Rahmen des SFB 179 'Wasser- und Stoffdynamik in Agrarökosystemen' entwickelt und validiert worden.
Die saisonale vertikale Migration (SVM) beim marinem Zooplankton spiele potentiell eine Schlüsselrolle für die Primär- und Exportproduktion in höheren Breiten mit ausgeprägter Saisonalität. SVM ist ein wichtiger Teil des Verhaltens vieler mariner Zooplanktongemeinschaften in höheren Breiten, das ihnen ermöglicht, die bei der Frühjahrsblüte gebildete Biomass effizient zu nutzen. Geeignete Tage für den SVM Aufstieg im Frühjahr und den SVM Abstieg im Sommer sind wichtig, um die Verfügbarkeit von Futter zu maximieren und die Gefahr des Gefressenwerdens zu minimieren: wer zu früh oder zu spät aufsteigt, riskiert zu verhungern und wer zu spät absteigt wird leichter gefressen (Match-Mismatch-Hypothese). SVM tritt in niederen Breiten wenig bis gar nicht auf. Wegen dieser Komplikationen berücksichtigen die meisten biogeochemischen Modelle nur das Fraßverhalten, aber nicht die SVM des Zooplanktons. SVM wurde in Individuen-basierten Modellen (IBM) simuliert, um die saisonale Entwicklung und regionale Verteilung von Copepoden und deren Entwicklungsstadien zu untersuchen. IBM sind aber zu rechenintensiv für eine Anwendung in globalen 3D Modellen, insbesondere für Langzeitsimulationen. In vorangegangenen Projekten zu biogeochemischer Modellierung haben wir signifikante Diskrepanzen zwischen beobachteter und modellierter Sekundärproduktion beobachtet, die höchstwahrscheinlich auf das Fehlen von SVM im Modell zurückgehen. Hier wollen wir einfachere, trait- und optimalitäts-basierte SVM Modelle für globale Langzeitsimulationen entwickeln. Dabei können wir auf unsere bisher entwickelten Methoden zurückgreifen, um zu untersuchen, wie Traits, z.B. Tag des Aufstiegs oder Grad-Tage, das SVM Verhalten und seine Evolution steuern. Wir werden, zunächst in 1D und später auch in 3D biogeochemischen Modellen, trait-basierten SVM Beschreibungen entwickeln, um die treibenden Kräfte des SVM Verhaltens zu analysieren. Das Hauptziel ist dabei zu verstehen, welche Umweltfaktoren die Evolution von SVM Verhalten lokal bestimmen und wie sie globale Verteilungsmuster im SVM Verhalten und dessen Effekte auf Plankton-Ökologie und -Biogeochemie beeinflussen. Anschließend werden wir das Potential von SVM untersuchen, das Verhalten globaler Modelle zu verbessern, z.B. bezüglich der Verteilungen von Nährstoffen und Exportproduktion. Schließlich möchten wir SVM Effekte in Langzeitsimulationen vergangener und zukünftiger Klima-Szenarien analysieren. Unser Projekt bringt enge Verbindungen zwischen DynaTrait und anderen großen Forschungsprojekten mit sich, wobei DynaTrait vom DFG-finanzierten SFB 754 zu Sauerstoff-Minimum-Zonen und dem BMBF-finanzierten PalMod Projekt zu Langzeit-Klimasimulationen profitiert, aber auch einen Beitrag zu diesen Projekten leistet. Dadurch kann die Sichtbarkeit und Relevanz von DynaTrait für die globale Modellierung deutlich verbessert werden.
Origin | Count |
---|---|
Bund | 377 |
Land | 7 |
Type | Count |
---|---|
Förderprogramm | 376 |
Text | 7 |
unbekannt | 1 |
License | Count |
---|---|
geschlossen | 7 |
offen | 377 |
Language | Count |
---|---|
Deutsch | 325 |
Englisch | 103 |
Resource type | Count |
---|---|
Bild | 1 |
Keine | 216 |
Webseite | 168 |
Topic | Count |
---|---|
Boden | 306 |
Lebewesen und Lebensräume | 332 |
Luft | 279 |
Mensch und Umwelt | 384 |
Wasser | 267 |
Weitere | 381 |