In Berlin gibt es auf vielen Straßen Abweichungen von der innerörtlich zulässigen Höchstgeschwindigkeit von 50 km/h. Geschwindigkeitsbeschränkungen tragen dazu bei, den Verkehr in der Großstadt sicherer und umweltverträglicher zu machen. Wohngebiete, Mischgebiete oder Gewerbe- und Industriegebiete stellen die Verkehrsplanerinnen und -planer vor völlig unterschiedliche Aufgaben. Während in den Wohn- und Mischgebieten die Verkehrssicherheit und die Begrenzung von Lärm und Umweltbelastungen im Vordergrund stehen, muss auf den Hauptverkehrsstraßen der Stadt ein effizienter und möglichst reibungsloser Verkehr gewährleistet werden. Ein wichtiges Mittel, um den Bedürfnissen von Anrainerinnen und Anrainer und den unterschiedlichen Verkehrsteilnehmenden gerecht zu werden, sind Tempobeschränkungen. Sie helfen, den Verkehr nach den spezifischen Bedürfnissen vor Ort und der jeweiligen städtischen Umgebung zu organisieren. Warum Tempobeschränkungen? Untersuchungen zur Wirkung von Tempo 30 an Hauptverkehrsstraßen Karte Tempolimits im Geoportal Berlin Vor Grundschulen und Kindergärten sowie auf Straßenabschnitten mit Unfallhäufung gelten häufig Tempolimits. Diese bieten Schutz (nicht nur) für Kinder und weisen die Verkehrsteilnehmenden grundsätzlich auf besondere Gefahrenorte hin. Lärm stört uns im Schlaf besonders. Die Tempo-30-Regelungen dienen dem Schutz der Nachtruhe. Dieser Schutz ist wichtig, weil dauerhafter nächtlicher Verkehrslärm ab 55 Dezibel wahrscheinlich zu vermehrten Herz-Kreislauf-Erkrankungen führt. An den Berliner Hauptstraßen sind davon knapp 340.000 Menschen betroffen. Die Maßnahme Tempo 30 nachts (22-6 Uhr) ist ein Teil eines Gesamtkonzeptes zur Lärmminderung, die durch weitere Maßnahmen – z. B. den Austausch lauter Straßenbeläge – ergänzt werden. Die Tempo-30-Regelungen in der Nacht lösen die Lärmprobleme der Stadt zwar nicht gänzlich. Aber sie werden zur Folge haben, dass viele Berlinerinnen und Berliner künftig etwas ruhiger schlafen können. Die Berliner Luft muss besser werden! Denn trotz umfangreicher Maßnahmen besteht immer noch die Gefahr, dass die europaweit verbindlichen Grenzwerte für Stickstoffdioxid (NO 2 ) und Feinstaub (PM10) in unserer Stadt überschritten werden. Die von der Weltgesundheitsorganisation (WHO) vorgeschlagenen Zielwerte werden in Berlin sogar flächendeckend überschritten. Es gibt eindeutige Ergebnisse, dass Tempo 30 die Atemluft verbessern kann. Tempo 30 ist eine wirksame Maßnahme zur Verbesserung der Luftqualität, wenn es gelingt, die Qualität des Verkehrsflusses beizubehalten oder zu verbessern. Denn dann werden Anfahrprozesse verkürzt und weniger Emissionen ausgestoßen. Auch Emissionen durch Reifenabrieb und Aufwirbelung werden verringert, da die Reibungskräfte und Turbulenzen bei niedrigen Geschwindigkeiten geringer sind. Emissionen durch Bremsenabrieb sinken zudem, weil die Bremsdauer und -stärke im Vergleich zu Tempo 50 geringer ist. In Berlin wurde die Wirkung von Tempo 30 auf die Luftqualität über mehrere Jahre direkt überprüft. Weitere Informationen zur Luftqualität in Berlin und zum Luftgütemessnetz Untersuchung zur Wirkung von Tempo 30 auf den Verkehr und die Luftqualität (2021) Der Verkehrsversuch „Tempo 30 zur Verbesserung der Luftqualität“ auf fünf stark belasteten Berliner Straßen wurde erfolgreich abgeschlossen. Für die Untersuchung wurden fünf Streckenabschnitte folgender Straßen ausgewählt: Leipziger Straße (Markgrafenstraße – Potsdamer Platz) Potsdamer Straße (Potsdamer Platz – Kleistpark) Hauptstraße (Kleistpark – Innsbrucker Platz) Tempelhofer Damm (Alt-Tempelhof – Ordensmeister Straße) Kantstraße (Amtsgerichtsplatz – Savignyplatz). Die Ergebnisse der Untersuchung haben gezeigt, dass… …Tempo 30 auf Hauptverkehrsstraßen zu einer Verbesserung der NO 2 -Belastung um bis zu 4 µg/m³ im Jahresmittel beitragen kann. …Tempo 30 zu keinem nennenswerten Ausweichverkehr auf andere Straßen führt. …sich durch die niedrigere Reisegeschwindigkeit die Fahrzeit des ÖPNV (Busverkehr) auf den Strecken um rund 60 bis 90 Sekunden verlängert. Die Untersuchung hat somit auch gezeigt, dass Tempo 30 ein wirksames Instrument zur Gestaltung eines nachhaltigen Verkehrs ist. Die Auswirkungen von Tempo 30 an Hauptverkehrsstraßen in Berlin wurden analysiert. Ziel war es, die Wirksamkeit der straßenverkehrsbehördlichen Anordnungen genauer zu untersuchen und geeignete Rahmenbedingungen für die Anordnung von Tempo 30 darzustellen. Unter anderem zeigte sich, dass die mittleren Geschwindigkeiten nach Anordnung von Tempo 30 in rund 80 Prozent der untersuchten Fälle statistisch signifikant sanken, auch ohne bauliche Begleitmaßnahmen oder Radarkontrollen. Die wesentlichen Erkenntnisse der Evaluierung von Tempo 30 an Hauptverkehrsstraßen in Berlin finden Sie im Bericht zur Evaluierung. Darüber hinaus hatte das Umweltbundesamt eine Untersuchung zu den weiteren Auswirkungen von Tempo 30 an Hauptverkehrsstraßen, zum Beispiel auf die Qualität des Verkehrsflusses und auf das subjektive Empfinden der Anwohner, in Auftrag gegeben.
Kurzbeschreibung Ziel ist die Definition des Begriffs „Mikroplastik“ aus Reifenabrieb. Ableitung von Aussagen über „Mikroplastik“ aus Reifenabrieb aus einem Fact Sheet zum Thema Reifenabrieb und Feinstaub. In dem Feinstaub-Papier finden sich grundsätzliche Aussagen dazu, wie sich Reifenabrieb zusammensetzt (Konglomerat aus Gummi, Straßenbelag, Metallspuren etc.), dass neben dem Reifen auch Straßenbelag und Fahrstil entscheidende Faktoren sind und dass die Reifenhersteller durch abriebsärmere Mischungen bereits die Langlebigkeit der Reifen erhöht und den Abrieb gesenkt haben. Seit 2005 befasst sich auch das Tire Industry Project (TIP) unter dem Dach des Weltwirtschaftsrats für Nachhaltige Entwicklung (World Business Council for Sustainable Development – WBCSD) damit (Ergebnisse: Straßen- und Reifenpartikel grundsätzlich zu groß für Feinstaub http://www.wbcsd.org/Projects/Tire-Industry-Project/Tire-Road-Wear-Particles-TRWP; https://www.youtube.com/watch?v=qdn8mFnxDtY) Ergebnisse Fact Sheet zum Thema Reifenabrieb und Feinstaub
Die Themengruppe beinhaltet folgende Daten, jeweils für PM10 (Feinstaub) und NO2 (Stickstoffdioxd), als Jahresmittelwert für das Jahr 2019: * Durchschnittliche flächenhafte Belastung in einem 1 km-Raster * Durchschnittliche Straßenrandbelastung an mindestens 100 m langen Straßenabschnitten an einem ausgewählten Hauptstraßennetz der Landeshauptstadt Dresden. Diese Daten wurden mithilfe folgender Eingangsdaten berechnet: * Verkehrsstärken (Zählungen des Straßen- und Tiefbauamtes der Stadt Dresden, aufbereitet durch das Umweltamt - Stand 2017), * Fahrmuster zur Beschreibung des Verkehrsflusses durch den Lehrstuhl für Verkehrsökologie an der TU Dresden, Stand 2013 * Emissionsfaktoren der Kraftfahrzeuge (HBEFA 3.3) mit Korrekturen durch das Sächsische Landesamt für Umwelt und Geologie (LfULG), * Emissionsdaten für Abrieb und Aufwirbelungen durch den Kraftfahrzeugverkehr (Abrieb von Bremsbelägen, Kupplungen, Reifen und Straßenoberflächen als zusätzlicher Staubquelle) die auf Arbeiten des Ingenieurbüros Lohmeyer GmbH & Co. KG beruhen und ähnlich den dem Handbuch für Emissionsfaktoren (HBEFA) bestimmten Verkehrssituationen zugeordnet wurden, * Neigung der Straßenabschnitte (Umweltamt) * Bebauungsdaten wie durchschnittliche Höhe, durchschnittlicher Abstand und durchschnittliche Dichte der Bebauung an dem jeweiligen Straßenabschnitt, die auf Grundlage der digitalen Stadtkarte ermittelt wurden (Umweltamt, Stand 2019) * Meteorologische Ausbreitungsbedingungen (Windstatistik Großer Garten, DWD) * Messdaten der ständigen Luftschadstoffüberwachung des LfULG * Daten des sächsischen Emissionskatasters Die Berechnung der flächenhaften Belastung und der Straßenrandbelastung erfolgt mit Hilfe des Programmsystems Immikart, das das Ingenieurbüro Lohmeyer GmbH & Co. KG für das LfULG entwickelt hat. Das Programmsystem beinhaltet sowohl ein Modul für die flächenhafte Belastung als ein Modul für die direkte Straßenrandbelastung in bebautem Gebiet (Prokas B). Als Maß für die Güte der Berechnungen dient dabei die erreichte Übereinstimmung mit gemessenen Werten. Die Daten der flächenhaften Belastung wurden zur Darstellung mit Hilfe eines GIS-Systems über das Stadtgebiet gelegt. Die Daten zur Straßenrandbelastung wurden zur Darstellung auf das Straßenknotennetz Stadt Dresden (ESKN 25) mit Hilfe einer Schlüsselbrücke übertragen.
Flusseinträge und direkte Einträge in die Nordsee Die Nordsee wird unter anderem durch Einträge von Nährstoffen und Schwermetallen belastet. Sowohl die wasserbürtigen Nährstoff- wie auch die Schwermetallfrachten aus dem deutschen Nordseeeinzugsgebiet haben sich seit Mitte der 1990er Jahre bis heute deutlich verringert. In den letzten Jahren bleiben die Einträge von Nährstoffen und Schwermetallen jedoch auf einem gleichbleibenden Niveau. Flusseinträge in die Nordsee Nähr- und Schadstoffe werden sowohl aus der Luft als auch über Gewässer und Direkteinleiter in die Nordsee eingetragen. Im Wesentlichen tragen die deutschen Zuflüsse Elbe, Ems, Weser und Eider dazu bei. Diese werden ständig durch Messstellen überwacht (siehe dazu die Übersichtskarte „OSPAR-Meeresgebiet-Regionen“). Um die Schadstoffeinträge zu senken, haben 15 Staaten sowie die Europäische Kommission 1992 das überarbeitete aus dem Jahr 1972/74 stammende Oslo-Paris-Übereinkommen zum Schutz der Meeresumwelt im Nordostatlantik ( OSPAR ) unterzeichnet. Die Nord-Ost Atlantik Umweltstrategie ( The North-East Atlantic Environment Strategy ) wurde seit 1992 mehrfach aktualisiert und umfasst Maßnahmen in folgenden Bereichen: Biologische Vielfalt und Ökosysteme, Eutrophierung , gefährliche Substanzen, menschliche Aktivitäten, offshore Industrie und radioaktive Substanzen. Aufgaben sowie Ergebnisse werden über ein Assessment und Monitoring Programm gesteuert und abgebildet. Ziel der Strategie in Bezug auf Eutrophierung ist es, diese durch die Reduzierung des Eintrags von Nährstoffen und organischen Stoffen zu bekämpfen, sodass keine nachteiligen Auswirkungen auf die Meeresumwelt entstehen. Ein weiteres Ziel der Nord-Ost Atlantik Umweltstrategie ist es die Freisetzung und die Einleitung von gefährlichen Stoffen zu verhindern, um damit die Verschmutzung der Meere durch Schadstoffe zu reduzieren. Umweltkonzentrationen von natürlich vorkommenden Schadstoffen, wie beispielsweise Schwermetallen, sollen möglichst auf Konzentrationen gebracht werden, die nahe ihrem natürlichen Hintergrundwerten liegen. Damit unterstützt OSPAR auch Ziele der Meeresstrategie-Rahmenrichtlinie (Richtlinie 2008/56/EG) , welche die EU Mitgliedstaaten vereinbart haben. Die Anliegerstaaten des Nord-Ost-Atlantiks berichten jährlich gegenüber OSPAR über Fortschritte beim Erreichen dieser Ziele. Weniger Nährstoffe gelangen in die Nordsee Die unter dem Berichtsformat OSPAR Riverine Input and Direct Discharge (RID) berichteten Stofffrachten deutscher Flüsse in die Nordsee zeigen einen deutlichen Abwärtstrend. In Jahren mit hohen Niederschlägen und hohen Abflüssen werden durch Mobilisierung akkumulierter Altlasten in Sedimenten und durch Abschwemmen von Uferbereichen höhere Stofffrachten über die Flüsse in die Meere getragen als in niederschlagsarmen Perioden (siehe z.B. das Elbehochwasser 2002 oder 2013). Die Betrachtung der Eintragsfrachten in Relation zum Abfluss („Abflussnormalisierung“) kann diese hohen Messwerte ausgleichen. Für die Trendbetrachtung von Nährstofffrachten über die Zeit wurden die Frachten immer in Relation zum jährlichen Abfluss gesetzt („Abflussnormalisierung“ – siehe Kapitel Methode). Die Betrachtung der Frachten in Relation zum jährlichen Abfluss ist für ein aussagekräftiges Ergebnis wichtig, weil, bei hohen Niederschlägen Phosphorgehalte aufgrund des Verdünnungseffekts sinken und ergiebige Niederschläge die Stickstoffeinträge erhöhen. Es werden mehr Stickstoffverbindungen aus landwirtschaftlichen Flächen herausgewaschen und in die Flüsse geschwemmt. Die Entwicklung der deutschen Nährstoffeinträge ist in den Abbildungen „Gesamtstickstoffeinträge in die Nordsee“ und „Gesamtphosphoreinträge in die Nordsee“ dargestellt. Die abnehmenden Nährstofffrachten sind u.a. das Ergebnis von Maßnahmen, die Bund und Länder zur Senkung von Einleitungen aus kommunalen und industriellen Abwasseranlagen vereinbart haben. Weitere Regelungen werden unter anderem zur Verringerung von Erosion und atmosphärischen Depositionen wie auch zur Reduktion von Einträgen aus der Landwirtschaft getroffen, z.B. in der novellierten Düngeverordnung. Darüber hinaus verursacht die klimabedingte Trockenheit der letzten fünf bis zehn Jahre einen reduzierten flussbürtigen Eintrag von Gesamtstickstoff und Gesamtphosphor in die deutsche Bucht. Bei der über die Zuflüsse Elbe, Ems, Weser und Eider aggregierten Betrachtung der abflussnormalisierten Nährstoffeinträge in die deutsche Nordsee ist für beide Nährstoffe, Gesamtstickstoff und Gesamtphosphor, im Zeitraum 1990 – 2021 ein statistisch signifikanter Abwärtstrend zu verzeichnen. Die mittleren abflussnormalisierten Eintragsfrachten an Gesamtstickstoff der letzten Jahre sind ca. 37 % geringer als die mittlere Frachten Anfang der 1990er Jahre. Im jüngsten Betrachtungszeitraum 2011 – 2021 zeigt sich jedoch kein statistisch signifikanter Abwärtstrend mehr. Hier bleiben die jährlichen abflussnormalisierten Eintragsfrachten von Gesamtstickstoff und Phosphor auf einem gleichbleibenden Niveau. Aufgrund der Größe des Einzugsgebietes und der damit verbundenen Abflussmenge tragen die Elbe gefolgt von der Weser die höchsten Stickstoff- und Phosphorfrachten in die Nordsee ein. Die aus den Flussgebieten Eider, Ems, Weser und Elbe aggregierten und abflussnormalisierten Stickstofffrachten verringerten sich im Zeitraum zwischen den Jahren 1990 und 2021 um ca. 37 %, die Phosphorfracht sank um ca. 47 % Die stärkste prozentuale und reale Verringerung der Gesamtstickstoff- sowie auch der Gesamtphosphorfracht zeigte die Elbe. Die jährlichen Eintragsfrachten von Gesamtstickstoff und Phosphor bleiben im jüngsten Betrachtungszeitraum 2011 – 2021 auf einem gleichbleibend zu hohem Niveau. Gesamtstickstoffeinträge in die Nordsee Quelle: Umweltbundesamt Gesamtphosphoreinträge in die Nordsee Quelle: Umweltbundesamt Deutlich weniger Schwermetalle Bei den Schwermetallen stehen Cadmium, Blei und Quecksilber im Fokus. Die Anliegerstaaten der Nordsee vereinbarten, die Einträge von gefährlichen Stoffen (zum Beispiel Schwermetallen) durch die Verhinderung ihrer Emissionen, Einleitungen und Verluste zu verringern, um Werte zu erreichen, die keine nachteiligen Auswirkungen auf die menschliche Gesundheit oder die Meeresumwelt haben. Auch diese Einträge werden maßgeblich vom Abfluss bestimmt und werden daher, wie die Nährstoffe Gesamtstickstoff und Gesamtphosphor, abflussnormalisiert betrachtet. Die über die Flussgebiete Eider, Ems, Weser und Elbe aggregierten und abflussnormalisierten Schwermetallfrachten verringerten sich im Zeitraum von 1990 bis 2021 bei Kupfer um ca. 50 %, bei Cadmium, Blei und Zink um ca. 60 % und bei Quecksilber um rund 90 %. Die zu beobachtende Frachtreduktion der Schwermetalle ist hauptsächlich durch Minderungsmaßnahmen bei staub- und gasförmigen Emissionen zu erklären. Diese entstehen überwiegend in Verbrennungs- und Produktionsprozessen, sowie durch Abrieb von Bremsen und Reifen im Verkehr. Emissionsminderungsmaßnahmen für Verbrennungs- und Produktionsprozesse, Stilllegungen veralteter Produktionsstätten nach der Wiedervereinigung, der Einsatz bleifreier Treibstoffe und Anwendungsverbote und -beschränkungen haben insbesondere in den 90er Jahren die Einträge deutlich gesenkt ( Schwermetall-Emissionen ). Jedoch setzten sich diese abnehmenden Trends, außer bei Quecksilber, in der letzten Dekade nicht fort. Die OSPAR Vertragsstaaten liefern regelmäßig Daten über Flussfrachten (Nährstoffe und Schwermetalle) sowie zu Direkteinleitungen, die entlang der Küste sowie in Flussmündungsgebieten erfolgen. In Deutschland werden diese Daten von den Flussgebietsgemeinschaften und zuständigen Behörden der Länder erhoben. Basierend auf den unter OSPAR RID berichteten Daten ist die Entwicklung der Nordseefrachten in den folgenden Abbildungen dargestellt. Zur Erreichung des guten Umweltzustandes unter der Meeresstrategie-Rahmenrichtlinie (MSRL) ist für Schadstoffe das operative Umweltziel festgelegt, die Schadstoffeinträge über die Flüsse weiter zu reduzieren. Wie die dargestellten Daten zeigen, sind für die Nordsee die Schadstoffeinträge über Flüsse ein maßgeblicher Eintragspfad. Insbesondere schwer abbaubare und bioakkumulierende Stoffe können sich in den Meeresökosystemen anreichern und weit verbreiten. Wirkungen können zeitlich verzögert auftreten. Der aktuelle Zustandsbericht für die Nordsee zur Umsetzung der Meeresstrategie-Rahmenrichtlinie (MSRL) zeigt, dass die Bewertungsschwellen für Blei und Quecksilber im Sediment überschritten werden, für Cadmium wird die Bewertungsschwelle eingehalten. Alle drei Metalle halten die Bewertungsschwellen im Wasser ein. Kupfer wird im Rahmen der MSRL nicht bewertet ( https://mitglieder.meeresschutz.info/de/berichte/zustandsbewertungen-art8-10.html ). Cadmiumeinträge in die Nordsee Quelle: Umweltbundesamt Kupfereinträge in die Nordsee Quelle: Umweltbundesamt Quecksilbereinträge in die Nordsee Quelle: Umweltbundesamt Bleieinträge in die Nordsee Quelle: Umweltbundesamt Zinkeinträge in die Nordsee Quelle: Umweltbundesamt Methode Die Abflussnormalisierung der Nährstofffrachten und Schwermetalle wurde nach Larsen, S.E, & Svendsen, L.M. (2021) mit den Daten, die im Rahmen der RID-Berichterstattung von Deutschland an OSPAR berichtet werden, durchgeführt. Für die statistische Analyse der Zeitreihe wurde eine Trendanalyse für den gesamten Zeitraum (1990 bis 2021) und für den Zeitraum 2011 bis 2021 durchgeführt. Die analysierten Trends wurden mit dem Mann-Kendall-Test auf statistische Signifikanz und abnehmenden oder zunehmenden Trend geprüft.
Gesellschaftliche Kosten von Umweltbelastungen Umweltbelastungen verursachen hohe Kosten für die Gesellschaft, etwa in Form von umweltbedingten Gesundheits- und Materialschäden, Ernteausfällen oder Schäden an Ökosystemen. Im Jahr 2022 betrugen die Umweltkosten in den Bereichen Straßenverkehr, Strom- und Wärmeerzeugung mindestens 301 Milliarden Euro. Eine ambitionierte Umweltpolitik senkt diese Kosten und entlastet damit die Gesellschaft. Gesamtwirtschaftliche Bedeutung der Umweltkosten Umweltkosten sind ökonomisch höchst relevant. Das zeigte bereits der sogenannte „Stern Report“ im Jahr 2006, der die allein durch den Klimawandel entstehenden Kosten auf jährlich bis zu 20 % des globalen Bruttoinlandprodukts bezifferte. Auch fünfzehn Jahre nach Erscheinen des „Stern Reviews“, bekräftigt der Ökonom Nicholas Stern, dass die Kosten des Nichthandelns die Kosten des Klimaschutzes um ein Vielfaches übersteigen und ruft erneut zu entschiedenem Handeln im Kampf gegen den Klimawandel auf (Stern 2006 und Stern 2021). Auch auf Deutschland bezogene Schätzungen zeigen die ökonomische Bedeutung allein der durch Luftschadstoffe und Treibhausgase entstehenden Kosten. So haben die deutschen Treibhausgas - und Luftschadstoff-Emissionen in den Bereichen Straßenverkehr, Strom- und Wärmeerzeugung im Jahr 2022 Kosten in Höhe von mindestens 301 Milliarden Euro verursacht (siehe Abb. "Umweltkosten durch Treibhausgase und Luftschadstoffe für Strom-, Wärmeerzeugung und Straßenverkehr"). * Basierend auf Kaufkraft 2024 **Klimaschadenskosten ab 2020 basieren auf dem GIVE-Modell, Werte vor 2020 auf dem Vorgänger Modell FUND Zeitreihen zur Entwicklung der Erneuerbaren Energien sowie Energiedaten, TREMOD 6.53 Umweltkosten der Strom- und Wärmeerzeugung Bei der Strom- und Wärmeerzeugung entstehen hohe Umweltkosten. Sie unterscheiden sich in Abhängigkeit von den eingesetzten Energieträgern deutlich. Stromerzeugung mit Braunkohle verursacht die höchsten Umweltkosten, gefolgt von den fossilen Energieträgern Öl und Steinkohle. Bereits deutlich niedriger liegen die Umweltkosten der Stromerzeugung aus Erdgas. Am umweltfreundlichsten ist die Stromerzeugung aus erneuerbaren Energien (siehe Tab. „Umweltkosten der Stromerzeugung“). Auch bei der Wärmeerzeugung ist der eingesetzte Energieträger ein maßgeblicher Faktor für die Höhe der entstehenden Umweltkosten (siehe Tab. „Umweltkosten der Wärmeerzeugung der privaten Haushalte“). Heizen mit Kohle und Strom verursacht mit Abstand die höchsten Umweltkosten. Schon mit deutlichem Abstand folgen die Fernwärmeversorgung und das Heizen mit Heizöl und Erdgas. Die Umweltkosten der erneuerbaren Energien zur Wärmeerzeugung liegen noch deutlich darunter. Dies zeigt, dass der Ausbau erneuerbarer Energien auf dem Wärmemarkt die entstehenden Umweltkosten deutlich verringert. Die Kostensätze der Strom- und Wärmeerzeugung berücksichtigen dabei lediglich die Emission von Luftschadstoffen und Treibhausgasen, die Kosten infolge der Emission toxischer Stoffe (Quecksilber etc.) oder der Zerstörung von Ökosystemen infolge von Landnutzungsänderungen sind auf Grund fehlender Datenverfügbarkeit nicht eingeschlossen. Umweltkosten des Verkehrs Verkehr verursacht neben Emissionen von Luftschadstoffen und Treibhausgasen auch Lärmbelastung und negative Effekte auf Natur und Landschaft, beispielsweise durch die Zerschneidung der Landschaft. Um die Kostensätze für den Straßenverkehr in Deutschland zu bestimmen, werden zunächst die Emissionen aus dem Betrieb der verschiedenen Fahrzeugtypen ermittelt. Diese Emissionen entstehen bei der Verbrennung der Kraftstoffe sowie durch Reifenabrieb und Staubaufwirbelungen. Im Anschluss daran werden die indirekten Emissionen, d. h. Emissionen aus den anderen Phasen des Lebenszyklus geschätzt (zum Beispiel Herstellung, Wartung, Entsorgung sowie die Bereitstellung der Kraftstoffe). Während die meisten Emissionen der konventionellen Antriebe beim Fahren entstehen, sind bei der Elektromobilität die indirekten Emissionen bedeutender. Die Unterschiede zwischen den ermittelten Umweltkosten der einzelnen Verkehrsträger sind beträchtlich (siehe Tab. „Umweltkosten für verschiedene Fahrzeugtypen“). Umwelt- und Gesundheitsschäden aus Luftschadstoffemissionen sind in Städten höher als in ländlichen Gebieten. Das zeigt der Vergleich der verkehrsbezogenen Kostensätze in Stadt und Land. Um diese Kostensätze – also die Kosten pro Personen- oder Tonnenkilometer – zu bestimmen, müssen die jeweiligen Emissionen pro Fahrzeugtyp und die Anteile von Fahrleistungen in städtischen und ländlichen Gebieten berücksichtigt werden. Die Unterschiede zwischen den Fahrzeugtypen sind zum Teil beträchtlich: So sind zum Beispiel Linienbusse zu rund 57 Prozent (%) in der Stadt unterwegs, Reisebusse hingegen nur zu 9 %. Die Kostenschätzungen verdeutlichen beispielsweise die Vorteile eines Ausbaus des öffentlichen Personennahverkehrs: PKW mit einem Benzin-Motor verursachten 2024 Umweltkosten von 7,66 Eurocent pro Personenkilometer (Pkm), Nahverkehrszüge 4,88 Eurocent pro Pkm und Linienbusse nur 4,60 Eurocent pro Pkm. Umweltkosten der Landwirtschaft Ein weiteres wirtschaftliches Feld mit hohen Umweltwirkungen ist die Landwirtschaft. Durch die Produktion von Lebensmitteln und Energieträgern aber auch mit ihrem Potenzial, Kulturlandschaften zu prägen und Biodiversität zu erhalten, erfüllt die Landwirtschaft wichtige Funktionen für die Gesellschaft. Demgegenüber stehen aber auch zentrale negative Umweltwirkungen der Landwirtschaft. Zu diesen gehören neben Landnutzungsänderungen und der Emission von Treibhausgasen auch die Emission von Stickstoff und Phosphor. Der Kostensatz für die Ausbringung eines Kilogramms (kg) Phosphor beträgt dabei 5,33 Euro 2024 . Bei der Ausbringung von Stickstoff fallen Umweltkosten in Höhe von durchschnittlich 11,23 Euro 2024 pro kg an. Wozu dienen Umweltkostenschätzungen? Schätzungen von Umweltkosten sind vielseitig nutzbar. Sie zeigen, wie teuer unterlassener Umweltschutz ist und untermauern die ökonomische Notwendigkeit anspruchsvoller Umweltziele. Mit ihrer Hilfe lassen sich auch die Kosten und Nutzen von umwelt- und klimapolitischen Maßnahmen besser ermitteln. Dies gilt beispielsweise für die Bewertung von Maßnahmen zum Ausbau Erneuerbarer Energien oder zum Schutz von Ökosystemen, die einen beträchtlichen Nutzen in Form von vermiedenen Umwelt- und Gesundheitsschäden haben. Die Schätzung von Umweltkosten ist auch bei Entscheidungen über den Ausbau der Infrastruktur wichtig, etwa bei der Erstellung des Bundesverkehrswegeplans, in den Umweltkostenschätzungen bereits einfließen. Ohne Berücksichtigung der Umweltkosten würden Investitionen in umweltfreundliche Verkehrssysteme systematisch benachteiligt und das Verkehrsnetz stärker ausgebaut, als dies gesamtwirtschaftlich sinnvoll wäre. Darüber hinaus können Umweltkostenschätzungen auch im Rahmen der Gesetzesfolgenabschätzung wertvolle Informationen liefern. "Methodenkonvention zur Ermittlung von Umweltkosten" des Umweltbundesamtes Es gibt eine Fülle von Studien auf nationaler, europäischer und internationaler Ebene, die Umweltkosten schätzen. Die Schätzungen unterscheiden sich dabei je nach nationalen Gegebenheiten und methodischer Herangehensweise. Eine seriöse und verlässliche Schätzung der Umweltkosten erfordert, wissenschaftlich anerkannte Bewertungsverfahren zu nutzen. Die Bewertungsmaßstäbe sollten begründet und möglichst für alle Anwendungsfelder identisch sein. Annahmen und Rahmenbedingungen müssen transparent gemacht werden. Dadurch lassen sich auch die Bandbreiten der Schätzungen in vielen Fällen erheblich eingrenzen. Das UBA hat daher auf Grundlage der Arbeiten von Fachleuten mehrerer Forschungsinstitute (INFRAS, Fraunhofer ISI, EIFER, UFZ, CE Delft, David Anthoff (UC Berkeley)) die Methodenkonvention zur Ermittlung von Umweltkosten erarbeitet. Die derzeit aktuellste Version stellt die Methodological Convention 3.2 for the Assessment of Environmental Costs (derzeit nur in englischer Sprache verfügbar) dar, bei der es sich um eine Teilaktualisierung der Methodenkonvention 3.1: Kostensätze . Im Zuge der Teilaktualisierung wurden insbesondere die beiden Kapitel zur Emission von Treibhausgasen und Luftschadstoffen überarbeitet: Die hier veröffentlichten Kostensätze basieren auf einem neuen Modell (Treibhausgase) bzw. auf aktualisierten Berechnungen und Annahmen (Luftschadstoffe). Auch in den übrigen Kapiteln wurden die neu ermittelten Kostensätze für Luftschadstoffe und Treibhause berücksichtigt. Abgesehen davon bilden die übrigen Kapitel jedoch weiterhin den Stand der Methodenkonvention 3.1 ab. Für 2025 ist die Veröffentlichung der umfassend überarbeiteten Methodenkonvention 4.0 geplant, welche dann sowohl in Deutsch wie auch in Englisch erscheinen soll. Internalisierung von Umweltkosten Umweltkosten sollten grundsätzlich internalisiert – also den Verursachern angelastet – werden. Da dies bisher nur unzureichend geschieht, gibt es keine hinreichenden wirtschaftlichen Anreize, die Umweltbelastung zu senken. Preise ohne vollständige Internalisierung der Umweltkosten sagen nicht die ökologische Wahrheit. Dies verzerrt den Wettbewerb und hemmt die Entwicklung und Marktdiffusion umweltfreundlicher Techniken und Produkte. Die Umweltkosten müssen vor allem in Bereichen die besonders hohe Umweltschäden verursachen, stärker als bisher in Rechnung gestellt werden. Dies würde beispielsweise den Ausbau der erneuerbaren Energien stärker fördern, die Anreize zur Energieeffizienz erhöhen und wesentlich zu einer nachhaltigen Mobilität beitragen. Aber auch in anderen Bereichen wie beispielsweise der Landwirtschaft und im Baugewerbe würde die Berücksichtigung der Umweltkosten dazu führen, dass nachhaltigere Produktions- und Konsummuster auch wirtschaftlich lohnender werden. Methodik zur Schätzung von Klimakosten Emissionen von Kohlendioxid (CO 2 ) sind der Hauptverursacher des Klimawandels. Das Umweltbundesamt ( UBA ) empfiehlt auf Grundlage der Methodenkonvention für im Jahr 2024 emittierte Treibhausgase einen Kostensatz von 300 Euro 2024 pro Tonne Kohlendioxid (t CO 2 ) zu verwenden (1% Zeitpräferenzrate). Bei einer Gleichgewichtung klimawandelverursachter Wohlfahrtseinbußen heutiger und zukünftiger Generationen (0% Zeitpräferenzrate) ergibt sich ein Kostensatz von 880 Euro 2024 pro Tonne Kohlendioxid. Dabei bezeichnet Euro 2024 jeweils die Kaufkraft des Euro zu Beginn des Jahres 2024. Auch für die Treibhausgase Methan und Lachgas können basierend auf dem Greenhouse Gas Impact Value Estimator (GIVE) Modell Klimakostensätze ermittelt werden, welche in der Tabelle „UBA-Empfehlung zu den Klimakosten“ dargestellt sind. Die Kosten infolge der Emission anderer Treibhausgase können mit Hilfe des Treibhausgaspotenzials (Global Warming Potential) ermittelt werden. Die Schäden, die durch die Treibhausgas -Emissionen entstehen, steigen im Zeitablauf, beispielsweise da der Wert von Gebäuden und Infrastrukturen, die durch Extremwetterereignisse geschädigt werden, steigt. Daher steigen auch die anzusetzenden Kostensätze im Zeitablauf (siehe Tab. „UBA-Empfehlung zu den Klimakosten“). Weitere Erläuterungen hierzu finden Sie in der Methodenkonvention 3.2: Kostensätze (aktuell nur in englischer Sprache verfügbar).
Stadtbäume – und hier vor allem die Straßenbäume – erbringen unverzichtbare Ökosystemleistungen u.a. im Hinblick auf den Klimaschutz und die Klimaanpassung, wie die Absenkung der Temperatur und die Schattenbildung im Sommer. Insofern bedeuten Bäume für innerstädtische Stadtquartiere eine wesentliche Lebensqualität. Ferner erfüllen sie diverse weitere Wohlfahrtswirkungen wie beispielsweise als Biotop, CO 2 -Speicher und Feinstaubfilter. Schließlich sind baumbestandene Straßen auch einfach schöner. Damit die Bäume gedeihen können, sind allerdings die Bedingungen des zukünftigen Standorts zu beachten. Die Auswahl der Bäume ist entsprechend darauf abzustimmen. Berlin verfügt über einen Bestand von über 430.000 Straßenbäumen (Stand: 31.12.2023). Die Situation der Berliner Straßenbäume ist allerdings besorgniserregend. Der zuletzt mit Stand 2020 veröffentlichte Straßenbaum-Zustandsbericht hat eine bedeutende Zustandsverschlechterung der Bäume in fast allen Berliner Bezirken nachgewiesen. Etwa 57 % der Straßenbäume weisen Kronenschäden auf. Für die Lösung des Problems sind allzu schnelle, einfache und nicht nachhaltige Lösungen stets kritisch zu hinterfragen. Die Begriffe „Zukunftsbaum“ oder „Klimabaum“ sind in diesen Zeiten der klimatischen Extreme beliebte Begriffe, um zu suggerieren, dass es Baumarten (= Gattungen, Arten, Sorten) gibt, die sämtliche Bedingungen am innerstädtischen Standort – insbesondere an dem Standort „Stadtstraße“ – aushalten können. Damit wird jedoch eine falsche Erwartung geweckt. Auch in Zukunft wird es keine Baumart geben, die den vielfältigen Herausforderungen am Straßenstandort ganz ohne Schaden begegnen kann. Vermehrte Phasen von Hitze, starker Strahlung und Trockenheit, extreme Starkregenereignisse und heftige Stürme, aber auch die sonstigen schwierigen Bedingungen am Straßenstandort wie Schädigungen durch Baumaßnahmen des Tief- und Hochbaus (Leitungen der Ver- und Entsorgung), Verdichtungen und Versiegelungen des Bodens, Ausbringung von Salz des Winterdienstes und weitere Schadstoffe wie Reifenabrieb und Hundeurin etc. lassen keinen Straßenbaum vollkommen ohne Schäden gedeihen. Den schwierigen Lebensbedingungen – insbesondere in der Innenstadt – stehen die hohen Anforderungen, die an die Straßenbäume gestellt werden, gegenüber. Diese sind beispielsweise: hohe Hitzeresistenz hohe Trockenheitsresistenz hohe Strahlungsresistenz ausreichende Frosthärte (Spätfröste!) geringe Anfälligkeit gegen Schadorganismen hohe Verkehrssicherheit, das heißt u.a. geringe (Wind-) Brüchigkeit geringe Anforderungen an die Pflege (Wasser und Nährstoffe, Pflegeschnitte) hohe Resistenz gegen Bodenverdichtung hohe Resistenz gegen Bodenversiegelung hohe Industriefestigkeit keine störenden, oberflächennahen Wurzeln keine störenden Früchte keine Dornen hohe Ästhetik (möglichst) hohe Biodiversität Insofern sind Baumarten auszuwählen, die trotz der herausfordernden Bedingungen am Straßenstandort gut gedeihen und die an sie gestellten, vielfältigen Anforderungen möglichst weitgehend erfüllen können. Dabei soll keine „Natur am Tropf“, sondern Resilienz gefördert werden. Es gilt das das Prinzip „Abhärten statt Verwöhnen“, wodurch sowohl der Pflegeaufwand, als auch die Kosten dafür langfristig gesenkt werden. Ein weiteres Ziel ist eine hohe Artenvielfalt zur Förderung der Gesundheit des Baumbestands und der Biodiversität. Dabei wird am Straßenstandort die vielfältige Kombination verschiedener Arten und Herkünfte angestrebt. Der Arbeitskreis Stadtbäume der Deutschen Gartenamtsleiterkonferenz (GALK) führt seit 1995 (Straßenbaumtest 1) bundesweit Straßenbaumtests unter besonderer Beachtung der extremen Standortbedingungen an den innerstädtischen Straßen durch. Die Straßenbaumtests sollen fundierte Aussagen über die Eignung bestimmter Baumarten und -sorten für die Verwendung als Straßenbäume auf Grundlage praktischer Erfahrungen liefern. Die Ergebnisse der Straßenbaumtests werden daher regelmäßig in die Straßenbaumliste des Arbeitskreises Stadtbäume der Bundes-GALK übernommen. Berlin beteiligt sich an dem Straßenbaumtest 2 seit dem Jahr 2015 mit derzeit 10 Baumarten und rund 80 Bäumen, die von den Bezirksämtern benannt und im Rahmen der Stadtbaumkampagne gepflanzt wurden. Weitere Informationen(Straßenbaumtest 2 der Deutschen Gartenamtsleiterkonferenz (GALK)) Trotz aller Testungen können mit der Liste aber keine „Superbäume“ / „Klimabäume“ uneingeschränkt empfohlen werden, denn derzeit ist nicht klar, wie sich die klimatischen Verhältnisse in der Zukunft weiter wandeln werden und welche Baumart darauf in welcher Weise reagieren wird. Auch treten immer neue Schadorganismen auf. Einfache Antworten hinsichtlich der Baumarten, die zukünftig noch verwendet werden können, gibt es nicht. Die Präsentationen „Arbeitskreis Städtbäume der Bundes-GALK – Straßenbaumtest 2 – Ergebnisse Berlin 2024“ erhalten Sie auf Anfrage per E-Mail. Bitte wenden Sie sich an Kerstin.Ehlebracht@SenMVKU.berlin.de . Der Arbeitskreis Stadtbäume der Deutschen Gartenamtsleiterkonferenz (GALK) hat zusammen mit dem Bund deutscher Baumschulen (BdB) die Broschüre „Zukunftsbäume für die Stadt“ herausgegeben. Diese Broschüre gibt Empfehlungen und schlägt als Entscheidungshilfe für künftige Baumpflanzungen 65 Baumarten vor. Die Broschüre macht aber eigenes Fachwissen bei der Auswahl der Baumarten nicht obsolet. Die jeweilige Baumart ist in Abhängigkeit vom einzelnen Standort auszuwählen. Ferner verweist die Broschüre der GALK und des BdB auf eine notwendige Vielfalt im Hinblick auf die Auswahl von Baumarten, um den Baumbestand zu stärken. Dabei spielen die sogenannten gebietsheimischen Arten am Straßenstandort mangels Eignung kaum noch eine Rolle. Broschüre „Zukunftsbäume für die Stadt“ Im Rahmen der Stadtbaumkampagne wurden bislang rund 240 verschiedene Baumarten an Berlins Straßen gepflanzt, deren Eignung zukünftig weiter auszuwerten ist. Die Erfahrungen, die mit den einzelnen Baumarten gemacht werden, sind ein wertvoller Fundus, um Entscheidungen über die Verwendung der Baumarten zu treffen. Die Frage stellt sich, ob hinsichtlich der Anzucht der Gehölze zukünftig neue Methoden zur Erzielung der Resilienz anzuwenden sind. Ein Ansatz wäre beispielsweise die Vermehrung von Einzelbäumen, die sich am Straßenstandort „bewährt“ – das heißt recht gesund und vital überlebt – haben. Ein „molekulares Gedächtnis“ ermöglicht manchen Bäumen die Anpassung an wiederkehrende Stresssituationen. Allerdings reagieren die Individuen innerhalb einer Art auch durchaus unterschiedlich. Möglicherweise handelt es sich um ein Zusammenspiel von individuellen Kapazitäten und speziellen Standortbedingungen. Keine Baumart ist an den extremen innerstädtischen Straßenstandort voll und ganz angepasst. Insofern bilden Stadtklima, Bodenbedingungen und Standorteinflüsse große Herausforderungen. Straßenstandorte sind durch menschlichen Einfluss geschaffene Extremstrandorte, die mit dem natürlichen Standort eines Baumes – dem Wald – nicht mehr viel gemeinsam haben. Einfache Antworten zur Baumartenwahl gibt es nicht, da der eine „Zukunftsbaum“ bzw. „Klimabaum“, der immer und überall unter den derzeitigen Klimabedingungen funktioniert, nicht existiert. Der Fokus auf wenige Arten widerspräche auch dem Ziel der biologischen Vielfalt. Insofern besteht noch ein hoher Forschungsbedarf hinsichtlich der Wahl von Baumarten, die die künftigen klimatischen Bedingungen, die jetzt noch gar nicht vollends einzuschätzen sind, aushalten. Die Ergebnisse sind jeweils an die regionalen Gegebenheiten – wie beispielsweise der Höhe des Niederschlags, als auch an die speziellen Standortbedingungen anzupassen.
Feinstaub-Belastung Gegenüber den 1990er Jahren konnte die Feinstaubbelastung erheblich reduziert werden. Zukünftig ist zu erwarten, dass die Belastung eher langsam abnehmen wird. Großräumig treten heute PM10-Jahresmittelwerte unter 20 Mikrogramm pro Kubikmeter (µg/m³) auf. Feinstaubkonzentrationen in Deutschland Die Ländermessnetze führen seit dem Jahr 2000 flächendeckende Messungen von Feinstaub der Partikelgröße PM10 (Partikel mit einem aerodynamischen Durchmesser von 10 Mikrometer oder kleiner) und seit 2008 auch der Partikelgröße PM2,5 durch. Besonders hoch ist die Messnetzdichte in Ballungsräumen. Die hohe Zahl und Dichte an Emittenten – beispielsweise Hausfeuerungsanlagen, Gewerbebetriebe, industrielle Anlagen und der Straßenverkehr – führen zu einer erhöhten Feinstaubkonzentration in Ballungsräumen gegenüber dem Umland. Besonders hohe Feinstaubkonzentrationen werden unter anderem wegen der starken verkehrsbedingten Emissionen wie (Diesel-)Ruß, Reifenabrieb sowie aufgewirbeltem Staub an verkehrsnahen Messstationen registriert. Während zu Beginn der 1990er Jahre im Jahresmittel großräumig Werte um 50 Mikrogramm pro Kubikmeter (µg/m³) gemessen wurden, treten heute PM10-Jahresmittelwerte zwischen 15 und 20 µg/m³ auf. Die im ländlichen Raum gelegenen Stationen des UBA -Messnetzes verzeichnen geringere Werte. Die Feinstaub-Immissionsbelastung wird nicht nur durch direkte Emissionen von Feinstaub verursacht, sondern zu erheblichen Teilen auch durch die Emission von gasförmigen Schadstoffen wie Ammoniak, Schwefeldioxid und Stickstoffoxiden. Diese reagieren in der Luft miteinander und bilden sogenannten „sekundären“ Feinstaub. Einhergehend mit einer starken Abnahme der Schwefeldioxid (SO 2 )-Emissionen und dem Rückgang der primären PM10-Emissionen im Zeitraum von 1995 bis 2000 sanken im gleichen Zeitraum auch die PM10-Konzentrationen deutlich (siehe Abb. „Trend der PM10-Jahresmittelwerte“). Der Trend der Konzentrationsabnahme setzt sich seitdem fort. Die zeitliche Entwicklung der PM10-Konzentrationen wird von witterungsbedingten Schwankungen zwischen den einzelnen Jahren – besonders deutlich in den Jahren 2003 und 2006 erkennbar – überlagert. Erhöhte Jahresmittelwerte wurden auch 2018 gemessen, die auf die besonders langanhaltende, zehnmonatige Trockenheit von Februar bis November zurückzuführen sind. Überschreitungssituation Lokal und ausschließlich an vom Verkehr beeinflussten Stationen in Ballungsräumen traten in der Vergangenheit gelegentlich Überschreitungen des für das Kalenderjahr festgelegten Grenzwerts von 40 µg/m³ auf. Seit 2012 wurden keine Überschreitungen dieses Grenzwertes mehr festgestellt. Seit 2005 darf auch eine PM10 -Konzentration von 50 Mikrogramm pro Kubikmeter (µg/m³) im Tagesmittel nur an höchstens 35 Tagen im Kalenderjahr überschritten werden. Überschreitungen des Tageswertes von 50 µg/m³ werden vor allem in Ballungsräumen an verkehrsnahen Stationen festgestellt. Die zulässige Zahl von 35 Überschreitungstagen im Kalenderjahr wurde hier in der Vergangenheit zum Teil deutlich überschritten (siehe Karten „Feinstaub (PM10) - Tagesmittelwerte Zahl von Überschreitungen von 50 mg/m³“ und Abb. „Prozentualer Anteil der Messstationen mit mehr als 35 Überschreitungen des 24-h-Grenzwertes“). Vor allem das Jahr 2006 fiel durch erhebliche Überschreitungen der zulässigen Überschreitungstage auf, was auf lang anhaltende und intensive „Feinstaubepisoden“ zurückzuführen war. In den unmittelbar zurückliegenden Jahren traten nicht zuletzt durch umfangreiche Maßnahmen der mit Luftreinhaltung befassten Behörden keine Überschreitungen des Grenzwerts mehr auf. Auch 2023 wurde der Grenzwert somit an allen Messstationen in Deutschland eingehalten. Karte: Feinstaub (PM10) - Tagesmittelwerte Zahl von Überschreitungen von 50 µg/m³ 2000-2008 Quelle: Umweltbundesamt Karte: Feinstaub (PM10) - Tagesmittelwerte Zahl von Überschreitungen von 50 µg/m³ 2009-2017 Quelle: Umweltbundesamt Karte: Feinstaub (PM10) - Tagesmittelwerte Zahl von Überschreitungen von 50 µg/m³ 2018-2023 Quelle: Umweltbundesamt Prozentualer Anteil der Messstationen mit mehr als 35 Überschreitungen des 24-h-Grenzwertes... Quelle: Umweltbundesamt Diagramm als PDF Diagramm als Excel mit Daten Witterungsabhängigkeit Vor allem in trockenen Wintern, teils auch in heißen Sommern, können wiederholt hohe PM10 -Konzentrationen in ganz Deutschland auftreten. Dann kann der Wert von 50 µg/m³ großflächig erheblich überschritten werden. Ein Beispiel für eine solche Belastungssituation zeigt die Karte „Tagesmittelwerte der Partikelkonzentration PM10“. Zum Belastungsschwerpunkt am 23. Januar 2017 wurden an etwa 56 % der in Deutschland vorhandenen PM10-Messstellen Tagesmittelwerte von über 50 µg/m³ gemessen. Die höchste festgestellte Konzentration betrug an diesem Tag 176 µg/m³ im Tagesmittel. Wie stark die PM10-Belastung während solcher Witterungsverhältnisse ansteigt, hängt entscheidend davon ab, wie schnell ein Austausch mit der Umgebungsluft erfolgen kann. Winterliche Hochdruckwetterlagen mit geringen Windgeschwindigkeiten führen – wie früher auch beim Wintersmog – dazu, dass die Schadstoffe nicht abtransportiert werden können. Sie sammeln sich in den unteren Luftschichten (bis etwa 1.000 Meter) wie unter einer Glocke. Der Wechsel zu einer Wettersituation mit stärkerem Wind führt zu einer raschen Abnahme der PM10-Belastung. Auch wenn die letzten Jahre eher gering belastet waren, können auch zukünftig meteorologische Bedingungen auftreten, die zu einer deutlich erhöhten Feinstaubbelastung führen können. Bürgerinnen und Bürger können laufend aktualisierte Feinstaubmessdaten und Informationen zu Überschreitungen der Feinstaubgrenzwerte in Deutschland im Internet und mobil über die UBA-App "Luftqualität" erhalten. Bestandteile des Feinstaubs Die Feinstaubbestandteile PM10 und PM2,5 sind Mitte der 1990er Jahre wegen neuer Erkenntnisse über ihre Wirkungen auf die menschliche Gesundheit in den Vordergrund der Luftreinhaltepolitik getreten. Mit der EU-Richtlinie 2008/50/EG (in deutsches Recht umgesetzt mit der 39. Bundes-Immissionsschutz-Verordnung (39. BImSchV )), welche die bereits seit 2005 geltenden Grenzwerte für PM10 bestätigt und neue Luftqualitätsstandards für PM2,5 festlegt (siehe Tab. „Grenzwerte für den Schadstoff Feinstaub“), wurde dem Rechnung getragen. Als PM10 beziehungsweise PM2,5 (PM = particulate matter) wird dabei die Massenkonzentration aller Schwebstaubpartikel mit aerodynamischen Durchmessern unter 10 Mikrometer (µm) beziehungsweise 2,5 µm bezeichnet. Herkunft Feinstaub kann natürlichen Ursprungs sein oder durch menschliches Handeln erzeugt werden. Stammen die Staubpartikel direkt aus der Quelle - zum Beispiel durch einen Verbrennungsprozess - nennt man sie primäre Feinstäube. Als sekundäre Feinstäube bezeichnet man hingegen Partikel, die durch komplexe chemische Reaktionen in der Atmosphäre erst aus gasförmigen Substanzen, wie Schwefel- und Stickstoffoxiden, Ammoniak oder Kohlenwasserstoffen, entstehen. Wichtige vom Menschen verursachte Feinstaubquellen sind Kraftfahrzeuge, Kraft- und Fernheizwerke, Abfallverbrennungsanlagen, Öfen und Heizungen in Wohnhäusern, der Schüttgutumschlag, die Tierhaltung sowie bestimmte Industrieprozesse. In Ballungsgebieten ist vor allem der Straßenverkehr eine bedeutende Feinstaubquelle. Dabei gelangt Feinstaub nicht nur aus Motoren in die Luft, sondern auch durch Bremsen- und Reifenabrieb sowie durch die Aufwirbelung des Staubes auf der Straßenoberfläche. Eine weitere wichtige Quelle ist die Landwirtschaft: Vor allem die Emissionen gasförmiger Vorläuferstoffe aus der Tierhaltung tragen zur Sekundärstaubbelastung bei. Als natürliche Quellen für Feinstaub sind Emissionen aus Vulkanen und Meeren, die Bodenerosion, Wald- und Buschfeuer sowie bestimmte biogene Aerosole , zum Beispiel Viren, Sporen von Bakterien und Pilzen zu nennen. Während im letzten Jahrzehnt des 20. Jahrhunderts die Gesamt- und Feinstaubemissionen in Deutschland drastisch reduziert werden konnten, verlangsamte sich seither die Abnahme (siehe „Emission von Feinstaub der Partikelgröße PM10“ und „Emission von Feinstaub der Partikelgröße PM2,5“ ). Für die nächsten Jahre ist zu erwarten, dass die Staubkonzentrationen in der Luft weiterhin nur noch langsam abnehmen werden. Zur Senkung der PM-Belastung sind deshalb weitere Maßnahmen erforderlich. Gesundheitliche Wirkungen Feinstaub der Partikelgröße PM10 kann beim Menschen durch die Nasenhöhle in tiefere Bereiche der Bronchien eindringen. Die kleineren Partikel PM2,5 können bis in die Bronchiolen und Lungenbläschen vordringen und die ultrafeinen Partikel mit einem Durchmesser von weniger als 0,1 µm sogar bis in das Lungengewebe und den Blutkreislauf. Je nach Größe und Eindringtiefe der Teilchen sind die gesundheitlichen Wirkungen von Feinstaub verschieden. Sie reichen von Schleimhautreizungen und lokalen Entzündungen im Rachen, der Luftröhre und den Bronchien oder Schädigungen des Epithels der Lungenalveolen bis zu verstärkter Plaquebildung in den Blutgefäßen, einer erhöhten Thromboseneigung oder Veränderungen der Regulierungsfunktion des vegetativen Nervensystems (zum Beispiel mit Auswirkungen auf die Herzfrequenzvariabilität). Eine langfristige Feinstaubbelastung kann zu Herz-Kreislauferkrankungen und Lungenkrebs führen, eine bestehende COPD (Chronisch Obstruktive Lungenerkrankung) verschlimmern, sowie das Sterblichkeitsrisiko erhöhen. Messdaten Mitte der 1990er Jahre wurde zunächst in einzelnen Ländermessnetzen mit der Messung von PM10 begonnen. Seit dem Jahr 2000 wird PM10 deutschlandweit gemessen. Für die Jahre, in denen noch nicht ausreichend Messergebnisse für die Darstellung der bundesweiten PM10-Belastung vorlagen, wurden PM10-Konzentrationen näherungsweise aus den Daten der Gesamtschwebstaubkonzentration (TSP) berechnet. Seit dem Jahr 2001 basieren alle Auswertungen ausschließlich auf gemessenen PM10-Daten. PM2,5 wird seit dem Jahr 2008 deutschlandweit an rund 200 Messstationen überwacht.
Stickstoffdioxid (NO 2 ) Partikel (PM 10 ) Partikel (PM 2,5 ) Ozon (O 3 ) Meteorologie Die vorliegende Übersicht informiert über die Belastung durch die wichtigsten Luftschadstoffe und dient zur ersten Einordnung der Luftschadstoffbelastung in Berlin im Jahr 2023. Eine vollständige Auswertung für alle Luftschadstoffe erfolgt in den Jahresberichten des Berliner Luftgütemessnetzes: Luftdaten-Archiv: Berichte und ergänzende Daten Im Jahr 2023 wurde die Luftqualität gemäß 39. Bundes-Immissionsschutzverordnung (39. BImSchV) an 47 Standorten gemessen, darunter 17 Messcontainer. Sieben dieser 17 Messcontainer sind verkehrsnah und jeweils fünf in innerstädtischen Wohngebieten und am Stadtrand platziert. An den übrigen Standorten werden vereinfachte Verfahren wie Kleinstsammler oder Passivsammler eingesetzt. Links Alle Informationen zu den Messstationen und die Messwerte Stündliche aktualisierte Messergebnisse der automatischen Stationen des BLUME und ein aktueller Luftqualitätsindex Weitere Informationen zu den Grenz- und Zielwerten für die Beurteilung der Luftqualität Mehr Informationen zu den relevanten Schadstoffquellen Der lokale Dieselverkehr ist der Hauptverursacher für die Stickstoffdioxidbelastung in Berlin. Die im Jahr 2023 vom Berliner Luftgütemessnetz ermittelten NO 2 -Jahresmittelwerte sind in der Abbildung 1 dargestellt. Unterschieden wird hier zwischen automatischen Messgeräten in Messcontainern und Passivsammlern. Die Jahresmittelwerte werden für eine bessere Übersicht in Abbildung 2 als Balkendiagramm nach aufsteigender NO 2 -Belastung sortiert dargestellt. Die Passivsammler, die für die Beurteilung der Luftqualität an die EU gemeldet werden, sind in der Abbildung mit einem Stern (*) gekennzeichnet. Für das Jahr 2023 lassen sich die NO 2 -Jahresmittelwerte in Berlin wie folgt zusammenfassen: am Stadtrand: 7 bis 9 µg/m³ im städtischen Hintergrund: 12 bis 18 µg/m³ an den kontinuierlich messenden verkehrsnahen Stationen: 20 bis 32 µg/m³ beurteilungsrelevante Passivsammler an Straßen: 23 bis 38 µg/m³ Damit traten die höchsten Konzentrationen an den Straßenmessstellen auf. In den Wohngebieten der Innenstadt fällt die Konzentration etwa auf die Hälfte ab. Am Stadtrand beträgt sie nur noch circa ein Viertel der Belastung, die an den innerstädtischen Hauptverkehrsstraßen gemessen wird. Der Grenzwert für NO 2 von 40 µg/m³ (für den Jahresmittelwert) wurde 2023 an allen Messpunkten, die beurteilungsrelevant sind, eingehalten. Zusätzlich zur langfristigen Belastung mit NO 2 wird auch die kurzfristige Spitzenbelastung beurteilt. Hierfür gilt ein Immissionsgrenzwert für das 1-Stundenmittel von 200 µg/m³, wobei 18 Überschreitungen pro Kalenderjahr zulässig sind. In 2023 wurde dieser Wert an keiner Stunde und an keiner Messstation ermittelt. Im Vergleich zum Vorjahr 2022 gab es stadtweit einen leichten Rückgang der Stickstoffdioxidkonzentration. Der flächendeckende Konzentrationsrückgang weist darauf hin, dass dieser durch eine meteorologisch günstige Situation zustande gekommen ist. Auch die Flotte der Dieselfahrzeuge wird von Jahr zu Jahr sauberer, da immer mehr Fahrzeuge den strengsten Abgasstandard Euro 6d erfüllen. Zudem wurden zunehmend Doppeldeckerbusse der BVG außer Betrieb genommen, die erhöhte Stickoxidemissionen verursachen. Zwei Messstandorte gilt es 2023 differenziert zu betrachten: Der Standort Friedrichstraße 172 (MS 562) befand sich bis Juli 2023 innerhalb eines verkehrsberuhigten Bereichs, der anschließend wieder für den Verkehr geöffnet wurde. Dies erklärt den geringen Jahresmittelwert von 18 µg/m³, der somit nicht repräsentativ für eine Straßenmessstelle ist. Der Standort Schildhornstraße 76 (MC117) erfasst unter anderem die Verkehrsemissionen am Ausläufer der A100. Durch die Sperrung des Schlangenbader Tunnels seit April 2023 verteilte sich der Nord-Süd-Verkehr über die angrenzenden Wohngebiete um den Breitenbachplatz. Die Verkehrsbelastung und damit auch der Schadstoffausstoß waren somit am Standort des Messcontainers in der zweiten Jahreshälfte deutlich geringer. Dadurch sank der Jahresmittelwert gegenüber dem Vorjahr um 8 µg/m³. Im August 2022 konnten die letzten vier Streckenabschnitte mit Dieselfahrverboten aufgehoben werden. An allen Streckenabschnitten konnte 2023 kein Anstieg der Stickstoffdioxidkonzentration beobachtet werden: Bei der Beurteilung der PM 10 -Belastung wird europaweit die Konzentration der gesundheitlich besonders bedenklichen Partikel mit einem aerodynamischen Durchmesser kleiner als 10 Mikrometer (PM 10 ) betrachtet. Diese Partikel haben sowohl vom Menschen beeinflusste als auch natürliche Quellen. Zu letzteren gehören Bodenerosion, Meeresgischt, Waldbrände und Saharastaub sowie biogene Partikel wie Pollen, Viren, Bakterien- und Pilzsporen sowie Pflanzenreste. Primäre Partikel, die direkt aus Quellen wie Verbrennungsprozessen, z.B. Dieselruß, stammen, werden von sekundären Partikeln unterschieden, die sich in der Atmosphäre aus Schadgasen wie Schwefel- und Stickstoffoxiden, Ammoniak oder Kohlenwasserstoffen bilden. Die Bildung sekundärer Partikel muss besonders bei großräumigen Transporten von Luftschadstoffen in der Atmosphäre berücksichtigt werden. Bedeutende PM 10 -Quellen sind Verkehr, Kraft- und Fernheizwerke, Kaminöfen, Heizungen in Wohnhäusern, Baustellen, Schüttgutumschlag und verschiedene industrielle Prozesse. An verkehrsnahen Stationen treten in der Regel höhere Werte auf als im städtischen Hintergrund, insbesondere an Tagen bei Wetterlagen mit schlechten Austauschbedingungen. Hier tragen die noch nicht geminderten Emissionen aus dem Abrieb von Reifen und Bremsen sowie aus der Aufwirbelung von Partikeln von der Straßenoberfläche zu erhöhten Tagesmittelwerten bei. Zu lokalen Konzentrationsspitzen tragen zudem auch Baustellen bei. Hingegen verursacht Dieselruß nur noch etwa 4 % der PM 10 -Belastung an einer Straße. Partikel PM 10 können je nach Wetterlage über hunderte bis tausende Kilometer transportiert werden. Etwa 62 % der PM 10 -Belastung an verkehrsnahen Messpunkten in der Berliner Innenstadt stammt aus Quellen außerhalb Berlins. Seit 2005 liegt der Grenzwert für das PM 10 -Jahresmittel zum Schutz der menschlichen Gesundheit bei 40 µg/m³ und der Tagesgrenzwert bei 50 µg/m³. Letzterer darf pro Kalenderjahr maximal an 35 Tagen überschritten werden. Die Jahresmittel für die einzelnen Stationen sind in Abbildung 3 abgebildet. Für das Jahr 2023 lassen sich die PM 10 -Jahresmittelwerte in Berlin wie folgt zusammenfassen: am Stadtrand: 12 bis 15 µg/m³ im städtischen Hintergrund: 15 bis 17 µg/m³ verkehrsnah an Hauptverkehrsstraßen: 17 bis 19 µg/m³ Problematischer als der Jahresgrenzwert war stets die Einhaltung des Grenzwertes für das Tagesmittel. Tabelle 2 fasst die Zahl der Überschreitungen des Kurzzeitgrenzwertes im Jahr 2023 zusammen. Der Tagesgrenzwert für PM 10 von 50 µg/m³ als Tagesmittel wurde im Jahr 2023 an verkehrsnahen Messstationen lediglich an ein bis vier Tagen überschritten. Der höchste Tagesmittelwert von 69 µg/m³ trat wie im Vorjahr an der Silbersteinstraße auf – am Neujahrstag durch das Silvesterfeuerwerk. In Wohngebieten im städtischen Hintergrund wurde eine Überschreitung gezählt. Hier war die Ursache eine nahegelegene Baustelle. Am Stadtrand lagen wie schon 2022 alle Tagesmittelwerte unter 50 µg/m³. Somit ist weiterhin ein rückläufiger Trend erkennbar. Die jährlichen Schwankungen sind jedoch bei den Überschreitungstagen sehr viel ausgeprägter als beim Jahresmittelwert. Die Anzahl der Überschreitungen des Grenzwertes für das Tagesmittel sind noch viel stärker von meteorologischen Bedingungen und der Häufigkeit von austauscharmen Hochdruckwetterlagen mit südlichen bis östlichen Winden abhängig, als die Mittelwerte für die einzelnen Kalenderjahre. 2023 war ein meteorologisches günstiges Jahr mit wenigen Hochdruckwetterlagen und vermehrt westlichen bis südwestlichen Winden. Damit kann die geringe Anzahl an Überschreitungen erklärt werden. Eine Teilmenge des PM 10 sind die feineren Partikel PM 2,5 , deren aerodynamischer Durchmesser kleiner als 2,5 Mikrometer ist. In Berlin bestehen im Mittel ca. 60 bis 70 % der PM 10 -Fraktion aus den kleineren PM 2,5 -Partikeln. Die wichtigsten Quellen dieser kleinen Partikel sind Verbrennungsprozesse und die Bildung von Sekundärpartikeln aus Gasen. Die Jahresmittel für die einzelnen Stationen sind in Abbildung 4 abgebildet. Für das Jahr 2023 lassen sich die PM 2,5 -Jahresmittelwerte in Berlin wie folgt zusammenfassen: am Stadtrand: 8 bis 9 µg/m³ im städtischen Hintergrund: 10 µg/m³ verkehrsnah an Hauptverkehrsstraßen: 11 bis 12 µg/m³ Der seit 2015 gültige Grenzwert für den Schutz der menschlichen Gesundheit von 25 µg/m³ im Jahresmittel wurde an allen Messstationen eingehalten. Gegenüber 2022 konnte berlinweit ein leichter Rückgang der PM 2,5 -Konzentration festgestellt werden. Grund dafür ist womöglich die günstigere meteorologische Situation im Jahr 2023. Bodennahes Ozon ist ein Schadstoff, der nicht direkt freigesetzt, sondern in der Atmosphäre bei intensiver Sonneneinstrahlung über photochemische Prozesse aus Stickstoffdioxid gebildet wird. Dabei entsteht ein Gleichgewicht zwischen Auf- und Abbau, da das dabei entstehende Stickstoffmonoxid wiederum Ozon abbaut. Der Kreislauf wird jedoch durch einige Stoffe gestört und das vorherrschende Gleichgewicht verschiebt sich zur verstärkten Ozonbildung. Zu den wichtigen Störstoffen gehören flüchtige organische Verbindungen (VOC), Kohlenstoffmonoxid (CO) und Kohlenwasserstoffe wie Methan. Diese sogenannten Ozonvorläufersubstanzen stammen sowohl aus menschengemachten, als auch aus natürlichen Quellen. In Berlin wird bodennahes Ozon seit Jahren an zwei städtischen und fünf regionalen Hintergrundstationen am Stadtrand gemessen. Am Stadtrand treten tendenziell die höchsten Konzentrationen auf, da dort der Abbau von Ozon durch geringe Stickstoffmonoxid-Konzentrationen eingeschränkt ist. Im Jahr 2019 wurde das Ozon-Monitoring um die Messstelle in der Frankfurter Alle (MC174) erweitert, da sich ein steigender Trend in der mittleren Belastung angedeutet hat. JM: Jahresmittel MAX_8h: Maximaler 8-Stunden-Mittelwert N120_8h: Anzahl an Tagen, an denen Max_8h den Zielwert von 120 µg/m³ überschritten hat N120_3J: Anzahl an Tagen, an denen N120_8h über die letzten 3 Kalenderjahre den Zielwert von 120 µg/m³ überschritten hat. N180: Anzahl der 1-Stunden-Mittel in denen die Informationsschwelle von 180 µg/m³ überschritten wurde Zum Schutz der menschlichen Gesundheit gibt es eine Reihe von Kennwerten. Diese sind in Tabelle 3 für das Jahr 2023 aufgeführt. Zunächst aufgeführt ist das Jahresmittel (JM). Einen Grenzwert gibt es hierfür nicht. Auffällig ist, dass alle Werte nahe bei einander liegen, was auf eine gleichmäßige Verteilung der Ozonbelastung hindeutet. Der europaweite Zielwert zum Gesundheitsschutz ist der Mittelwert über 8 Stunden bei einer Konzentrationsschwelle von 120 µg/m³ (N120_8h) mit einer zulässigen Anzahl von Überschreitungen an 25 Tagen im 3-Jahresmittel (N120_3J). Der Wert wird über 3 Jahre gemittelt, um den starken Einfluss der Witterung auf die Ozon-Konzentration zu berücksichtigen. Der höchste 8-Stunden-Mittelwert wurde 2023 in Friedrichshagen mit 142 mg/m³ gemessen. Hier wurden auch die meisten Überschreitungen verzeichnet. Der europaweite Zielwert wurde im Jahr 2023 dennoch an allen Messstationen eingehalten. Zusätzlich zum Zielwert gibt es eine Alarmschwelle, bei dessen Überschreitung bereits bei kurzzeitiger Exposition eine Gefahr für die menschliche Gesundheit besteht. Für Ozon wird ab einer Konzentration von 180 µg/m³ die Öffentlichkeit informiert und ozonempfindlichen Personen wird empfohlen, lang andauernde und körperlich anstrengende Tätigkeiten im Freien zu vermeiden. Zu einer Überschreitung der Informationsschwelle von 180 µg/m³ kam es im Kalenderjahr 2023 nicht. AOT40: Summe der Ozon-Werte, die über 80 µg/m³ (40 ppb) liegen, addiert über die Monate Mai bis Juli zwischen 8:00 Uhr und 20:00 Uhr (Langfristiges Ziel zum Schutz der Vegetation: 6.000 µg/m³ h) AOT40_5: AOT40 gemittelt über die letzten 5 Kalenderjahre (Zielwert zum Schutz der Vegetation ab 2010: 18.000 µg/m³ h) *: nicht genug Messwerte Ähnlich wie für den Schutz der menschlichen Gesundheit wird ein Indikator für die Schädigung der allgemeinen Vegetation in Form des Summenparameters AOT40 (Accumulated Ozone Exposure over a threshold of 40 ppb) verwendet. Dieser ist in Tabelle 4 aufgelistet. Der AOT40 wird aus der kumulierten Differenz zwischen einem Stundenwerten über 40 ppb und dem Schwellenwert von 40 ppb (das entspricht ca. 80 µg/m³) in Bodennähe ermittelt. Dabei wird nur der Zeitraum innerhalb der Vegetationsperiode, d.h. von Mai bis Juli, zwischen 8 und 20 Uhr (MEZ) berücksichtigt. Zu dieser Zeit gelten Pflanzen als besonders ozonempfindlich. Seit 2010 ist ein Zielwert (AOT40_5) von 18.000 µg/m³ h, gemittelt über 5 Jahre, soweit wie möglich einzuhalten. Als langfristiges Ziel ist ein Jahreswert von 6.000 µg/m³ h festgelegt, allerdings ohne Angabe, bis wann dieser Wert eingehalten werden soll. Der AOT40, die Summe über Mai bis Juli, lag im Kalenderjahr 2023 bei einem Maximalwert von 16.543 µg/m³ h. Der AOT40_5-Wert, also der ATO40-Wert gemittelt über 5 Jahre, lag zwischen 7.836 und 15.502 µg/m³ h und blieb damit auch an der höchst belasteten Messstation in Friedrichshagen (MC085) unter dem seit 2010 geltenden Zielwert zum Schutz der Vegetation von 18.000 µg/m³ h. Dahingegen wird das langfristige Ziel von 6.000 µg/m³h deutlich überschritten. Das Wetter hat einen erheblichen Einfluss auf die Luftqualität und trägt zu Schwankungen der Jahresmittelwerte und der Kurzzeitwerte von Jahr zu Jahr bei. Dabei werden sowohl der Ausstoß von Schadstoffen als auch deren Transport, Umwandlung und Ausscheidung aus der Atmosphäre beeinflusst.
Die Beliebtheit von Kaminöfen ist hoch. Ein Kaminofen ist nicht nur ein Sinnbild für Gemütlichkeit, sondern bietet Wärme unabhängig von Gas, Öl oder Stromlieferungen. Die Energiekrise sorgt aktuell mit steigenden Gas- und Heizölpreisen sowie der Sorge um eine unzureichende Heizversorgung im Winter zu einer erhöhten Nachfrage von Kaminöfen. Der Verkauf hat stark zugenommen, so dass Ofenbauer und Installateure lange Wartelisten für Ihre Aufträge haben. Gemäß den Erhebungen der Schornsteinfeger-Innung gab es im Jahr 2021 in Berlin ca. 148.000 sogenannte Einzelraumfeuerungsanlagen. Einzelraumfeuerungsanlagen, wie Kaminöfen, heizen nur einen Raum und nicht die ganze Wohnung und werden mit festen Brennstoffen (Holz oder Kohle) betrieben. In der Abbildung ist die Aufteilung der ausschließlich oder überwiegend mit Scheitholz betriebenen insgesamt 115.160 Einzelraumfeuerungsanlagen nach Berliner Bezirken dargestellt. Durch die Verbrennung von Holz können erhebliche Mengen von Luftschadstoffen freigesetzt werden, die die Nachbarschaft beeinträchtigen und zu Beschwerden führen. Dies macht sich vor allem in der kalten Jahreszeit bemerkbar. Zum einen wird mehr geheizt, zum anderen treten auch öfter austauscharme Wetterlagen auf, bei denen die Verdünnung der Schadstoffe durch geringe Windgeschwindigkeiten und Temperaturinversionen (kalte Luft am Boden, etwas wärmere Luft in der Höhe) erschwert wird. Das bedeutet: Wenn abends der Wind schwächer wird, dann kommen die Abgase besonders konzentriert in der Nachbarschaft an. Bei der Verbrennung von Scheitholz entstehen gesundheitsschädliche Verbrennungsprodukte wie Partikel (PM), polyzyklische aromatische Kohlenwasserstoffe (PAK), Kohlenmonoxid (CO), Stickoxide (NO X ), Schwefeldioxid (SO 2 ), chlorhaltige Verbindungen, flüchtige organische Verbindungen (VOC) sowie klimaschädliches Methan, Lachgas und Ruß. Diese Stoffe gelangen über den Schornstein in die Außenluft. Die Verbrennung von Holz (und Kohle) verursacht zudem erheblich mehr Partikel als andere Brennstoffe. Gemäß dem Umweltbundesamt emittiert ein neuer Kaminofen genauso viel Partikel (ca. 500 Milligramm) in einer Stunde wie der Motor eines modernen Diesel-Pkw (EURO 6) bei einer 100 km langen Fahrt. Partikel können Bronchitis, asthmatische Anfälle oder Erkrankungen des Herz-Kreislauf-Systems verursachen. In der Tabelle sind die Heizwerte der einzelnen Brennstoffe, also die Mengen an Wärmeenergie, die bei der Verbrennung entstehen, gegenübergestellt. Beim Vergleich wird klar, dass Holz den Brennstoff mit dem geringsten Heizwert darstellt. Je höher der Heizwert eines Brennstoffs, desto geringer der Verbrauch. Der Heizwert kann somit auch einen entscheidenden Einfluss auf die Heizkosten haben. Ebenfalls dargestellt sind die durchschnittlichen Emissionsfaktoren von einigen relevanten Schadstoffen, die bei der Verbrennung der aufgeführten Brennstoffe bezogen auf die dabei freiwerdende Energie entstehen. Hier zeigt sich, dass bei Heizöl und Gas weniger Luftschadstoffe und Treibhausgase emittiert werden als bei Holz. Der Unterschied tritt bei Staubemissionen sehr deutlich hervor. Die Emissionsfaktoren für Feinstaub beim Einsatz von Gas sind fast vernachlässigbar, beim Einsatz von Öl moderat, bei Kohle und Holz um einen Faktor von etwa 100 erhöht. Die Heizperiode von 9 Monaten im Jahr entspricht umgerechnet 270 Heiztagen. Bei der Annahme von 3 Heizstunden / Tag ergeben sich insgesamt 810 Heizstunden. Der Heizwert von Brennholz beträgt 4,2 kWh/kg. Bei einem Ofen mit einer Nennwärmeleistung von 6 kW ergibt sich damit ein Holzverbrauch von 1,4 kg/h. Wird noch ein Wirkungsgrad von 80 % berücksichtigt, erhöht sich der Holzverbrauch auf etwa 1,8 kg/h. Multipliziert mit der Anzahl von 810 Heizstunden im Jahr sind etwa 1.460 kg Brennholz je Heizperiode erforderlich. Brennholz wird in Raummetern berechnet. Ein Raummeter ist ein ordentlich geschichteter Holzstapel mit einem Volumen von einem Kubikmeter inklusive einem Holraum- bzw. Luftanteil von ca. 30 %. Ein Raummeter Buchenholz mit einer Feuchte von 20 % wiegt ca. 530 kg bzw. ca. 0,5 t. Pro Jahr beträgt der Brennholzanteil damit etwa 2,8 Raummeter Buchenholz. Dies entspricht ungefähr einer Buche mit einem Stammdurchmesser von 40 cm und einer Wuchshöhe von 25 m. Um diese Wachstumshöhe zu erreichen braucht die Buche ca. 80 Jahre. Geht man von diesem kontinuierlichen Verbrauch für alle in Berlin mit Scheitholz betriebenen Einzelraumfeuerungsanlagen aus, wurden im Jahr 2021 rechnerisch etwa 115.160 Bäume zur Wärmeversorgung verbrannt. Dafür müssen in einem Jahr Bäume auf einer von ca. 770 Hektar abgeholzt werden, was in etwa einem Sechstel der Waldfläche des Berliner Grunewalds gleichkommt. Alternativ entsprechen 1.460 kg Brennholz etwa 515 kg bzw. 606 l Heizöl mit einem Heizwert von 11,9 kWh/kg oder ca. 479 kg Erdgas mit einem Heizwert von 12,8 kWh/kg. Partikel stammen aus einer Vielzahl von Quellen. Der Anteil der Holzverbrennung am gesamten Berliner Partikelausstoß kann dem sogenannten Emissionskataster entnommen werden Emissionskataster Das Emissionskataster ist ein räumliches Verzeichnis der ausgestoßenen Menge einzelner Quellgruppen von Luftschadstoffen über ein Jahr. Insgesamt werden in Berlin etwa 2.500 Tonnen Partikel pro Jahr emittiert. Dabei hat der Straßenverkehr mit 626 Tonnen pro Jahr den größten Anteil. Er enthält nicht nur den zurückgehenden Partikelausstoß aus dem Auspuff, sondern auch die inzwischen dominierenden, durch Abrieb von Fahrbahn, Reifen und Bremsen sowie durch Aufwirbelung an die Luft abgegebenen Partikel. Vergleicht man die reinen Abgasemissionen des Kfz-Verkehrs von 110 Tonnen pro Jahr mit den Partikelemissionen von 186 Tonnen pro Jahr aus der Holzverbrennung zeigt sich, dass die Quelle Holzverbrennung dennoch nicht unwesentlich ist. Um den Beitrag der Holzverbrennung an der gemessenen Partikelbelastung in der Atmosphäre (Immissionsbelastung) zu bestimmen, können auf Filtern gesammelte Partikel auf ihre chemischen Eigenschaften hin untersucht werden. Ein eindeutiger Indikator für Holzverbrennung ist der Stoff Levoglucosan. Levoglucosan entsteht bei der Verbrennung von Cellulose und kann daher nicht aus Verbrennungsprozessen der Industrie oder des Verkehrs stammen. Da seine Bestimmung jedoch sehr aufwendig ist, werden in Berlin seit 2017 automatische Messgeräte (Aethalometer) zur Erfassung der quellspezifischen Lichtabsorbtion verwendet (siehe Clemen, et al., 2018). Die Absorptionseigenschaften des Rußes unterscheiden sich nämlich, je nachdem ob sie aus der Holzverbrennung (Biomasse) oder aus der Verbrennung fossiler Brennstoffe wie Dieselkraftstoff stammen. Die empirisch aus der Kohlenstoffbilanzierung ermittelten Beiträge der Holzverbrennung haben seit den letzten Jahren an Tagen mit Überschreitung des Tagesgrenzwertes für Partikel PM 10 (Tagesmittelwerte über 50 Mikrogramm pro Kubikmeter) einen gleichbleibenden mittleren Anteil von etwa 12 % an den PM 10 -Immissionen. Die Abbildung zeigt für die Jahre 2017 bis 2019 an der Messstation Frankfurter Allee die Zahl der Tage mit Überschreitungen des Tagesgrenzwerts (PM 10 > 50 µg/m 3 ) und wie oft dieser überschritten worden wäre, wenn keine Holzverbrennung stattgefunden hätte. Es ist zu erkennen, dass die Anzahl der Überschreitungstage in den letzten Jahren kontinuierlich gesunken ist – allerdings fast nur der Anteil ohne Holzverbrennung. Ohne die Beiträge aus der Holzverbrennung wäre die Anzahl der Überschreitungstage wesentlich kleiner. Auch wenn die gesetzlich zulässige Anzahl an Überschreitungstagen von 35 seit 2016 eingehalten wird, sollte die Belastung nach den neuen verschärften Richtwerten der Weltgesundheitsorganisation (WHO(World Health Organisation.)) wesentlich geringer sein. Um negative Auswirkungen auf die menschliche Gesundheit weitgehend zu vermeiden, empfiehlt die WHO die Zahl der Tageswertüberschreitungen für Feinstaubpartikel auf drei zu begrenzen. Berlin hat sich langfristig zum Ziel gesetzt, die Luftqualität in Richtung der WHO-Richtwerte zu verbessern. Ohne Maßnahmen zur Verminderung von Partikelemissionen bei der Holzverbrennung wird dieses Ziel nicht erreichbar sein. Richtig Heizen mit Holz Regulierung von Kaminöfen Sollten Sie sich von Holzfeuerungen in der Nachbarschaft belästigt fühlen, ist es zunächst sinnvoll, ein offenes Gespräch mit dem verantwortlichen Nachbarn zu führen. Sollten Sie Hinweise haben, dass ungeeignete Brennstoffe oder sogar Müll verbrannt werden, können Sie bei Nichteinsicht und Wiederholung des verantwortlichen Nachbarn die zuständige Behörde informieren . Ansprechpartner sind das Ordnungs- oder das Umweltamt in Ihrem Bezirk .
Die Verleihung des 9. Preises der Umweltallianz stand in diesem Jahr unter dem Motto „25 Jahre Umweltallianz – Innovative Umweltideen aus Sachsen- Anhalt“. Er wurde in den Kategorien „Produkte und Technologien“ und „Konzepte und Projekte“ vergeben. Außerdem wurde erneut der „Sonderpreis der Umweltallianz“ verliehen, der ausschließlich Mitgliedern vorbehalten ist. Insgesamt hat die Umweltallianz Sachsen-Anhalt Preisgelder in Höhe von 24.000 Euro ausgelobt. Eine fünfköpfige Jury hatte in einem ersten Bewertungsschritt aus allen Bewerbern zunächst neun Finalisten ausgewählt. Diese konnten sich im September persönlich der Jury präsentieren und erhielten ein professionell produziertes Video für die eigene Öffentlichkeitsarbeit. Die Preisverleihung fand am 13.11.2024 im Palais am Fürstenwall der Staatskanzlei Sachsen-Anhalt statt. Vorsitz: Prof. Dr.-Ing. Daniela Thrän Leiterin Department Bioenergie am Helmholtz-Zentrum für Umweltforschung GmbH – UFZ, in Kooperation mit dem Deutschen Biomasseforschungszentrum gemeinnützige GmbH – DBFZ Mitglieder: Gesa Kupferschmidt Abteilungsleiterin Technischer Umweltschutz, Bodenschutz, Klimaschutz am Ministerium für Wissenschaft, Energie, Klimaschutz und Umwelt des Landes Sachsen-Anhalt Klaus Olbricht Präsident der Industrie- und Handelskammer Magdeburg Fabian Hoppe Geschäftsführer Kommunikation, Bildung und Nachhaltigkeit, Pressesprecher beim Verband der Chemischen Industrie e.V., Landesverband Nordost (VCI Nordost) Robert Gruhne Reporter Landesredaktion Magdeburger Volksstimme bei Volksstimme Investigation GmbH Preisträger: Inflotec GmbH aus Magdeburg Preisgeld: 8000 Euro Würdigung für: Energieeffiziente und ressourcenschonende Wasseraufbereitung Die Inflotec GmbH hat eine innovative, ressourcenschonende und energieeffiziente Technologie entwickelt, mit der sich autark überall jegliches Wasser zu Trink- oder Brauchwasser aufbereiten lässt (Kreislaufsystem). Im Vergleich zu herkömmlichen Umkehrosmose-Aufbereitungssystemen wird nur ein Fünftel an Energie benötigt. Durch die Rückspül- und Selbstreinigungsfunktion der Anlagen müssen zudem keine Filter gewechselt werden. Die modularen, autonomen und mobilen Systeme können praktisch überall eingesetzt werden. Die Innovation hierbei ist die Entwicklung eines einzigartigen neuen Membranprozesses zur ressourceneffizienten Wasseraufbereitung. Eine herkömmliche Keramikmembran (Ultrafiltration) wird durch Post-Modifikation mit Polyelektrolyten zu einer Nanofiltrationsmembran mit einzigartigen Trenn- und Materialeigenschaften. Das System ermöglicht in einem Aufbereitungsschritt die sichere Reinigung selbst von schwer behandelbaren Wasserressourcen (z. B. kontaminierten Abwässern). Neben Partikeln (Mikroplastik, Medikamentenrückstände, Schwermetalle, Uran, Arsen, PFAS etc.), Bakterien und Viren können auch gelöste Wasserinhaltsstoffe (Organik, Salze) sowie Öle und Fette zurückgehalten werden. Finalist: IPT-Pergande Gesellschaft für innovative Particle Technology mbH Würdigung für: Reduzierung des CO₂-Fußabdrucks in der Wirbelschichtgranulation durch Nutzung von Abwärme IPT-Pergande betreibt am Standort Weißandt-Gölzau mehrere Produktionsanlagen zur Herstellung von Produkten für die chemische Industrie. Eine Schlüsseltechnologie ist hierbei die Wirbelschicht-Granulation. Bei diesem Prozess wird eine wässrige Suspension mit einem erwärmten Prozessgas getrocknet und dabei granuliert. Die signifikante Reduzierung des CO₂-Fußabdrucks des Gesamtverfahrens wurde durch die Nutzung der Abwärme von Kompressoren für die Erzeugung von Druckluft erreicht, indem das Prozessgas vorgewärmt wird, wodurch sich eine Reduzierung des Heizdampfes ergibt. Der reduzierte Dampfbedarf führt wiederum zu einer Verringerung des Erdgasverbrauches. Die resultierende CO 2 -Einsparung pro Jahr liegt bei 400 bis 500 t. Finalist: POLICYCLE Deutschland GmbH Würdigung für: Energieeffizientes Recycling für echte Härtefälle | Kleberbeschichtete Altfolien werden erstmals wieder zu Folie Kleberbeschichtete Schutzfolien, die fast in jeder Industrie Anwendung finden, sind heute nicht recyclingfähig. Auf Grund ihrer Beschichtung werden sie bis dato thermisch verwertet. Beim Recycling führen sie zu einem Verblocken und Verkleben der Anlagen oder der späteren Folie auf Grund von Klebermigration. Gleichzeitig ist die Folienindustrie dazu angehalten, die Verfügbarkeit von Rezyklaten am Markt zu steigern und Kreisläufe zu etablieren. Daher war das Ziel der Entwicklung seitens der POLICYCLE Deutschland GmbH bisher nicht recyclebare Folien erstmals zu recyclen, in eine neue Folie zurückzuführen und dabei das energieintensive Recycling wirtschaftlicher und automatisierter zu gestalten. Mit dem so entstandenen Fluff-to-Film-Prozess werden durch Auslassen eines gesamten Prozessschritts gegenüber dem klassischen Recycling bis zu 40 % Energie und die damit verbundenen CO 2 -Emissionen in der Produktion eingespart. Gleichzeitig ist das entstehende Folienendprodukt „Müllsack“ bis zu dreimal dünner, aber ebenso belastbar wie ein vergleichbarer Standardmüllsack. Der mit dem „Blauen Engel“ zertifizierte Müllsack besteht aus mehr als 95 % post-consumer-Rezyklat, 70 % davon machen die kleberbeschichteten Altfolien aus. Durch den hohen Polyethylen-Anteil wäre der Müllsack, je nach vorliegendem Entsorgungssystem, selbst wieder recyclingfähig. Preisträger: GMBU e.V. Gesellschaft zur Förderung von Medizin-, Bio- und Umwelttechnologien, Halle Preisgeld: 8000 Euro Würdigung für: Schäumbare Verbundmaterialien auf Pflanzenbasis Die GMBU e. V. bietet innovative Rezepturen für pflanzenbasierte und rezyklierbare Komposite mit natürlichen Füllstoffen an, die sich für den 3D-Druck, den Spritzguss und hydraulisches Pressen eignen. Als Füllstoffe dienen natürliche Reststoffe, wie Hanf- und Hopfenschäben, Kakao- und Kaffeeschalen sowie Kokos- und Papierfasern. Anbauflächen zur Kultivierung werden nicht benötigt, da die Reststoffe prozessgebunden anfallen. Durch die Zugabe der Füllstoffe können 10 % Basispolymer eingespart werden. Dadurch wird eine Reduktion der CO 2 -Emissionen von 60 % im Vergleich zum Einsatz erdölbasierter Kunststoffe erreicht. Die Filamente und Granulate lassen sich wie herkömmliche Compounds verarbeiten und bieten eine holzähnliche Oberfläche. Durch Einarbeitung von zusätzlichem Treibmittel entsteht ein schäumbares Material für den 3D-Druck, welches beispielsweise als Sandwichmaterial im Leichtbau eingesetzt werden kann. Die Expansion des Treibmittels erfolgt während des Druckprozesses und wird über die Düsentemperatur gesteuert. Dadurch kann eine Gewichtsreduzierung von circa 50 % erzielt werden. Finalist: Agrar Burgscheidungen eG, Laucha an der Unstrut Würdigung für: Wasserrecycling für eine integrierte Symbiose der Algenkultivierung im Weinbau: Wi-Sa-We Die Agrar Burgscheidungen eG hat in Kooperation mit der GMBU e. V. – Gesellschaft zur Förderung von Medizin-, Bio- und Umwelttechnologien ein Verfahren zur symbiotischen Aufzucht von Mikroalgen für den Weinbau entwickelt. Durch die Bewässerung von Wein mit aufbereitetem Kulturmedium der Mikroalgen wird Wasser recycelt, die Biodiversität gestärkt, das Pflanzenwachstum verbessert und ein resilientes Mikrobiom geschaffen. Der Nährstoffeintrag aus dem Medium spart Kosten für Düngemittel, was die ökonomische Ressourceneffizienz unterstreicht. Das Verfahren ist vielfältig übertragbar und weist enormes ökologisches Potenzial mit ökonomischen Erfolgsaussichten auf. Finalist: Synthos Schkopau GmbH, Schkopau Würdigung für: Synthesekautschuk für verbesserten Reifenabrieb – ein Beitrag zur Mikroplastikreduktion Die Synthos Schkopau GmbH baut als größter Anbieter von Synthesekautschuk in Europa die Palette nachhaltiger Produkte kontinuierlich aus. In den letzten 15 Jahren wurden am Standort Schkopau erfolgreich SSBR-Typen (Solution Styrene Butadiene Rubber) für energieeffiziente Reifen entwickelt und vermarktet. Dem Synthos-Forscherteam ist es gelungen, zusätzlich den Reifenabrieb zu verringern und damit auch die Mikroplastikbildung aus Reifen zu minimieren. In Hochleistungsreifen verwendete Synthesekautschuke müssen umfangreiche Nachhaltigkeitskriterien erfüllen. Für den ökologischen Fußabdruck von Reifen sind umweltverträgliche Zusatzstoffe sowie der Einfluss neuer Synthesekautschuke, z.B. SSBR, relevant. Leistungseigenschaften des Reifens, die mit dem Fahrverhalten und der Sicherheit des Fahrzeugs verbunden sind, müssen mit einem geringen Rollwiderstand und einem niedrigen Abrieb korreliert werden. Während ein hoher Rollwiderstand den Energieverbrauch der Fahrzeuge erhöht, verursacht ein hoher Abrieb die verstärkte Bildung von Mikroplastik. Die neue Technologie verbessert den Abrieb um ca. 8 %, ohne die Leistungseigenschaften negativ zu beeinträchtigen. Preisträger: MOL Katalysatortechnik GmbH, Merseburg Preisgeld: 8000 Euro Würdigung für: Kühlwasserbehandlung in der Kernfusion In technischen Kühlkreisläufen wird das Kühlwasser mittels Kreiselpumpen in eine turbulente Strömung versetzt. Übersteigt die in das Wasser eingetragene Pumpenergie die Stabilisierungsenergie des Wassers, dann bilden sich Wasserdampfbläschen. Bläschen mit einem Durchmesser um 1 Mikrometer sorgen selektiv für saubere Oberflächen auch auf Schweißnähten. Größere Bläschen begünstigen Bakterien und Korrosion bis hin zur Kavitation. Durch Installation spezieller, von der MOL Katalysatortechnik GmbH entwickelter Mineral-Metall-Folien auf der Saugseite der Kreiselpumpen im turbulenten Strömungsbereich wird die Bildungsgeschwindigkeit der Wasserdampfbläschen beschleunigt, so dass anstelle weniger großer gefährlicher Wasserdampfbläschen viele sehr kleine nützliche gebildet werden. Dadurch ist es möglich, Kühlwasser mit hoher technischer und hygienischer Sicherheit und ohne Einsatz von Chemikalien und Bioziden dauerhaft sicher und wirtschaftlich vorteilhaft zu behandeln. Finalist: LEUNA-Harze GmbH, Leuna Würdigung für: Großtechnische Synthese von biobasierten Epoxidharzen aus pflanzlichen Altölen Die bisher zur Verfügung stehende Rohstoffbasis für Epoxidharze ist Erdöl. Im Zuge der Rückwärtsintegration der Produktion der LEUNA-Harze GmbH wurde eine eigene Synthesevariante für den zur Herstellung von Epoxiden notwendigen Rohstoff Epichlorhydrin entwickelt und in einer großtechnischen Anlage mit einer Kapazität von 15.000 t/a realisiert. Dabei wird nicht Propylen, sondern Glycerin, ein Nebenprodukt der Biodieselherstellung, als Rohstoff eingesetzt. Als Startpunkt der Wertschöpfungskette dienen gebrauchte Speisefette und -öle, die über Glycerin und Epichlorhydrin in einem Upcyclingprozess zu biobasierten Epoxidharzen umgesetzt werden. Eine neue Produktlinie mit reduziertem CO 2 -Fußabdruck und garantiertem biobasierten Anteil auf Basis von wiederverwerteten, pflanzlichen Altölen konnte vom Unternehmen erfolgreich auf dem Markt eingeführt werden. Dies ermöglicht einen biobasierten Kohlenstoffanteil von bis zu 42 % bei gleichzeitiger, signifikanter Reduktion des CO 2 -Fußabdrucks der so hergestellten Produkte. Diese finden Anwendung in der Wind-, Bau- und Automobilindustrie. Finalist: SKW Stickstoffwerke Piesteritz GmbH, Lutherstadt Wittenberg Würdigung für: ATMOWELL® – Ammoniakreduzierung im Tierstall Ammoniak (NH 3 ) kann bei übermäßiger Freisetzung negative Effekte auf die Umwelt und die Gesundheit von Mensch und Tier haben. Deutschland hat sich verpflichtet die nationalen NH 3 -Emissionen bis zum Jahr 2030 um 29 % zu senken (im Vergleich zu 2005). Mit ca. einem Drittel stammt ein Großteil der nationalen NH 3 -Emissionen aus Tierställen. Der Einsatz eines Ureaseinhibitors in Rinder- und Schweineställen ist ein innovativer Ansatz, um diese Emissionen deutlich zu mindern. Damit kann u. a. die Versauerung und Eutrophierung von Böden und Ökosystemen, die Verschiebung des Artenspektrums und Bedrohung der Artenvielfalt sowie die Gesundheitsbelastung (Schleimhautirritationen, sekundärer Feinstaub, Atemwegserkrankungen) gemindert werden. ATMOWELL® ist ein von SKW Piesteritz patentierter Ureaseinhibitor, welcher NH 3 -Emissionen in Rinderställen um 58 % reduziert. Die so verbesserte Luftqualität schützt vor negativen Auswirkungen des Ammoniaks auf Umwelt, Klima, sensible Ökosysteme und vor der Versauerung von Böden.
Origin | Count |
---|---|
Bund | 70 |
Land | 40 |
Type | Count |
---|---|
Ereignis | 1 |
Förderprogramm | 29 |
Taxon | 1 |
Text | 67 |
unbekannt | 11 |
License | Count |
---|---|
geschlossen | 55 |
offen | 54 |
Language | Count |
---|---|
Deutsch | 101 |
Englisch | 12 |
Resource type | Count |
---|---|
Bild | 1 |
Datei | 8 |
Dokument | 30 |
Keine | 45 |
Multimedia | 1 |
Webseite | 54 |
Topic | Count |
---|---|
Boden | 109 |
Lebewesen & Lebensräume | 109 |
Luft | 109 |
Mensch & Umwelt | 109 |
Wasser | 109 |
Weitere | 104 |