Das Projekt "Teilprojekt A" wird vom Umweltbundesamt gefördert und von Universität der Bundeswehr München, Institut für Angewandte Physik und Messtechnik (LRT2) durchgeführt. Das Hauptziel des LET-Verbundes liegt in der Erarbeitung eines grundlegenden Verständnisses der erhöhten relativen biologischen Wirksamkeit (RBW) von dicht ionisierender Strahlung, also von Strahlung mit hohem LET (Linear Energy Transfer) im Vergleich zu Niedrig-LET-Strahlung. Insbesondere sollen Modelle zur Vorhersage der RBW in Abhängigkeit der von Ionen induzierten Ionisierungsdichte, also von LET und Teilchenenergien, anhand neuartiger experimenteller Ansätze validiert und ggf. verbessert werden. Das Arbeitsprogramm zielt auf ein enges Netzwerk zwischen der Gewinnung neuer strahlenbiologischer Daten für Bestrahlung mit fokussierten Niedrig-LET-Protonen oder weiteren leichten Ionensorten (Deuteronen, He- und Li-Ionen) an der Ionenmikrostrahlanlage SNAKE und für homogene Bestrahlung mit den gleichen Ionen, um einen direkten Vergleich mit Schwerionenbestrahlungen bei gleicher mittlerer Dosis zu erhalten. Damit wird die Weiterentwicklung und Validierung von Computermodellen zur Berechnung von RBW in Abhängigkeit des LET und der Ionengeschwindigkeit ermöglicht. Die Gewinnung von strahlenbiologisch relevanten Daten soll in enger Zusammenarbeit zwischen der Strahlenbiologischen Gruppe des Klinikums rechts der Isar der TU München und dem Institut für Angewandte Physik und Messtechnik der UniBwM erfolgen. Die Modellierung wird in enger Zusammenarbeit mit der GSI, Darmstadt und dem HHZM, München durchgeführt. Ergebnisse der Forschungsarbeiten werden eine noch präzisere Beschreibung der Wirkung von Hoch-LET-Strahlung erlauben, die sowohl für die Tumortherapie mit Ionenstrahlen als auch für die Abschätzung der Schädigungswirkung von Hoch-LET-Strahlung bei Strahlenunfällen, für das fliegende Personal und im Rahmen der bemannten Raumfahrt relevant sind. In einem interdisziplinären Ansatz zwischen Biologie und Physik sollen Doktoranden und Post-Doktoranden in einem für die Medizin und den Strahlenschutz höchst relevanten Forschungsfeld ausgebildet und qualifiziert werden.
Das Projekt "Teilprojekt B" wird vom Umweltbundesamt gefördert und von Technische Universität München, Klinikum rechts der Isar, Klinik und Poliklinik für Strahlentherapie und Radiologische Onkologie durchgeführt. Unser Arbeitsziel dient der Gewinnung neuer strahlenbiologischer Erkenntnisse zu den Effekten hoch-fokussierter Teilchenmikrostrahlungen im Vergleich zur konventionellen homogenen Bestrahlung. Dazu wird ein Bereich von nur 500 nm im Zellkern von Tumorzellen mit der Menge an niedrig-LET Protonen fokussiert bestrahlt, welche die identische Energiedeposition wie ein einzelnes hoch-LET Ion besitzt. Als Read-out werden sowohl zytotoxische als auch genotoxische Effekte der unterschiedlichen Bestrahlungsarten in einzelnen Tumorzellen und Tumorsphäroiden qualitativ und quantitativ bestimmt. Neben Protonen werden auch Experimente mit Deuteronen, Li-, B-, C- und O-Ionen durchgeführt, um die unterschiedliche relative biologische Wirksamkeit (RBW) als Folge von Fokussierung und LET zu charakterisieren. Da bei der Mikrobestrahlung mit Teilchen nur geringe Zellzahlen bestrahlt werden können, muss der klassische Zellüberlebenstest in ein 96-Well Format überführt werden. In diesem Testformat kann auch bei geringen Zellzahlen eine hohe statistische Signifikanz erreicht werden. Zur Bestimmung der RBW werden die Apoptose-Induktion, Chromosomenaberrationen, Genexpressionsveränderungen und DNA Reparatur untersucht. Strahleninduzierte Mutationen in Sphäroiden werden mit Hilfe eines modifizierten Chromosomenaberrationstest bestimmt.
Das Projekt "Teilprojekt C" wird vom Umweltbundesamt gefördert und von Helmholtz Zentrum München Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH) - Institut für Strahlenschutz (ISS) durchgeführt. Ziel des Projekts ist ein verbessertes grundlegendes Verständnis der erhöhten biologischen Wirksamkeit von dicht-ionisierender Strahlung mit Hilfe von neuartigen experimentellen Ansätzen und weiterentwickelten theoretischen Modellen. In diesem Rahmen sollen am HMGU das biophysikalische Simulationsprogrammpaket PARTRAC weiterentwickelt werden und die darin verwendeten Modelle und Ansätze validiert werden um die Abschätzung von Strahlenrisiken nach Bestrahlung mit Ionen zu verbessern und um Ergebnisse der spurstrukturbasierten Modellrechnungen im Rahmen der therapeutischen Anwendung ionisierender Strahlung für deren Optimierung einsetzbar zu machen. Das Programmpaket PARTRAC wird zunächst im Spurstrukturteil an die experimentellen Randbedingungen angepasst. Danach wird die Modellierung im Vergleich mit vorliegenden und im Rahmen des Projekts ermittelten experimentellen Ergebnissen optimiert und hinsichtlich des bislang betrachteten Spektrums an biologischen Endpunkten validiert. Das DNA-Reparaturmodell in PARTRAC wird zu einem Zellinaktivierungsmodell weiterentwickelt, das diesen Endpunkt aus seinen Ergebnissen zu DNA-Fehlverbindungen und nicht verbundenen DNA-Enden nach langer Reparaturzeit ableitet. Die Modellentwicklung wird in enger Interaktion mit den Projektpartnern am GSI und deren 'Local Effect Model' (LEM) erfolgen und vergleichende Simulationsrechnungen mit PARTRAC und LEM zu initialen Strahleneffekten und deren Auswirkung bei der Strahlentherapie mit Ionen einschließen.
Das Projekt "Teilprojekt D: Simulation der relativen biologischen Wirksamkeit von fokussierten Ionenstrahlen" wird vom Umweltbundesamt gefördert und von GSI Helmholtzzentrum für Schwerionenforschung GmbH durchgeführt. Microbeams erlauben die gezielte Untersuchung der Interaktion von DNA Schäden verschiedener Teilchenspuren. Die wichtige Rolle geclusterter Schäden für den biologischen Effekt ist hinreichend belegt, die mikroskopische Beschreibung jedoch unklar. Das Local-Effect-Model (LEM) beinhaltet eine mechanistische Beschreibung der Schadensinteraktion und ihren Einfluss auf Zell- bzw. Gewebeschädigung. Ein Vergleich der Vorhersagen mit Zellüberlebensmessungen verspricht daher, Modellvorstellungen konkret prüfen zu können. Im Projekt werden Modellvorstellungen präzisiert werden, die eine zuverlässige Beschreibung der RBW erlauben. Die Arbeiten umfassen Erweiterungen des LEM im Hinblick auf die experimentellen Vorhaben an SNAKE. Darauf aufbauend werden Simulationsrechnungen durchgeführt, um experimentelle Bedingungen auszuwählen, die besonders sensitiv auf die jeweiligen spezifischen Modellannahmen sind. Im Rahmen des Vergleichs mit dem PARTRAC-Modell werden auch Sensitivitätsanalysen für eine Fehlerabschätzung durchgeführt. Die 2. Projekthälfte wird zur Modellentwicklung auf Grund gewonnener Daten verwendet.