API src

Found 8 results.

Vorhaben: Porenräume und Mineralaggregate auf der nm-mym-Skala

Das Projekt "Vorhaben: Porenräume und Mineralaggregate auf der nm-mym-Skala" wird vom Umweltbundesamt gefördert und von Universität Greifswald, Geowissenschaften, Institut für Geographie und Geologie durchgeführt. Im Verbundprojekt RESKIN analysieren wir die Rolle der Kinetik chemischer Reaktionen für die langfristige Nutzungs- und Sicherheitsanalyse von Reservoirgesteinen. Hierfür ist ein mechanistisches Verständnis der Reaktionskinetik auf verschiedenen Skalen notwendig. In Arbeitspaket AP1 des Verbundes fokussieren wir auf die Mechanismen der Kinetik von Fluid-Festkörper-Reaktionen auf der Skala der Kristalloberflächen, Porenwände und Poren in Reservoir- und Barrieregesteinen. Wir untersuchen den Einfluss von Korngrenzen, Kristalldefekttypen, -dichte und chemischer Kristallzusammensetzung auf die skalenabhängige Reaktionskinetik und die Entwicklung initialer Porenmuster auf der Calcitoberfläche. Die Auswertung erfolgt mit dem innovativen Ratenspektrenkonzept, das quantitative Ergebnisse zu den mechanismenbezogenen Ratenbeiträgen liefert. Gemeinsam mit Ergebnissen auf der Porenskala (AP3) und der Porenstrukturskala (AP4) bilden die Resultate aus diesem Arbeitspaket das kinetische Rückgrat für die Aufskalierung des reaktiven Transports in Reservoirgesteinen (AP5). Mit kinetischen Monte Carlo (KMC) - Simulationen analysieren wir die Kinetik der Auflösung von Calcitzementen mit variablen Mg-Gehalten. Begleitet werden diese Untersuchungen mit einem experimentell-analytischen Ansatz. Die komplementäre Verwendung von Rasterkraft- und Ramangekoppelter Interferometriemikroskopie deckt hochortsaufgelöst mit großen Gesichtsfeldern die Längenskala über 6 Größenordnungen ab, d.h. vom nm- bis in den mm-Bereich. Ein Schwerpunkt liegt auf definiert variierten Reservoirbedingungen (AP2), die wichtig für die Wasserstoff-Speicherung sind. Die Vorhersagen der Simulationsrechnungen werden durch die Experimente getestet und daraus folgende Erkenntnisse fließen in die Optimierung des KMC-Codes ein. Mit diesem Ansatz entwickeln wir die Fähigkeit zur Prognose von Stoffumsatzraten. Das Ergebnis sind Ratenverteilungen, die die skalenabhängige und quantitative kinetische Signatur der Reaktionen repräsentieren.

Vorhaben: Reaktionskinetik auf der Bohrkern-Skala

Das Projekt "Vorhaben: Reaktionskinetik auf der Bohrkern-Skala" wird vom Umweltbundesamt gefördert und von Karlsruher Institut für Technologie (KIT), Institut für Angewandte Geowissenschaften, Abteilung Ingenieurgeologie durchgeführt. Im Verbundprojekt RESKIN analysieren wir die Rolle der Kinetik chemischer Reaktionen für die langfristige Nutzungs- und Sicherheitsanalyse von Reservoirgesteinen. Hierfür ist ein mechanistisches Verständnis der Reaktionskinetik auf verschiedenen Skalen notwendig. In Arbeitspaket AP1 des Verbundes fokussieren wir auf die Mechanismen der Kinetik von Fluid-Festkörper-Reaktionen auf der Skala der Kristalloberflächen, Porenwände und Poren in Reservoir- und Barrieregesteinen. Wir untersuchen den Einfluss von Korngrenzen, Kristalldefekttypen, -dichte und chemischer Kristallzusammensetzung auf die skalenabhängige Reaktionskinetik und die Entwicklung initialer Porenmuster auf der Calcitoberfläche. Die Auswertung erfolgt mit dem innovativen Ratenspektrenkonzept, das quantitative Ergebnisse zu den mechanismenbezogenen Ratenbeiträgen liefert. Gemeinsam mit Ergebnissen auf der Porenskala (AP3) und der Porenstrukturskala (AP4) bilden die Resultate aus diesem Arbeitspaket das kinetische Rückgrat für die Aufskalierung des reaktiven Transports in Reservoirgesteinen (AP5). Mit kinetischen Monte Carlo (KMC) - Simulationen analysieren wir die Kinetik der Auflösung von Calcitzementen mit variablen Mg-Gehalten. Begleitet werden diese Untersuchungen mit einem experimentell-analytischen Ansatz. Die komplementäre Verwendung von Rasterkraft- und Ramangekoppelter Interferometriemikroskopie deckt hochortsaufgelöst mit großen Gesichtsfeldern die Längenskala über 6 Größenordnungen ab, d.h. vom nm- bis in den mm-Bereich. Ein Schwerpunkt liegt auf definiert variierten Reservoirbedingungen (AP2), die wichtig für die Wasserstoff-Speicherung sind. Die Vorhersagen der Simulationsrechnungen werden durch die Experimente getestet und daraus folgende Erkenntnisse fließen in die Optimierung des KMC-Codes ein. Mit diesem Ansatz entwickeln wir die Fähigkeit zur Prognose von Stoffumsatzraten. Das Ergebnis sind Ratenverteilungen, die die skalenabhängige und quantitative kinetische Signatur der Reaktionen repräsentieren.

Vorhaben: Minerallösung und Mineralfällung im Porenraum

Das Projekt "Vorhaben: Minerallösung und Mineralfällung im Porenraum" wird vom Umweltbundesamt gefördert und von Universität Mainz, Institut für Geowissenschaften durchgeführt. Im Verbundprojekt RESKIN analysieren wir die Rolle der Kinetik chemischer Reaktionen für die langfristige Nutzungs- und Sicherheitsanalyse von Reservoirgesteinen. Hierfür ist ein mechanistisches Verständnis der Reaktionskinetik auf verschiedenen Skalen notwendig. In Arbeitspaket AP1 des Verbundes fokussieren wir auf die Mechanismen der Kinetik von Fluid-Festkörper-Reaktionen auf der Skala der Kristalloberflächen, Porenwände und Poren in Reservoir- und Barrieregesteinen. Wir untersuchen den Einfluss von Korngrenzen, Kristalldefekttypen, -dichte und chemischer Kristallzusammensetzung auf die skalenabhängige Reaktionskinetik und die Entwicklung initialer Porenmuster auf der Calcitoberfläche. Die Auswertung erfolgt mit dem innovativen Ratenspektrenkonzept, das quantitative Ergebnisse zu den mechanismenbezogenen Ratenbeiträgen liefert. Gemeinsam mit Ergebnissen auf der Porenskala (AP3) und der Porenstrukturskala (AP4) bilden die Resultate aus diesem Arbeitspaket das kinetische Rückgrat für die Aufskalierung des reaktiven Transports in Reservoirgesteinen (AP5). Mit kinetischen Monte Carlo (KMC) - Simulationen analysieren wir die Kinetik der Auflösung von Calcitzementen mit variablen Mg-Gehalten. Begleitet werden diese Untersuchungen mit einem experimentell-analytischen Ansatz. Die komplementäre Verwendung von Rasterkraft- und Ramangekoppelter Interferometriemikroskopie deckt hochortsaufgelöst mit großen Gesichtsfeldern die Längenskala über 6 Größenordnungen ab, d.h. vom nm- bis in den mm-Bereich. Ein Schwerpunkt liegt auf definiert variierten Reservoirbedingungen (AP2), die wichtig für die Wasserstoff-Speicherung sind. Die Vorhersagen der Simulationsrechnungen werden durch die Experimente getestet und daraus folgende Erkenntnisse fließen in die Optimierung des KMC-Codes ein. Mit diesem Ansatz entwickeln wir die Fähigkeit zur Prognose von Stoffumsatzraten. Das Ergebnis sind Ratenverteilungen, die die skalenabhängige und quantitative kinetische Signatur der Reaktionen repräsentieren.

Vorhaben: Reaktiver Transport und kinetische Aufskalierung

Das Projekt "Vorhaben: Reaktiver Transport und kinetische Aufskalierung" wird vom Umweltbundesamt gefördert und von Fraunhofer-Institut für Techno- und Wirtschaftsmathematik durchgeführt. Im Verbundprojekt RESKIN analysieren wir die Rolle der Kinetik chemischer Reaktionen für die langfristige Nutzungs- und Sicherheitsanalyse von Reservoirgesteinen. Hierfür ist ein mechanistisches Verständnis der Reaktionskinetik auf verschiedenen Skalen notwendig. In Arbeitspaket AP1 des Verbundes fokussieren wir auf die Mechanismen der Kinetik von Fluid-Festkörper-Reaktionen auf der Skala der Kristalloberflächen, Porenwände und Poren in Reservoir- und Barrieregesteinen. Wir untersuchen den Einfluss von Korngrenzen, Kristalldefekttypen, -dichte und chemischer Kristallzusammensetzung auf die skalenabhängige Reaktionskinetik und die Entwicklung initialer Porenmuster auf der Calcitoberfläche. Die Auswertung erfolgt mit dem innovativen Ratenspektrenkonzept, das quantitative Ergebnisse zu den mechanismenbezogenen Ratenbeiträgen liefert. Gemeinsam mit Ergebnissen auf der Porenskala (AP3) und der Porenstrukturskala (AP4) bilden die Resultate aus diesem Arbeitspaket das kinetische Rückgrat für die Aufskalierung des reaktiven Transports in Reservoirgesteinen (AP5). Mit kinetischen Monte Carlo (KMC) - Simulationen analysieren wir die Kinetik der Auflösung von Calcitzementen mit variablen Mg-Gehalten. Begleitet werden diese Untersuchungen mit einem experimentell-analytischen Ansatz. Die komplementäre Verwendung von Rasterkraft- und Ramangekoppelter Interferometriemikroskopie deckt hochortsaufgelöst mit großen Gesichtsfeldern die Längenskala über 6 Größenordnungen ab, d.h. vom nm- bis in den mm-Bereich. Ein Schwerpunkt liegt auf definiert variierten Reservoirbedingungen (AP2), die wichtig für die Wasserstoff-Speicherung sind. Die Vorhersagen der Simulationsrechnungen werden durch die Experimente getestet und daraus folgende Erkenntnisse fließen in die Optimierung des KMC-Codes ein. Mit diesem Ansatz entwickeln wir die Fähigkeit zur Prognose von Stoffumsatzraten. Das Ergebnis sind Ratenverteilungen, die die skalenabhängige und quantitative kinetische Signatur der Reaktionen repräsentieren.

Vorhaben: Reaktionskinetik - Mechanismen und Aufskalierung

Das Projekt "Vorhaben: Reaktionskinetik - Mechanismen und Aufskalierung" wird vom Umweltbundesamt gefördert und von Universität Bremen, Fachbereich 05 Geowissenschaften, Fachgebiet Mineralogie durchgeführt. Im Verbundprojekt RESKIN analysieren wir die Rolle der Kinetik chemischer Reaktionen für die langfristige Nutzungs- und Sicherheitsanalyse von Reservoirgesteinen. Hierfür ist ein mechanistisches Verständnis der Reaktionskinetik auf verschiedenen Skalen notwendig. In Arbeitspaket AP1 des Verbundes fokussieren wir auf die Mechanismen der Kinetik von Fluid-Festkörper-Reaktionen auf der Skala der Kristalloberflächen, Porenwände und Poren in Reservoir- und Barrieregesteinen. Wir untersuchen den Einfluss von Korngrenzen, Kristalldefekttypen, -dichte und chemischer Kristallzusammensetzung auf die skalenabhängige Reaktionskinetik und die Entwicklung initialer Porenmuster auf der Calcitoberfläche. Die Auswertung erfolgt mit dem innovativen Ratenspektrenkonzept, das quantitative Ergebnisse zu den mechanismenbezogenen Ratenbeiträgen liefert. Gemeinsam mit Ergebnissen auf der Porenskala (AP3) und der Porenstrukturskala (AP4) bilden die Resultate aus diesem Arbeitspaket das kinetische Rückgrat für die Aufskalierung des reaktiven Transports in Reservoirgesteinen (AP5). Mit kinetischen Monte Carlo (KMC) - Simulationen analysieren wir die Kinetik der Auflösung von Calcitzementen mit variablen Mg-Gehalten. Begleitet werden diese Untersuchungen mit einem experimentell-analytischen Ansatz. Die komplementäre Verwendung von Rasterkraft- und Ramangekoppelter Interferometriemikroskopie deckt hochortsaufgelöst mit großen Gesichtsfeldern die Längenskala über 6 Größenordnungen ab, d.h. vom nm- bis in den mm-Bereich. Ein Schwerpunkt liegt auf definiert variierten Reservoirbedingungen (AP2), die wichtig für die Wasserstoff-Speicherung sind. Die Vorhersagen der Simulationsrechnungen werden durch die Experimente getestet und daraus folgende Erkenntnisse fließen in die Optimierung des KMC-Codes ein. Mit diesem Ansatz entwickeln wir die Fähigkeit zur Prognose von Stoffumsatzraten. Das Ergebnis sind Ratenverteilungen, die die skalenabhängige und quantitative kinetische Signatur der Reaktionen repräsentieren.

Vorhaben: Charakterisierung von porösen Reservoirsandsteinen zum Erstellen digitaler Gesteinsmodelle

Das Projekt "Vorhaben: Charakterisierung von porösen Reservoirsandsteinen zum Erstellen digitaler Gesteinsmodelle" wird vom Umweltbundesamt gefördert und von Karlsruher Institut für Technologie (KIT), Institut für Angewandte Geowissenschaften, Abteilung Strukturgeologie & Tektonik durchgeführt. Der Antragsteller wird im Rahmen des MERID-Verbundes verschiedene Reservoirgesteine mineralogisch, strukturell und petrophysikalisch charakterisieren und eine entsprechende Datenbank erstellen. Die Basis bilden siliziklastische Lockersedimente sowie Festgesteine als Bohrkerne aus Reservoirteufe und Analogproben an der Erdoberfläche. Im Detail betrachtet werden Bounding surfaces und Deformationsbänder. Der resultierende Datensatz kann im Folgenden von Verbundpartnern genutzt werden, um die für Simulationen signifikanten granulometrischen Parameter, die Mineralogie und Gefügemerkmale in Modelle einzupflegen. Die finalen dynamischen Modelle durchlaufen einen Reservoirlebenszyklus. Die Ergebnisse werden durch von der Industrie zur Verfügung gestellte Daten validiert. Der Verbund bearbeitet im Rahmen des MERID Projektes 7 Arbeitspakete, das dargestellte Vorhaben koordiniert drei dieser Pakete. Im ersten Schritt (AP1) wird partnerübergreifend der Stand der Forschung abgeglichen und ein geeignetes Fallbeispiel bestimmt. In AP2 werden Sand- und Sandsteinproben aus von der Industrie zur Verfügung gestellten Bohrkernen und aus Reservoir-Analogen qualitativ und quantitativ beschrieben im Hinblick auf Mineralogie, Granulometrie und Struktur. Die Verteilung eventueller Heterogenitäten wird für den gesamten Sandsteinkörper kartiert und basierend auf Polarisationsmikroskopie, SEM und myCT analysiert. Anschließend wird ein digitales Gesteinsmodell erstellt, aus dem mittels Bildverarbeitung verschiedene Kornparameter ermittelt werden können. Die Verbundpartner simulieren anhand dieser Daten computerbasierte, statistische Gesteinsmodelle, die im Rahmen dieses Vorhabens evaluiert werden. Außerdem erfolgt die Quantifizierung des Porenraums und des Durchflusses mit petrophysikalischen Methoden. Nachdem mit diesen Daten dynamische Modelle generiert wurden, werden diese mit Produktionsdatensätzen über die reale Lebensdauer eines Reservoirs hinweg verglichen (AP7).

Vorhaben: Multiskalensimulation der Strömungsdynamik auf Poren- und Reservoirskala unter Berücksichtigung der Sandpartikelstrukturen

Das Projekt "Vorhaben: Multiskalensimulation der Strömungsdynamik auf Poren- und Reservoirskala unter Berücksichtigung der Sandpartikelstrukturen" wird vom Umweltbundesamt gefördert und von Hochschule Karlsruhe - Technik und Wirtschaft, Institute of Materials and Processes (IMP) durchgeführt. Poröse Reservoirgesteine werden sowohl zur Gewinnung von Kohlenwasserstoffen und geothermischer Energie als auch zur Zwischenspeicherung von Gasen genutzt. Dabei verursachen sedimentäre und strukturelle Grenzflächen (z. B. Schichtung, Störungen, Deformationsbänder) häufig Durchlässigkeitsunterschiede im Reservoir, die sich um mehrere Größenordnungen vom unbeeinflussten Gesteinsbereichen unterscheiden können. Diese Permeabilitätsanisotropien wirken sich durch hydromechanische Druckänderungen während der Reservoirnutzung auf den Zweiphasenfluss und damit auf die Reservoirintegrität aus. Ziel des Verbundprojekts MERID ist es, den Einfluss von sedimentären und strukturellen Mikrogefügen auf die Fließeigenschaften in Reservoiren und auf deren Integrität zu quantifizieren. Hierzu sollen die durch Fluiddruckänderungen auftretenden Permeabilitätsvariationen in porösen siliziklastischen Reservoiren experimentell sowie numerisch analysiert und modelliert werden. Es ist geplant, verschiedene Prozesse auf der Kornskala zu untersuchen und mit Hilfe von digitalen Gesteinsmodellen auf die Reservoirskala zu übertragen. In den digitalen Gesteinsmodellen werden Eigenschaften wie Kornmorphologie, Schichtgefüge, mineralogische Zusammensetzung, und geomechanische Merkmale charakterisiert. Auf Grundlage dieser Modelle sollen mit systematischen Strömungssimulationen anisotrope Permeabilitätstensoren und Strömungskennlinien für verschiedene Sandsteine und Porendrücke bestimmt werden. Es ist geplant, die Untersuchungen im Rahmen von sieben Arbeitspaketen durchzuführen. Die Arbeiten umfassen eine Reservoircharakterisierung anhand von Bohrkernmaterial und analogen Gesteinsproben. Mit Hilfe von geomechanischen Laborversuchen wird die Entwicklung von Kompaktionsstrukturen und deren Auswirkungen auf die Porosität und Permeabilität untersucht. Diese Untersuchungen bilden die Grundlage für repräsentative digitale Gesteinsmodelle und fließen in Strömungssimulationen ein, bei der anisotrope Permeabilitätstensoren auf der Porenskala und Reservoirskala bestimmt werden. Hieran schließt sich eine geomechanische Simulation zur Spannungsverteilung im Reservoir an. Die im Rahmen der Untersuchungen ermittelten Veränderungen des Gesteinsgefüges und daraus resultierende Permeabilitätsanisotropien bewirken einen Abfall des Porendrucks im Reservoir und sollen mit Hilfe von realen Reservoirdaten (History Match) verifiziert werden. Als Ergebnis soll ein neuartiges gekoppeltes Modell (Simulator) vorliegen, das die zeitliche Änderung des Lagerstättendrucks auf die Fließeigenschaften eines Reservoirs berücksichtigt. Der Simulator kann zur Prognose der Permeabilitätsentwicklung genutzt werden und damit einen wesentlichen Beitrag zum sicheren und wirtschaftlichen Betrieb von Reservoiren leisten.

Vorhaben: Geomechanische Laborversuche und Reservoir-Simulationen

Das Projekt "Vorhaben: Geomechanische Laborversuche und Reservoir-Simulationen" wird vom Umweltbundesamt gefördert und von RWTH Aachen University, Institut für Geomechanik und Untergrundtechnik, Lehrstuhl für Geotechnik im Bauwesen durchgeführt. Poröse Reservoirgesteine werden als Kohlenwasserstoffreservoire exploriert und als geothermische oder Gas-Zwischenspeicher genutzt. Sie beinhalten sedimentäre Grenzflächen und durch Kompaktion verursachte Strukturen (Drucklösung, Deformationsbänder), die als Permeabilitätsanisotropien während der hydromechanischen Druckänderungen die Reservoirintegrität beeinflussen. Gleichzeitig werden die Gesteine von einem Zweiphasenfluss (injiziertes Fluid vs. Formationswasser, Öl vs. Formationswasser) durchströmt, wobei die relativen Permeabilitäten von den Benetzungseigenschaften der mineralogischen Mikrostrukturen abhängen. Ziel des interdisziplinären Projekts ist die Modellierung des mikrostrukturellen Einflusses auf den Zweiphasenfluss und die Reservoirintegrität. Hierzu werden die während der Fluiddruckänderungen variierenden vertikalen und horizontalen Permeabilitäten in porösen Reservoiren experimentell und numerisch analysiert und modelliert. Durch gekoppelte geomechanische und hydrodynamische Modelle wird die dreidimensionale Hydrodynamik des Mehrphasenflusses unter Berücksichtigung der Benetzungseigenschaften auf der Kornskala berechnet und das repräsentative Volumen für die Reservoir-Skala abgeleitet. Die Ergebnisse werden anhand vorhandener Reservoirdaten validiert und die gewonnenen Erkenntnisse zur Reservoirintegrität quantifiziert. In dem integrierten interdisziplinären Ansatz werden erstmalig kornskalige Prozesse in Reservoirprozessen appliziert. Die Ergebnisse finden Anwendung in der effizienteren Nutzung von tiefen Reservoiren.

1