Das Projekt "Aquifer Storage of CO2 - Numerical Simulation Experiments" wird vom Umweltbundesamt gefördert und von RWTH Aachen University, Lehrstuhl für Applied Geophysics and Geothermal Energy, E.ON Energy Research Center (ERC) durchgeführt.
Das Projekt "Dichtigkeit von Lagerstätten-Deckschichten Untertage bezüglich CO2-Speicherung über geologische Zeiträume" wird vom Umweltbundesamt gefördert und von RWTH Aachen University, Lehrstuhl für Applied Geophysics and Geothermal Energy, E.ON Energy Research Center (ERC) durchgeführt.
Das Projekt "Dichtigkeit von Lagerstätten-Deckschichten Untertage bezüglich CO2-Speicherung" wird vom Umweltbundesamt gefördert und von RWTH Aachen University, Lehrstuhl für Applied Geophysics and Geothermal Energy, E.ON Energy Research Center (ERC) durchgeführt. Geological storage involves injecting CO2 directly into underground geological formations. CO2 has been used for decades in oil industry to increase recovery (Figure 1). Saline aquifers (Figure 2)have also been suggested as CO2 storage sites. Prevention of post sequestration leakage to the surface from deep saline aquifers is one the key issues in disposal of CO2 into the aquifer. The permanence of the sequestration of CO2 into the saline aquifer depends strongly on the integrity of the top sealing formation over geological time (from one hundred to several thousand years depending on the size). In order to assess whether the stored CO2 retains in the formation or not, the resistivity of the cap rock against the geochemical alteration or geomechanical deformation should be examined. Numerical Simulation: This multidisciplinary project is aimed to better quantify the long-term integrity of the cap rock based on the laboratory experiments. In order to characterize the reservoir, laboratory experiments will be conducted on the selected rocks form the North Rhine-Westphalia (Germany) region including petrophysical tests. In this study, the experimental results and the geologic data of the Bunter sandstone and Rotliegend sandstone formations will be used in geological model. Using ECLIPSE commercial simulator enables us to fill the gap between theoretical analysis and laboratory experiments. Several injection scenarios will be performed to study the multi-component behavior of the multi-phase flow in porous media as well as geochemical alteration and geomechanical deformation of the cap rock. We will also introduce the transport phenomena (heat and mass transfer) of CO2 by using SHEMAT and TOUGHREACT simulators. Finally we will look for a solution to link these three simulators to have the best leakage risk assessment. This project is funded by the West LB foundation 'Future of North Rhine-Westphalia.