API src

Found 3067 results.

Related terms

Multibeam bathymetry processed data (EM 1002 echosounder entire dataset) of RV MARIA S. MERIAN during cruise MSM62/2

Swath sonar bathymetry data used for that dataset was recorded during RV MARIA S. MERIAN cruise MSM62/2 using Kongsberg EM1002 multibeam echosounder. The cruise took place between 23.03.2017 and 27.03.2017 in the Baltic Sea. The cruise aimed to investigate the impact of the Littorina transgression on the inflow of saline waters into the western Baltic and assessed the potential for future diminution of ventilation in the central and northern deeper basins due to isostatic uplift [CSR]. CI Citation: Paul Wintersteller (seafloor-imaging@marum.de) as responsible party for bathymetry raw data ingest and approval. During the MSM62/2 cruise, the moonpooled KONGSBERG EM1002 multibeam echosounder (MBES) was utilized to perform bathymetric mapping in shallow depths. The echosounder has a curved transducer in which 111 beams are formed for each ping while the seafloor is detected using amplitude and phase information for each beam sounding. For further information on the system, consult https://www.km.kongsberg.com/. Postprocessing and products were conducted by the Seafloor-Imaging & Mapping group of MARUM/FB5, responsible person Paul Wintersteller (seafloor-imaging@marum.de). The open source software MB-System (Caress, D. W., and D. N. Chayes, MB-System: Mapping the Seafloor, https://www.mbari.org/products/research-software/mb-system, 2017) was utilized for this purpose. A sound velocity correction profile was applied to the MSM62/2 data; there were no further corrections for roll, pitch and heave applied during postprocessing. A tide correction was applied, based on the Oregon State University (OSU) tidal prediction software (OTPS) that is retrievable through MB-System. CTD measurements during the cruise were sufficient to represent the changes in the sound velocity throughout the study area. Using Mbeditviz, artefacts were cleaned manually. NetCDF (GMT) grids of the edited data as well as statistics were created with mbgrid. The published bathymetric EM1002 grid of the cruise MSM62/2 has a resolution of 15 m. No total propagated uncertainty (TPU) has been calculated to gather vertical or horizontal accuracy. A higher resolution is, at least partly, achievable. The grid extended with _num represents a raster dataset with the statistical number of beams/depths taken into account to create the depth of the cell. The extended _sd -grid contains the standard deviation for each cell. The DTMs projections are given in Geographic coordinate system Lat/Lon; Geodetic Datum: WGS84.

Multibeam bathymetry processed data (EM 1002 echosounder entire dataset) of RV MARIA S. MERIAN during cruise MSM52

Swath sonar bathymetry data used for that dataset was recorded during RV MARIA S. MERIAN cruise MSM52 using Kongsberg EM1002 multibeam echosounder. The cruise took place between 01.03.2016 and 28.03.2016 in the Baltic Sea. The cruise aimed gapless imagining of the major pre-alpine tectonic lineaments due to the fact that the Glückstadt Graben and the Avalonia-Baltica suture zone run across the southern Baltic [DOI: 10.2312/cr_msm52]. CI Citation: Paul Wintersteller (seafloor-imaging@marum.de) as responsible party for bathymetry raw data ingest and approval. During the MSM52 cruise, the moonpooled KONGSBERG EM1002 multibeam echosounder (MBES) was utilized to perform bathymetric mapping in shallow depths. It has a curved transducer of which 111 beams are formed for each ping while the seafloor is detected using amplitude and phase information for each beam sounding. For further information on the system, consult https://www.km.kongsberg.com/. Generally, the system was acquiring data throughout the entire cruise. Responsible person during this cruise / PI: Laura Frahm. Postprocessing and products were conducted by the Seafloor-Imaging & Mapping group of MARUM/FB5, responsible person Paul Wintersteller (seafloor-imaging@marum.de). The open source software MB-System (Caress, D. W., and D. N. Chayes, MB-System: Mapping the Seafloor, https://www.mbari.org/products/research-software/mb-system, 2017) was utilized for this purpose. A sound velocity correction profile was applied to the MSM52 data; there were no further corrections for roll, pitch and heave applied during postprocessing. A tide correction was applied, based on the Oregon State University (OSU) tidal prediction software (OTPS) that is retrievable through MB-System. CTD measurements during the cruise were sufficient to represent the changes in the sound velocity throughout the study area. Using Mbeditviz, artefacts were cleaned manually. NetCDF (GMT) grids of the edited data as well as statistics were created with mbgrid. The published bathymetric EM1002 grid of the cruise MSM52 has a resolution of 35 m. No total propagated uncertainty (TPU) has been calculated to gather vertical or horizontal accuracy. A higher resolution is, at least partly, achievable. The grid extended with _num represents a raster dataset with the statistical number of beams/depths taken into account to create the depth of the cell. The extended _sd -grid contains the standard deviation for each cell. The DTMs projections are given in Geographic coordinate system Lat/Lon; Geodetic Datum: WGS84.

INSPIRE Download Service: Energy Resources / Windkraftanlagen in Brandenburg (WFS-ER-WKA)

Der interoperable INSPIRE-Downloaddienst (WFS) Energy Resources gibt einen Überblick über die Windkraftanlagen im Land Brandenburg. Der Datensatz umfasst betriebene Windkraftanlagen, genehmigte und noch nicht in Betrieb genommene sowie geplante Windkraftanlagen, die sich noch im Genehmigungsverfahren befinden. Die Datenquelle ist das Anlageninformationssystem LIS-A. Gemäß der INSPIREDatenspezifikation Energy Resources (D2.8.III.20_v3.0) liegen die Inhalte INSPIRE konform vor. Der WFS beinhaltet den FeatureType RenewableAndWasteResource.

Deutsch-amerikanische Umwelt- und Ressourcengeschichte

Bereits in der zweiten Hälfte des 17. Jahrhunderts sichern reichlich vorhandene natürliche Ressourcen des nordamerikanischen Kontinents die Existenz der ersten deutschen Emigranten verschiedenster religiöser Minderheiten. Die Gründungen von deutschen Siedlungen in Pennsylvania und North Carolina zeigen schon frühe Maßnahmen des Waldschutzes und einer ersten nachhaltigen Holznutzung, die sowohl auf einer Inventarisierung des Ressourcenpotenzials als auch auf einer entsprechenden Nutzungskontrolle basieren. Im 18. und 19. Jahrhundert wird dagegen die deutsche Auswanderung nicht nur durch landwirtschaftliche Missstände, sondern auch durch eine regional aufkommende 'Holznot' verstärkt, die Bauern, Handwerker und Arbeiter gleichermaßen betrifft. Seit der zweiten Hälfte des 18. Jahrhunderts werden erste Eisen- und Glashüttenstandorte in Pennsylvania, New York State und anderen Staaten an den großen Seen gegründet, die zunächst stark an die Ressource Holz und Steinkohle gebunden sind und entsprechend negative Auswirkungen auf Wald und Umwelt zeigen. Seit Mitte des 19. Jahrhunderts sind aufgrund der großen Entwaldungen erste Anfänge einer nordamerikanischen Naturschutzbewegung zu erkennen. In der Folgezeit werden vermehrt Kahlflächen aufgeforstet und zu Ende des 19. Jahrhunderts erste forstliche Ausbildungsstätten von deutschen Forstwissenschaftlern gegründet. Ein intensiver deutsch-amerikanischer Fachaustausch findet bis Ende der 1930er Jahre statt. Erste Studien zeigen, dass eine retrospektive Forschung wertvolle Rückschlüsse auf die Entwicklung des deutsch-amerikanischen Wald- und Naturverständnisses ermöglicht eine in heutiger Zeit noch weitgehend unbeachtete, dafür aber umso wichtigere Komponente der Umweltwahrnehmung. Gleichzeitig ist die besondere Bedeutung eines nachhaltigen Ressourcenmanagement aufzuzeigen. Folgende wissenschaftliche Fragen lassen sich ableiten: - Sozial- und mentalitätsgeschichtlich: In welcher Form und in welchem Maße wirkten sich Erfahrungen erlebter Ressourcenknappheit der Auswanderer auf Reaktionen auf die sich im 19. Jahrhundert zunehmend verschlechternde Waldressourcenqualität in den USA aus ? - Umweltgeschichtlich: Ist bereits im 18. und 19. Jahrhundert eine dezidierte Umweltwahrnehmung im deutsch-amerikanischen Auswanderungsmilieu festzustellen ? - Forstgeschichtlich: Inwiefern trägt eine von außerhalb der Staatsgrenzen erfolgte kritische Betrachtung sowohl nordamerikanischer als auch deutscher Waldbewirtschaftung dazu bei, auf beiden Seiten forsthistorische Aussagen des 19. und 20. Jahrhunderts zu relativieren ? - Ressourcenpolitisch: Welche Ansatzpunkte liefert eine zeitnähere und räumlich verlagerte Untersuchung der Ressourcenproblematik in den USA, um die heutige Gesellschaft und Politik für einen nachhaltigen Umgang mit ihren Lebensressourcen zu sensibilisieren ?

Schwerpunktprogramm (SPP) 1685: Ecosystem nutrition: forest strategies for limited phosphorus resources; Ökosystemernährung: Forststrategien zum Umgang mit limitierten Phosphor-Ressourcen, Quantifizierung, Modellierung und Regionalisierung der Phosphor-Verluste mit dem Sickerwasser aus Waldböden

Steigende Biomasseentzüge aus Wäldern, erhöhtes Waldwachstum durch anhaltend hohe atmosphärische Stickstoffeinträge und direkte und indirekte Auswirkungen des Klimawandels rücken den Kreislauf und die Verfügbarkeit von Phosphor (P) in Waldökosystemen vermehrt in den Fokus wissenschaftlicher Untersuchungen. Den P-Verlusten mit dem Sickerwasser kommt dabei außerdem besondere Bedeutung für die Eutrophierung von Oberflächengewässern zu. Bisher liegen jedoch kaum Erkenntnisse über die Höhe und Prozessdynamik des P-Austrags und die Transportwege von P in Waldböden vor. Eigene Studien zeigten kürzlich, dass signifikante P-Verluste aus Waldböden während starker Niederschlagsereignisse auftreten können. Da der Oberflächenabfluss in Wälder in der Regel vernachlässigbar ist, spielt insbesondere der Transport über preferentielle Fließwege (z.B. Makroporen) eine wichtige Rolle. Welche Prozesse jedoch den P-Transport entlang dieser Fließwege steuern und welche P-Formen überwiegend transportiert werden, ist weitestgehend unbekannt. Ebenso wurde bisher nicht untersucht, ob unterschiedliche Ernährungsstrategien von Waldökosystemen einen Effekt auf die P-Transportmechanismen haben. Eine Grundannahme des SPP 1685 ist, dass recycelnde Systeme, in denen die P- Verfügbarkeit aus der mineralischen Phase gering ist, sich an diese P-Limitierung angepasst haben. Sie können Phosphor hoch effizient recyceln und P-Verluste aus dem System minimieren. Dagegen bestand für akquirierende Systeme, welche überwiegend verfügbares P der mineralischen Phase nutzen, vermutlich nicht die Notwendigkeit angepasste Strategien zu einem effizienten P-Recycling zu entwickeln. Um die Relevanz dieser beiden hypothetischen Ernährungsstrategien auf P-Transportprozesse in Waldböden experimentell zu überprüfen, werden wir daher Böden in Waldökosystemen mit unterschiedlicher P-Verfügbarkeit aus der mineralischen Phase betrachten (SPP-Kernstandorte). Die Ziele unserer Studie sind dabei: 1) die Identifizierung der P-Transportpfade durch den Boden und der am Transport beteiligten P-Formen; 2) die modell-basierte Abschätzung der P-Verluste aus den betrachteten Systemen. Die preferentiellen Fließwege von infiltrierendem Wasser sollen mit Hilfe von Farbtracer-Experimenten visualisiert werden. Durch die anschließende chemische Analyse der P-Fraktionen in den preferentiellen Fließwegen sollen Rückschlüsse auf P-Transportmechanismen in Waldböden gezogen werden. Zur Abschätzung der P-Verluste aus dem System werden basierend auf den identifizierten Transportmechanismen und beobachteten Fließwegen numerische Modelle parametrisiert, welche die Komponenten des Wasserhaushaltes simulieren. Durch diesen kombinierten Ansatz können erstmals die Transportmechanismen und Austragsraten von Phosphor aus Waldökosystemen in Abhängigkeit ihrer Ernährungsstrategie (P-Verfügbarkeit aus der mineralischen Phase) vergleichend betrachtet werden.

Koordination zur Errichtung von Beratungszentren zur Umwelt- und Ressourcenschonung in den neuen Bundeslaendern

3D Land Planning - Underground Resources and Sustainable Development in Urban Areas

The horizontal expansion and increase in population that have characterised urban growth and development patterns of the last few decades have produced cities that are inconsistent with the principles of sustainable development. Due to the high rate of global urbanisation, the consequences of problems such as greater traffic congestion, higher levels of air pollution, lack of green space, and insufficient water supplies not only affect the cities in which they occur, but extend around the world. Cities that maximise the use of the third dimension are seen as a possible path to sustainable urban form.The urban underground possesses a large untapped potential that, if properly managed and exploited, would contribute significantly to the sustainable development of cities. The use of its four principle resources (space, water, geothermal energy and geomaterials) can be optimised to help create environmentally, socially and economically desirable urban settings. For instance: space can be used for concentrating urban infrastructure and facilities, as well as housing parking facilities and transportation tunnels, energy from geothermal sources and thermal energy stored in the underground can be used for heating and cooling buildings, thereby reducing CO2 emissions,groundwater can be used for drinking water supply, and geomaterials from urban excavation can be used within the city to minimise long-distance conveyance.Traditionally, planning of underground works is done on a single-project basis with little consideration of other potential uses of the same space. This approach often produces interference between uses (e.g. road tunnels interfering with geothermal structures), causes negative environmental impacts (e.g. groundwater contamination), and restricts innovative opportunities for sustainable development (e.g. using waste heat from metro lines for heating buildings).The present research will create a methodology that will help planners consider and integrate the full potential of the urban underground within the larger context of city planning. Since the way in which the use of the urban underground varies in accordance with a cityies specific natural, social and economic circumstances, this research will be trans-disciplinary, incorporating both the physical and social sciences. The development of the methodology will be based on the results of key research activities. Constraints and opportunities for underground use will be identified by establishing the complex linkages between existing underground development and the variables that shape it in cities worldwide. Space, water, energy and geomaterials resources will be studied in terms of their interaction and combined use, to optimise their benefits under various geological, legal, economic, environmental and social conditions. This methodology will be tested on and refined during a case study on the city of Geneva. usw.

Global Land Cover Map for 2009 (GlobCover 2009)

The GlobCover initiative of ESA developed and demonstrated a service for the generation of global land cover maps, based on Envisat MERIS Fine Resolution (300 m) mode data. ESA and Université catholique de Louvain demonstrated the possibility to use the GlobCover system operationally by delivering GlobCover 2009, the 2009 global land cover map, within a year of the last satellite acquisition. For maximum user benefit the thematic legend of GlobCover is compatible with the UN Land Cover Classification System (LCCS). The system is based on an automatic pre-processing and classification chain. Finally, the global land cover map was validated by an international group of land cover experts and the validation reports are also available to the user community.

In situ high spectral resolution inherent and apparent optical property data from diverse aquatic environments

Light emerging from natural water bodies and measured by remote sensing radiometers contains information about the local type and concentrations of phytoplankton, non-algal particles and colored dissolved organic matter in the underlying waters. An increase in spectral resolution in forthcoming satellite and airborne remote sensing missions is expected to lead to new or improved capabilities to characterize aquatic ecosystems. Such upcoming missions include NASA's Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) Mission; the NASA Surface Biology and Geology observable mission; and NASA Airborne Visible / Infrared Imaging Spectrometer (AVIRIS) - Next Generation airborne missions. In anticipation of these missions, we present an organized dataset of geographically diverse, quality-controlled, high spectral resolution inherent and apparent optical property (IOP/AOP) aquatic data. The data are intended to be of use to increase our understanding of aquatic optical properties, to develop aquatic remote sensing data product algorithms, and to perform calibration and validation activities for forthcoming aquatic-focused imaging spectrometry missions. The dataset is comprised of contributions from several investigators and investigating teams collected over a range of geographic areas and water types, including inland waters, estuaries and oceans. Specific in situ measurements include coefficients describing particulate absorption, particulate attenuation, non-algal particulate absorption, colored dissolved organic matter absorption, phytoplankton absorption, total absorption, total attenuation, particulate backscattering, and total backscattering, as well as remote sensing reflectance, and irradiance reflectance.

Multibeam bathymetry processed data (EM 1002 echosounder entire dataset) of RV MARIA S. MERIAN during cruise MSM51/1

Swath sonar bathymetry data used for that dataset was recorded during RV MARIA S. MERIAN cruise MSM51/1 using Kongsberg EM1002 multibeam echosounder. The cruise took place between 01.02.2016 and 27.02.2016 in the Baltic Sea. The cruise aimed to perform seismo- and hydroacoustic surveys, sampling of Holocene sediments and to investigate the water column wintertime mixing close to sea-ice limits. These surveys improved the understanding of variations in the ventilation of the deeper Baltic, considering not only external climate forcing but also the effects of postglacial sealevel rise and isostatic uplift [CSR]. CI Citation: Paul Wintersteller (seafloor-imaging@marum.de) as responsible party for bathymetry raw data ingest and approval. During the MSM51-1 cruise, the moonpooled KONGSBERG EM1002 multibeam echosounder (MBES) was utilized to perform bathymetric mapping in shallow depths. 111 beams are formed for each ping while the seafloor is detected using amplitude and phase information for each beam sounding. For further information on the system, consult https://www.km.kongsberg.com/. Postprocessing and products were conducted by the Seafloor-Imaging & Mapping group of MARUM/FB5, responsible person Paul Wintersteller (seafloor-imaging@marum.de). The open source software MB-System (Caress, D. W., and D. N. Chayes, MB-System: Mapping the Seafloor, https://www.mbari.org/products/research-software/mb-system, 2017) was utilized for this purpose. A sound velocity correction profile was applied to the MSM51-1 data; there were no further corrections for roll, pitch and heave applied during postprocessing. A tide correction was applied, based on the Oregon State University (OSU) tidal prediction software (OTPS) that is retrievable through MB-System. CTD measurements during the cruise were sufficient to represent the changes in the sound velocity throughout the study area. Using Mbeditviz, artefacts were cleaned manually. NetCDF (GMT) grids of the edited data as well as statistics were created with mbgrid. The published bathymetric EM1002 grid of the cruise MSM51-1 has a resolution of 15 m. No total propagated uncertainty (TPU) has been calculated to gather vertical or horizontal accuracy. A higher resolution is, at least partly, achievable. The grid extended with _num represents a raster dataset with the statistical number of beams/depths taken into account to create the depth of the cell. The extended _sd -grid contains the standard deviation for each cell. The DTMs projections are given in Geographic coordinate system Lat/Lon; Geodetic Datum: WGS84.

1 2 3 4 5305 306 307