API src

Found 962 results.

Related terms

Jahressummen 1961-2022 des Sickerwassers aus der Wurzelzone (pw) aus mGROWA in mm, 100 x 100 m-Raster NRW

Download des Datenbestands aus dem Wasserhaushaltsmodell mGROWA (Forschungszentrum Jülich im Auftrag des LANUV) als Referenzdatensatz für das Bundesland Nordrhein-Westfalen im 100 x 100 m-Raster. Hier: Abflusskomponente Sickerwasserrate in Form der Jahressummen 1961-2022 in mm als ASCII-Grid. Stand der Modelldaten: 04/2023, Landnutzungsdaten: Stand 2017. Detaillierte Beschreibung des mGROWA-Modells und der genutzten Eingangsdaten, siehe: LANUV-Fachbericht 110, Teilbericht IIa, link: https://www.lanuv.nrw.de/fileadmin/lanuvpubl/3_fachberichte/30110b.pdf

Jahressummen 1961-2022 des urbanen Direktabflusses (qud) aus mGROWA in mm, 100 x 100 m-Raster NRW

Download des Datenbestands aus dem Wasserhaushaltsmodell mGROWA (Forschungszentrum Jülich im Auftrag des LANUV) als Referenzdatensatz für das Bundesland Nordrhein-Westfalen im 100 x 100 m-Raster. Hier: Abflusskomponente urbaner Direktabfluss in Form der Jahressummen 1961-2022 in mm als ASCII-Grid. Stand der Modelldaten: 04/2023, Landnutzungsdaten: Stand 2017. Detaillierte Beschreibung des mGROWA-Modells und der genutzten Eingangsdaten, siehe: LANUV-Fachbericht 110, Teilbericht IIa, link: https://www.lanuv.nrw.de/fileadmin/lanuvpubl/3_fachberichte/30110b.pdf

Jahressummen 1961-2022 der Netto-Grundwasserneubildung (qrn) aus mGROWA in mm, 100 x 100 m-Raster NRW

Download des Datenbestands aus dem Wasserhaushaltsmodell mGROWA (Forschungszentrum Jülich im Auftrag des LANUV) als Referenzdatensatz für das Bundesland Nordrhein-Westfalen im 100 x 100 m-Raster. Hier: Abflusskomponente Grundwasserneubildung in Form der Jahressummen 1961-2022 in mm als ASCII-Grid. Stand der Modelldaten: 04/2023, Landnutzungsdaten: Stand 2017. Detaillierte Beschreibung des mGROWA-Modells und der genutzten Eingangsdaten, siehe: LANUV-Fachbericht 110, Teilbericht IIa, link: https://www.lanuv.nrw.de/fileadmin/lanuvpubl/3_fachberichte/30110b.pdf

Nitratkonzentration im Sickerwasser 2014-2016 (Modellergebnis), 100 x 100 m-Raster NRW

Bezugszeitraum 2014-2016, berechnet durch Forschungszentrum Jülich (Stand 2018), Die Karte der Nitratkonzentration im Sickerwasser 2014-2016 ist ein im Rahmen des Koope-rationsprojekts GROWA+NRW2021 erstelltes Berechnungsergebnis der Modellkette RAUMIS-mGROWA-DENUZ-WEKU. Grundlage für die enthaltenen Ergebniswerte sind die flächendifferenzierten Werte des verlagerbaren Stickstoffgehalts im Boden, die Denitrifikati-onsbedingungen der Böden, die nutzbare Feldkapazität des effektiven Wurzelraumes auf Basis der Bodeneinheiten der BK50 (Stand 2016) sowie die auf Basis des Wasserhaushalts-modells mGROWA berechnete Sickerwasserrate. Als Zwischenergebnis wurde aus der Si-ckerwasserrate und der nFKWe die Verweilzeit im Boden berechnet. Mit Hilfe des reaktiven Transportmodells DENUZ wurden ausgehend von den flächendifferenzierten Werten des ver-lagerbaren Stickstoffgehalts im Boden, der Denitrifikationsbedingungen der Böden und der Verweilzeit des Sickerwassers im Boden der Nitratabbau im Boden berechnet. Zu dem aus der Differenz aus verlagerbarer N-Menge im Boden und Nitratabbau im Boden berechneten Stickstoffaustrag aus dem Boden werden zusätzlich N-Einträge aus Kleinkläranlagen sowie aus urbanen Quellen addiert. Die so gebildete Summe wurde nachfolgend über die Sicker-wasserrate und entsprechende Faktoren in die Nitratkonzentration im Sickerwasser umge-rechnet. Die in der Karte dargestellten Werte können für das Grundwasser als potentielle Nitrateintrags¬konzentration angesehen werden, sofern im entsprechenden Gebiet Grundwasser neu gebil¬det wird und ein Nitratabbau in den Grundwasserdeckschichten unwahrscheinlich ist. Auf Flä¬chen bzw. in Gebieten mit überwiegendem Direktabflussanteil wird die entsprechende Nitrat¬fracht direkt in die Oberflächengewässer eingetragen. Eine detaillierte Beschreibung der Methodik enthält: LANUV (2021): Kooperationsprojekt GROWA+ NRW 2021 Teil VII - Minderungsbedarf der Stickstoffeinträge zur Erreichung der Ziele für das Grundwasser und für den Meeresschutz. LANUV-Fachbericht 110, Landesamt für Natur, Umwelt und Verbraucherschutz Nordrhein-Westfalen, Recklinghausen 2021. https://www.lanuv.nrw.de/fileadmin/lanuvpubl/3_fachberichte/30110h.pdf

Bodenbewertung - Nährstoffverfügbarkeit im effektiven Wurzelraum, regionalspezifisch bewertet

Der sogenannte S-Wert ist ein Kennwert zur Bewertung des Bodens als Bestandteil des Nährstoffhaltes und wird über die Nährstoffverfügbarkeit bewertet. Der S-Wert ist die Menge an Nährstoffen (Kationen, nicht z. B. Nitrat), die ein Boden austauschbar an Ton-, Humusteilchen, Oxiden und Hydroxiden binden bzw. sorbieren kann (Kationenaustauschkapazität). Der S-Wert ist somit gut geeignet, die Nährstoffverfügbarkeit zu beschreiben. Ähnlich wie bei der Feldkapazität im effektiven Wurzelraum (FKwe) bedingen hohe Gehalte an Ton, Humus, sowie ein großer effektiver Wurzelraum einen hohen S-Wert und umgekehrt. Auch der pH-Wert hat einen großen Einfluss auf den S-Wert. Der pH-Wert kann in Abhängigkeit von der Nutzung in einem weiten Bereich schwanken. Je höher der S-Wert, desto mehr Nährstoffe kann der Boden an Austauschern binden. Nährstoffeinträge über Luft oder Düngung werden so vor einem Austrag mit dem Sickerwasser geschützt. Gleichzeitig wird dadurch eine gleichmäßigere Nährstoffversorgung der Pflanzen sichergestellt. Mit dem S-Wert wird eine natürliche Bodenfunktionen nach § 2 Abs. 2 BBodSchG bewertet und zwar nach Punkt 1.b) als Bestandteil des Naturhaushalts, insbesondere mit seinen Wasser- und Nährstoffkreisläufen. Das hierfür gewählte Kriterium ist die Nährstoffverfügbarkeit mit dem Kennwert S-Wert. Die Karten liegen für die folgenden Maßstabsebenen vor: - 1 : 1.000 - 10.000 für hochaufgelöste oder parzellenscharfe Planung, - 1 : 10.001 - 35.000 für Planungen auf Gemeindeebene, - 1 : 35.001 - 100.000 für Planungen in größeren Regionen, - 1 : 100.001 - 350.000 für landesweit differenzierte Planung, - 1 : 350.001 - 1000.000 für landesweite bis bundesweite Planung. In dieser Darstellung wird der S-Wert regionalspezifisch klassifiziert. Unter dem Titel "Bodenbewertung - Nährstoffverfügbarkeit im effektiven Wurzelraum (SWE), landesweit bewertet" gibt es noch eine Klassifikation des S-Wertes, die den S-Wert über die Naturraumgrenzen hinweg landesweit einheitlich darstellt.

Bodenbewertung - Nährstoffverfügbarkeit im effektiven Wurzelraum, landesweit bewertet

Der sogenannte S-Wert ist ein Kennwert zur Bewertung des Bodens als Bestandteil des Nährstoffhaltes und wird über die Nährstoffverfügbarkeit bewertet. Der S-Wert ist die Menge an Nährstoffen (Kationen, nicht z. B. Nitrat), die ein Boden austauschbar an Ton-, Humusteilchen, Oxiden und Hydroxiden binden bzw. sorbieren kann (Kationenaustauschkapazität). Der S-Wert ist somit gut geeignet, die Nährstoffverfügbarkeit zu beschreiben. Ähnlich wie bei der Feldkapazität im effektiven Wurzelraum (FKwe) bedingen hohe Gehalte an Ton, Humus, sowie ein großer effektiver Wurzelraum einen hohen S-Wert und umgekehrt. Auch der pH-Wert hat einen großen Einfluss auf den S-Wert. Der pH-Wert kann in Abhängigkeit von der Nutzung in einem weiten Bereich schwanken. Je höher der S-Wert, desto mehr Nährstoffe kann der Boden an Austauschern binden. Nährstoffeinträge über Luft oder Düngung werden so vor einem Austrag mit dem Sickerwasser geschützt. Gleichzeitig wird dadurch eine gleichmäßigere Nährstoffversorgung der Pflanzen sichergestellt. Mit dem S-Wert wird eine natürliche Bodenfunktionen nach § 2 Abs. 2 BBodSchG bewertet und zwar nach Punkt 1.b) als Bestandteil des Naturhaushalts, insbesondere mit seinen Wasser- und Nährstoffkreisläufen. Das hierfür gewählte Kriterium ist die Nährstoffverfügbarkeit mit dem Kennwert S-Wert. Die Karten liegen für die folgenden Maßstabsebenen vor: - 1 : 1.000 - 10.000 für hochaufgelöste oder parzellenscharfe Planung, - 1 : 10.001 - 35.000 für Planungen auf Gemeindeebene, - 1 : 35.001 - 100.000 für Planungen in größeren Regionen, - 1 : 100.001 - 350.000 für landesweit differenzierte Planung, - 1 : 350.001 - 1000.000 für landesweite bis bundesweite Planung. In dieser Darstellung wird der S-Wert landesweit einheitlich klassifiziert. Unter dem Titel "Bodenbewertung - Nährstoffverfügbarkeit im effektiven Wurzelraum (SWE), regionalspezifisch bewertet" gibt es noch eine naturraumbezogene Klassifikation des S-Wertes, die den S-Wert regional differenzierter darstellt.

Änderung des Potenziellen Zusatzwasserbedarfs für den 30-jährigen Zeitraum 2021-2050 zu 1971-2000, Kein-Klimaschutz-Szenario (RCP8.5) (WMS Dienst)

Die Karte zeigt die mittlere Veränderung des potenziellen Zusatzwasserbedarfs (in mm) 2021-2050 gegenüber 1971-2000 unter dem „Kein-Klimaschutz“-Szenario (RCP8.5). Unter Zusatzwasserbedarf wird die mittlere Wassermenge innerhalb der Vegetationsperiode (April-September) verstanden, die zur Aufrechterhaltung von 40 % nutzbarer Feldkapazität (nFK) im effektiven Wurzelraum (nFKWe) erforderlich ist. Berechnet wird die mittlere Wassermenge für einen Mittelwert der Fruchtarten Winterweizen, Wintergerste, Wintergerste mit Zwischenfrucht, Sommergerste, Mais, Zuckerrüben und Kartoffeln. Die Klimamodelle sind mit dem „Kein-Klimaschutz“-Szenario (RCP8.5) angetrieben. Dabei handelt es sich um ein Szenario des IPCC (Weltklimarat), welches einen kontinuierlichen Anstieg der globalen Treibhausgasemissionen beschreibt, der bis zum Ende des 21. Jahrhunderts einen zusätzlichen Strahlungsantrieb von 8,5 Watt pro m² gegenüber dem vorindustriellen Niveau bewirkt. Die Ergebnisse aller Klimamodelle sind gleich wahrscheinlich. Daher kann neben dem Mittelwert, der eine Tendenz aufzeigt, auch der obere (Maximum) und untere (Minimum) Rand der Ergebnisbandbreite über den MapTip abgerufen werden.

Änderung des Potenziellen Zusatzwasserbedarfs für den 30-jährigen Zeitraum 2021-2050 zu 1971-2000, Kein-Klimaschutz-Szenario (RCP8.5)

Die Karte zeigt die mittlere Veränderung des potenziellen Zusatzwasserbedarfs (in mm) 2021-2050 gegenüber 1971-2000 unter dem „Kein-Klimaschutz“-Szenario (RCP8.5). Unter Zusatzwasserbedarf wird die mittlere Wassermenge innerhalb der Vegetationsperiode (April-September) verstanden, die zur Aufrechterhaltung von 40 % nutzbarer Feldkapazität (nFK) im effektiven Wurzelraum (nFKWe) erforderlich ist. Berechnet wird die mittlere Wassermenge für einen Mittelwert der Fruchtarten Winterweizen, Wintergerste, Wintergerste mit Zwischenfrucht, Sommergerste, Mais, Zuckerrüben und Kartoffeln. Die Klimamodelle sind mit dem „Kein-Klimaschutz“-Szenario (RCP8.5) angetrieben. Dabei handelt es sich um ein Szenario des IPCC (Weltklimarat), welches einen kontinuierlichen Anstieg der globalen Treibhausgasemissionen beschreibt, der bis zum Ende des 21. Jahrhunderts einen zusätzlichen Strahlungsantrieb von 8,5 Watt pro m² gegenüber dem vorindustriellen Niveau bewirkt. Die Ergebnisse aller Klimamodelle sind gleich wahrscheinlich. Daher kann neben dem Mittelwert, der eine Tendenz aufzeigt, auch der obere (Maximum) und untere (Minimum) Rand der Ergebnisbandbreite über den MapTip abgerufen werden.

Änderung des Potenziellen Zusatzwasserbedarfs für den 30-jährigen Zeitraum 2031-2060 zu 1971-2000, Kein-Klimaschutz-Szenario (RCP8.5) (WMS Dienst)

Die Karte zeigt die mittlere Veränderung des potenziellen Zusatzwasserbedarfs (in mm) 2031-2060 gegenüber 1971-2000 unter dem „Kein-Klimaschutz“-Szenario (RCP8.5). Unter Zusatzwasserbedarf wird die mittlere Wassermenge innerhalb der Vegetationsperiode (April-September) verstanden, die zur Aufrechterhaltung von 40 % nutzbarer Feldkapazität (nFK) im effektiven Wurzelraum (nFKWe) erforderlich ist. Berechnet wird die mittlere Wassermenge für einen Mittelwert der Fruchtarten Winterweizen, Wintergerste, Wintergerste mit Zwischenfrucht, Sommergerste, Mais, Zuckerrüben und Kartoffeln. Die Klimamodelle sind mit dem „Kein-Klimaschutz“-Szenario (RCP8.5) angetrieben. Dabei handelt es sich um ein Szenario des IPCC (Weltklimarat), welches einen kontinuierlichen Anstieg der globalen Treibhausgasemissionen beschreibt, der bis zum Ende des 21. Jahrhunderts einen zusätzlichen Strahlungsantrieb von 8,5 Watt pro m² gegenüber dem vorindustriellen Niveau bewirkt. Die Ergebnisse aller Klimamodelle sind gleich wahrscheinlich. Daher kann neben dem Mittelwert, der eine Tendenz aufzeigt, auch der obere (Maximum) und untere (Minimum) Rand der Ergebnisbandbreite über den MapTip abgerufen werden.

Änderung des Potenziellen Zusatzwasserbedarfs für den 30-jährigen Zeitraum 2031-2060 zu 1971-2000, Kein-Klimaschutz-Szenario (RCP8.5) (WFS Dienst)

Die Karte zeigt die mittlere Veränderung des potenziellen Zusatzwasserbedarfs (in mm) 2031-2060 gegenüber 1971-2000 unter dem „Kein-Klimaschutz“-Szenario (RCP8.5). Unter Zusatzwasserbedarf wird die mittlere Wassermenge innerhalb der Vegetationsperiode (April-September) verstanden, die zur Aufrechterhaltung von 40 % nutzbarer Feldkapazität (nFK) im effektiven Wurzelraum (nFKWe) erforderlich ist. Berechnet wird die mittlere Wassermenge für einen Mittelwert der Fruchtarten Winterweizen, Wintergerste, Wintergerste mit Zwischenfrucht, Sommergerste, Mais, Zuckerrüben und Kartoffeln. Die Klimamodelle sind mit dem „Kein-Klimaschutz“-Szenario (RCP8.5) angetrieben. Dabei handelt es sich um ein Szenario des IPCC (Weltklimarat), welches einen kontinuierlichen Anstieg der globalen Treibhausgasemissionen beschreibt, der bis zum Ende des 21. Jahrhunderts einen zusätzlichen Strahlungsantrieb von 8,5 Watt pro m² gegenüber dem vorindustriellen Niveau bewirkt. Die Ergebnisse aller Klimamodelle sind gleich wahrscheinlich. Daher kann neben dem Mittelwert, der eine Tendenz aufzeigt, auch der obere (Maximum) und untere (Minimum) Rand der Ergebnisbandbreite über den MapTip abgerufen werden.

1 2 3 4 595 96 97