API src

Found 24 results.

Etude des affluents du leman et de son emissaire (FRA)

Das Projekt "Etude des affluents du leman et de son emissaire (FRA)" wird vom Umweltbundesamt gefördert und von Commission internationale pour la protection des eaux du Leman contre la pollution durchgeführt. L'etude des quatre affluents principaux du leman (rhone, dranse, venoge, aubonne) et de son emissaire, doit permettre de connaitre l'importance des apports polluants et autres qui arrivent au lac. Par ailleurs, l'etude de l'emissaire permet d'etablir des bilans entree-sortie et, connaissant les variations des stocks du lac, de faire une modelisation, notamment du cycle du phosphore. Sauf a l'emissaire, les prelevements sont effectues en fonction du debit. (FRA)

Analyse des metaux traces dans les eaux naturelles (FRA)

Das Projekt "Analyse des metaux traces dans les eaux naturelles (FRA)" wird vom Umweltbundesamt gefördert und von Universite de Geneve, Departement de la Chimie Minerale, Analytique et Appliquee durchgeführt. Ce projet concerne le developement de methodes analytiques de preconcentration et de separation pour la determination des metaux en tres faibles concentrations dans les eaux naturelles, en particulier par fluorescence x. Les techniques HPLC sont egalement appliquees a la separation des complexes inertes et de certains composes organiques. Les methodes d'analyse et de pelevement sont developpees au laboratoire et sur le terrain. Elles sont appliquees a l'analyse de sols, eau de lac (leman) et rivieres (rhone) et eaux intersticielles de sediments (leman). Le projet comprend une recherche bibliographique complete. (FRA)

Palaeo-Evo-Devo of Malacostraca - a key to the evolutionary history of 'higher' crustaceans

Das Projekt "Palaeo-Evo-Devo of Malacostraca - a key to the evolutionary history of 'higher' crustaceans" wird vom Umweltbundesamt gefördert und von Universität Greifswald, Zoologisches Institut und Museum, Abteilung Cytologie und Evolutionsbiologie durchgeführt. In my project I aim at a better understanding of the evolution of malacostracan crustaceans, which includes very different groups such as mantis shrimps, krill and lobsters. Previous studies on Malacostraca, on extant as well as on fossil representatives, focussed on adult morphology.In contrast to such approaches, I will apply a Palaeo-Evo-Devo approach to shed new light on the evolution of Malacostraca. Palaeo-Evo-Devo uses data of different developmental stages of fossil malacostracan crustaceans, such as larval and juvenile stages. With this approach I aim at bridging morphological gaps between the different diverse lineages of modern malacostracans by providing new insights into the character evolution in these lineages.An extensive number of larval and juvenile malacostracans is present in the fossil record, but which have only scarcely been studied. The backbone of this project will be on malacostracans from the Solnhofen Lithographic Limestones (ca. 150 million years old), which are especially well preserved and exhibit minute details. During previous studies, I developed new documentation methods for tiny fossils from these deposits, e.g., fluorescence composite microscopy, and also discovered the first fossil mantis shrimp larvae. For malcostracan groups that do not occur in Solnhofen, I will investigate fossils from other lagerstätten, e.g., Mazon Creek and Bear Gulch (USA), or Montceaules- Mines and La-Voulte-sur-Rhône (France). The main groups in focus are mantis shrimps and certain other shrimps (e.g., mysids, caridoids), as well as the bottom-living ten-footed crustaceans (reptantians). Examples for studied structures are leg details, including the feeding apparatus, but also eyes. The results will contribute to the reconstruction of 3D computer models.The data collected in this project will be used for evaluating the relationships within Malacostraca, but mainly for providing plausible evolutionary scenarios, how the modern malacostracan diversity evolved. With the Palaeo-Evo-Devo approach, I am also able to detect shifts in developmental timing, called heterochrony, which is interpreted as one of the major driving forces of evolution. Finally, the reconstructed evolutionary patterns can be compared between the different lineages for convergencies. These comparisons might help to explain the convergent adaptation to similar ecological niches in different malacostracan groups, e.g., life in the deep sea, life on the sea bottom, evolution of metamorphosis or of predatory larvae.As the project requires the investigation of a large number of specimens in different groups, I will assign distinct sub-projects to three doctoral researchers. The results of this project will not only be published in peer-reviewed journals, but will also be presented to the non-scientific public, e.g., during fossil fairs or museum exhibitions with 3D models engraved in glass blocks.

Wasserbau- & Ökologie F+E Programm 17-21

Das Projekt "Wasserbau- & Ökologie F+E Programm 17-21" wird vom Umweltbundesamt gefördert und von Bundesamt für Umwelt durchgeführt. Das BAFU hat vor fünfzehn Jahren das interdisziplinäre Forschungsprogramm 'Wasserbau und Ökologie' lanciert. Am Programm beteiligen sich Ökologen und Flussbauingenieure von vier Institutionen des ETH-Bereichs (Eawag, LCH-EPFL, VAW-ETHZ, WSL) sowie weitere Partner aus Praxis und Wissenschaft. Das Programm ist in mehrjährige Forschungsprogramme organisiert. Seit 2003 wurden drei praxisorientierte, interdisziplinäre Forschungsprogramme durchgeführt und die erarbeiteten Grundlagen auf der Website publiziert (www.rivermanagement.ch): 'Rhône-Thur' (2003-2007), 'Integrales Flussgebietsmanagement' (2008-2011) sowie 'Geschiebe- und Habitatsdynamik' (2013-2017). In Fortsetzung dieser Programme soll für die Periode 2017 bis 2021 das Folgeprogramm 'Lebensraum Gewässer - Sedimentdynamik und Vernetzung' umgesetzt werden. Die zentralen Forschungsthemen lauten: - Feststofftransporte (und Wasserführung): Bedeutung hinsichtlich Sicherheit und Ökologie, vor allem in mittelgrossen Gewässern. - Gewässerraum als Lebensraum: Optimale Gestaltung, Nutzung und Unterhalt - des Gewässerraums hinsichtlich Sicherheit und Ökologie. Das Thema Sedimente und Sedimentdynamik mit seinen aktuellen und dringenden Fragestellungen wird vertieft und ausgeweitet - immer sowohl hinsichtlich wasserbaulicher als auch ökologischer Aspekte. Dabei steht der Einbezug der Vernetzung im Vordergrund. Projektziele: Ziel des Programms ist es, wissenschaftliche Grundlagen zur Beantwortung aktueller Praxisfragen zu erarbeiten und umsetzungsgerecht aufzubereiten. Das Programm verfolgt drei übergeordnete Zielsetzungen: - Erarbeitung wissenschaftlicher Grundlagen für die Bewältigung aktueller Herausforderungen im Umgang mit Fliessgewässern. - Aufbereitung der wissenschaftlichen Grundlagen im Hinblick auf die Umsetzung in der Praxis. - Stärkung der praxisorientierten Forschung im ETH-Bereich und Förderung des Dialogs Wissenschaft - Praxis, Sicherung des praxisbezogenen Wissens an den Institutionen. Mit dem Programm 'Lebensraum Gewässer - Sedimentdynamik und Vernetzung' soll auf dem erarbeiteten und bestehenden Wissen der drei Vorgängerprogramme aufgebaut werden. Es ist das Ziel, dieses Wissen weiter zu vertiefen und auszubauen. Es werden wiederum konkrete Fragen und Antworten zu Hochwasserschutz- und Revitalisierungsprojekten im Vordergrund stehen. Aus diesem Grund ist der Vorschlag des BAFU, dass für die vierte Programmphase die zentralen Forschungsthemen des bis 2017 laufenden Programms 'Geschiebe- und Habitatsdynamik' wieder aufgenommen und weitergeführt werden. Dieses Vorgehen ermöglicht eine Kontinuität und eine mögliche Vertiefung bzw. Weiterentwicklung bei den Forschungsschwerpunkten.

Advanced policies and market support measures for mobilizing solar district heating investments in European target regions and countries (SDHp2m)

Das Projekt "Advanced policies and market support measures for mobilizing solar district heating investments in European target regions and countries (SDHp2m)" wird vom Umweltbundesamt gefördert und von Solites - Forschungsinstitut für solare und zukunftsfähige thermische Energiesysteme durchgeführt. SDHp2m stands for Solar District Heating (SDH) and actions from Policy to Market. The project addresses market uptake challenges for a wider use of district heating and cooling systems (DHC) with high shares of RES, specifically the action focuses on the use of large-scale solar thermal plants combined with other RES in DHC systems. The key approach of the project is to develop, improve and implement in 9 participating EU regions advanced policies and support measures for SDH. In 3 focus regions Thuringia (DE), Styria (AT) and Rhone-Alpes (FR) the regulating regional authorities are participating as project partners to ensure a strong implementation capacity within the project. In 6 follower regions from BG, DE, IT, PL, SE the regulating authorities are engaged through letters of commitment. The project activities aim at a direct mobilization of investments in SDH and hence a significant market rollout. The project work program in the participating regions follows a process including 1) strategy and action planning based on a survey, best practices and stakeholder consultation 2) an implementation phase starting at an early project stage and 3) efficient dissemination of the project results at national and international level. Adressed market uptake challenges are: Improved RES DHC policy, better access to plant financing and business models, sustained public acceptance and bridging the gap between policy and market through market support and capacity building. Denmark and Sweden reached already today a high share of RES in DHC and shall be used as a role model for this project. The direct expected outcome and impact of SDHp2m is estimated to an installed or planned new RES DHC capacity and new SDH capacity directly triggered by the project until project end corresponding to a total investment of 350 Mio. € and leading to 1 420 GWh RES heat and cold production per year. A multiple effect is expected in the period after the project and in further EU regions.

Alpine Groundwater - pristine aquifers under threat

Das Projekt "Alpine Groundwater - pristine aquifers under threat" wird vom Umweltbundesamt gefördert und von Universität Zürich, Geographisches Institut durchgeführt. The characteristics of climate and hydrology in mountain areas remain poorly understood relative to lowland areas. Our mission is to assess the groundwater quality and seasonal storage dynamics above the alpine timberline (2000 m). This critical recharge zone covers 23% of Switzerlands land surface and is the source of the countrys most important resource: clean water from a pristine environment. The value of pristine nature and free ecosystem services are often taken for granted, as they come without any costs (Brauman et al. 2007). In Switzerland, the alpine zone above the timberline is an excellent example of such free ecosystem services that relate to hydrology. The alpine zone forms the headwaters for the majority of Swiss rivers as well as major European rivers like Rhine, Rhone, Po, and Danube. However, not much is known about alpine groundwater, its recharge and water quality variations as these remote reservoirs are rarely monitored. Glaciers and permafrost will continue to retreat forming large new sediment deposits and changing infiltration conditions in high alpine terrain. Climate change will impact hydro-chemical composition of alpine waters, accelerate weathering processes, and might trigger mobilization of pollutants. Accordingly, in this proposal we plan to monitor and quantify free ecosystem services of alpine terrain, particularly those related to water quality and quantity. This project will start a pilot study of alpine porous aquifer observations in the Swiss Alps in the vicinity of the Tiefenbach glacier. To translate hydrological science into an ecosystem service context as suggested by Brauman et al. (2007), we will focus on four key attributes: - I. Water quantity: observations of groundwater level fluctuations combined with analysis of contributing water sources based on stable isotope analysis give quantitative understanding of origin and amount of water, - II. Water quality: groundwater temperature and electrical conductivity will be used as proxies for sampling of hydro-chemical parameters with automated water samplers during primary groundwater recharge (snowmelt and rainfall events), - III. Location: Alpine terrain above the timberline, especially recharge into/out of a alpine porous aquifer at a pro-glacial floodplain and - IV. Timing of flow (snow- and icemelt from May to September) and groundwater recharge during the growing season.

Are mountainous watersheds vulnerable to climatic change?

Das Projekt "Are mountainous watersheds vulnerable to climatic change?" wird vom Umweltbundesamt gefördert und von Universite de Geneve, Institut d'ingenierie des connaissances et logiques de l'espace (ICLE), Centre universitaire d'informatique durchgeführt. From Understanding to Predicting the Vulnerability of High Altitude Watersheds due to Hydro-Climatic Change Using Physically Based Hydrological Models. Abstract Mountainous watersheds are critical sources for downstream processes like hydroelectric power production, ecological functioning and ecosystems overall. High altitude watersheds are very sensitive to climatic change. The hydrological systems of mountains are quite complex because of irregular topography and complex hydrological processes like orographic precipitation lapse rates of precipitation, temperature, etc. Therefore, mathematical models are used to understand such physical processes as stream flow generation, snow and glacier melt. In this research project, mathematical models will be developed using open source semi-distributed hydrological software called the Soil and Water Assessment Tool (SWAT). The main study area - the 'Rhone River Watershed- will be examined and newly developed theories will be applied to other watersheds for validation (e.g. Mendoza-Brahmaputra). The current version of SWAT uses temperature index approach for snow and glacier melt where it is assumed that melt rate is linear function of daily average temperature, which is not often the case because other meteorological variables like solar radiation, wind speed, relative humidity, inter balance each other in the melting process. Therefore there is a research need to implement the other variables with process based equations. This new and innovative approach will add details of snow and glacier melt processes and their contribution to stream flow. The aims of this project are to better understand the contribution of snow and glacier melt to stream flow and to assess their sensitivity to climate change and its consequences on water resources. I will attempt to calculate the past and present changes of glacier melt. Regional climate models based on meteorological variables like precipitation, temperature and solar radiation will be used for future forecasting. Vulnerability associated with hydro-climatic change will be studied as an example flow regime change. Moreover, distributed hydrological models need faster and efficient computation for detail information of the watershed. Therefore, High Performance Computing (HPC) facility from Stanford University will be used to extract detail information on snow and glacier melt process for long term simulation. The expected outcome on flow generation process for current and future condition will make it easier to understand the ongoing processes that will help providing recommendations for adaptation strategies.

Hydrologic Prediction in Alpine Environments II

Das Projekt "Hydrologic Prediction in Alpine Environments II" wird vom Umweltbundesamt gefördert und von Ecole Polytechnique Federale de Lausanne (EPFL), Faculte ENAC, IIE, Laboratoire d'ecohydrologie durchgeführt. Proposed research: This research programme proposes to analyze the predictability of the hydrologic behaviour of Alpine ecosystems at the spatio-temporal scales relevant for water management, i.e. at spatial scales of between 200 km2 (e.g. a hydropower production catchment) and around 5000 km2 (e.g. flood management of the Swiss Rhone catchment) and at temporal scales ranging from hours to seasons. Research context: Quantitative stream flow predictions are essential for the sustainable management of our natural and man-made environment and for the prevention of natural hazards. Despite of ever better insights into the involved physical processes at the point scale, many existing catchment scale runoff prediction models still show a lack of reliability for stream flow prediction. The present research programme addresses this foremost issue in Alpine environments, which are the source of many major European rivers and play a dominant role for hydropower production and flood protection. Stream flow prediction in such environments is particularly challenging due to the high spatial variability of the meteorological driving forces opposed to notorious data scarcity in remote and high elevation areas. Project context: The present proposal is a follow-up proposal of the Ambizione project Hydrologic Prediction in Alpine Environments. During the main phase of the project (3 years), certain essential research objectives could not be reached, due namely to the maternity leave of the principal investigator (PI), but also due to additional research questions that emerged at the very beginning of this research. The present follow-up project proposes to complete the research programme during a complementary project phase (2 years). Objectives: The main objective of this research programme is to assess under which conditions simple hydrological models can give reliable stream flow predictions in Alpine environments. This objective will be reached based on an analysis of the variability of natural flow generation processes and of the variability of corresponding state-of-the-art hydrological model outputs. During the main phase of the project, the research was concentrated on the analysis of flow generation processes related to snowmelt, which in Alpine areas dominate the hydrological response over a large part of the year. The achieved results include a new hourly snowmelt model combined to a spatially-explicit precipitation-runoff model, an improved snowfall-limit prediction method for hydrological models and a weather generator that produces coupled temperature and prediction scenarios to analyze how these two meteorological variables integrate to the snow-hydrological response.(...)

How does the future climate affects water quality in lake geneva? from understanding to predicting phytoplankton and nutrients trough an integrative modeling approach

Das Projekt "How does the future climate affects water quality in lake geneva? from understanding to predicting phytoplankton and nutrients trough an integrative modeling approach" wird vom Umweltbundesamt gefördert und von University of Waikato, Center of Biodiversity and Ecology Environmental Research Institute durchgeführt. Lakes can be considered as sentinels and thus indicators and integrators of environmental pressures such as climate change. To maintain lakes in a healthy ecological state is nowadays a major task for water management authorities, and will be increasingly so under climate change which is believed to negatively affect lake ecosystem functioning. Phytoplankton plays a key role in lake dynamics as it is at the base of the food web, and changes in its community have potential to affect the entire lake ecosystem. In addition, Cyanobacteria, the only freshwater phytoplankton group that is able to produce cyanotoxins, are capable of inflicting considerable harm to lake ecosystems and to human health through contamination of drinking water supply and toxin accumulation in fishes. Phytoplankton is thus a common indicator to assess the ecological status of lakes. Without understanding the complex mechanisms and processes that underlay a lake ecosystem in a changing climate, planning for future lake management and adaptation will be compromised. Numerical deterministic modelling is today the most appropriate approach to address these global and complex mechanistic features of lake ecosystems. Modeling studies play a key role in exploring the processes responsible for changes since they can be used to test the sensitivity of lakes to both observed and projected changes in climate. The aim of this project is to apply an ecological model to Lake Geneva, which has not been undertaken yet. Lake Geneva, a deep sub-Alpine lake, is the largest lake in central Europe and an essential source of drinking water, having not only a high ecological value, but also economic and social values. Due to its considerable environmental importance, it is crucial to assess, through numerical modeling techniques applied, how the Lakes water quality may be impaired; especially in view of the fact the observed rate of warming since 1900 is more than double that of the observed global average. Moreover, the hydrodynamic characteristics of Lake Geneva, the watershed of its most important inflow river Rhône, as well as the regional climate, have already been modeled. In coupling these models together, we will close the essential gaps, through which we will be able to understand the links between climate, watersheds, and lakes and provide a whole, integrated ecosystem perspective. This integrative model will provide an accurate predictive management tool to help take decisions and response strategies in a timely manner. It is generally recognized that future climate change will have an important impact on Lake Geneva, with a likely deterioration of its water quality. This will be manifested by high phosphorus concentrations, by phytoplankton biomass increase, by a change in phytoplankton composition, by an asynchronous phenology and by an emergence of potentially toxic Cyanobacteria.(...)

Auswirkungen des Klimawandels auf die Bewässerung und Wasserversorgung im alpinen Raum

Das Projekt "Auswirkungen des Klimawandels auf die Bewässerung und Wasserversorgung im alpinen Raum" wird vom Umweltbundesamt gefördert und von Universität Freiburg, Institut für Geo- und Umweltnaturwissenschaften, Professur für Hydrologie durchgeführt. In den Alpen sind besonders die inneralpinen Räume häufig von extremer Trockenheit betroffen. Wichtigste Beispiele sind die Täler der Rhone (Wallis), des Inn (Engadin und Tirol) und der Etsch/Adda (Vinschgau). Hier ist denn auch seit mindestens tausend Jahren die landwirtschaftliche Bewässerung als unerlässlich eingeführt. Bekannt sind die Bewässerungen vor allem unter dem Begriff der Wiesenbewässerung, obwohl nicht nur Wiesen, sondern auch Äcker bewässert wurden und zum Teil noch bewässert werden. Die historischen Bewässerungsysteme im Wallis (Suonen/Bisses), in Tirol (Waale) und Südtirol (Waale/Leiten) sind die bekanntesten Exponenten dieser alpinen Bewässerung. Im Sonderkultur- und Obstanbau des Vinschgaus geht der Wandel heute hin zu Beregnungsanlagen. Zahlreiche Bewässerungs-Fassungen sind mit Trinkwasserfassungen kombiniert. Bereits aus vergangenen Zeiten ist bekannt, dass die Fassungsanlagen und Zuleitungen infolge Klimaveränderungen, verbunden mit Gletschervorstößen und -rückzügen, verlegt werden mussten. Nun stellt sich in jüngster Zeit erneut und ganz aktuell die Frage, wie die Bewässerung durch den stark angelaufenen Klimawandel tangiert wird. Der Kern des Problems liegt im Anstieg der Schneegrenze und dem Rückzug der Gletscher. Dadurch werden die heutigen Fassungsanlagen potentiell gefährdet. Es ist damit zu rechnen, dass einzelne Fassungsanlagen in absehbarer Zeit trockenfallen könnten. Die Thematik ist kompliziert, da trotz der genannten Änderungen im natürlichen System (Schnee/Eis) die Fassungen nicht zwingend trockenfallen müssen. Dies ist eine Frage der sie speisenden Speicher. Es ist zu untersuchen, ob nur Schmelzwasser über die Fliessgewässer die jeweilige Fassung speist und/oder ob auch ein Grundwasserspeicher dahinter liegt. Damit ist die Frage ein Thema der Abflussbildung. Methodisch kann sie am besten mit Tracermethoden in Verbindung mit hydrometrischen Verfahren und der Modellierung angegangen werden.

1 2 3