The main objectives of the BGR cruise BGR01 POPSCOMS (Properties of a Gas Hydrate Province on a Subduction-Collision Related Margin off Sabah) off Sabah/Malaysia with M/V AKADEMIK NEMCHINOV from 4th November to 3rd December 2001 in co-operation with PETRONAS Malaysia are the research on (1) Marine Methane Gas Hydrates: Detection, distribution and formation; relation to the adjacent highly productive "conventional" gas province in the specific tectonic setting of the collisional belt off Sabah. (2) Tectonic development of the (accretionary) margin off Sabah: Improve the tectonic stratigraphic hypothesis of the subducted Proto-South-China-Sea and continental crust under the accretionary wedge, respectively in the subducted plate. Open questions and targets of the survey: Within the help of the already existing magnetic data and other seismic measurement methods (e.g. special refraction seismic with ocean-bottom hydrophones [OBH], which presumably is an exellent and adequate method) we try to discern between oceanic and continental crust in the subducted plate, to investigate the nature of the transition and get information on the subduction angle. This is important in relation to the Cagayan Ridge (Sulu Sea) that is interpreted as an island arc that is related to the subduction of the proto-South China Sea. Another aim was to enable the determination of seismic anisotropy, distribution of BSR's and hydrates in the area and their v(p) to v(s) ratios. Are the gas hydrates related to the adjacent highly productive "conventional" gas province? What is the structural character of the transition zone between the hydrate province and the adjacent conventional gas bearing province further up-slope? Conversely, are there indication for a possible deepwater source? Can initial conclusions be drawn regarding their biogenic or thermogenic origin? Is there an impact of sedimentation conditions, compressional behaviour (e.g. at active margins) and/or structural properties on the genesis and stability of gas hydrates and BSRs (Bottom Simulating Reflectors)? How do the findings under different conditions compare in that regard? Which are the favorable conditions for the genesis of gas hydrates, and can they be detected by geophysical methods even if there are no BSR's? The findings are expected to provide a contribution to the assessment of the deepwater hydrocarbon potential along the continental margin off Sabah. Results: In the study area the BSRs were identified on the base of their polarity reversal with respect to the seafloor and when they transect reflectors from the strata. The widely distributed BSRs along the seismic lines of the survey deliver an indirect indicator for the presence of gas hydrates in the study area (BSR's in post Miocene sediments). The BSR depths below seafloor vary between 250 and 350 m. Differences in the reflection coefficient of the BSRs are mainly related to the amount of free gas beneath the Gas Hydrate Stability Zone.
Das Projekt "Sub project: Imaging Induced Seismicity at the KTB" wird vom Umweltbundesamt gefördert und von Universität Hamburg, Zentrum für Meeres- und Klimaforschung, Institut für Geophysik durchgeführt. The observation of naturally or artificially generated acoustic emissions (i.e., small earthquakes) by seismic networks is a powerful tool to image transport processes in the earth. During the injection experiments at the KTB a large number of events were observed. The precise spatio-temporal characterization of the seismic events is of utmost importance since all following interpretations (e.g., transport properties) rely entirely on this result. The localization of the events depends on the model used for the localization. The anisotropy of the KTB rocks is a well known feature but was not considered for the localization. Previous studies demonstrate that this leads to severe errors in the location of events. In this study we will first determine the anisotropic elastic features from the comprehensive KTB VSP data sets using 3-D anisotropic tomography for P- and S-waves. This step is essential for the localization. The obtained tomographic anisotropic 3-D model will then be used for the localization of the acoustic emissions of the 2000 and 2004 injection experiments. A newly developed technology based on reversed modelling or time reversed acoustic mirrors will be used to image the events. This techniques does not require picking of events and increases the detection level of the network owing to the stacking character of the method and allows to locate arrivals not visible in the individual seismograms of the network.
Das Projekt "Teilprojekt B" wird vom Umweltbundesamt gefördert und von Universität Frankfurt am Main, Goethe-Zentrum für Wissenschaftliches Rechnen (G-CSC) durchgeführt. Das Projekt hat eine Anwendung des Grundwasserströmungs- und Transportcodes d3f++ auf endlagerrelevante Aufgabenstellungen, Vergleichsrechnungen mit anderen Codes und damit einen Nachweis seiner Leistungsfähigkeit sowie die Erhöhung des Vertrauens in die Modellierungsergebnisse zum Ziel. Dazu gehört eine Weiterentwicklung von d3f++ hinsichtlich einer verbesserten Robustheit der Lösungsverfahren insbesondere für regionale Modelle mit dünnen Schichten und freier Grundwasseroberfläche, einer weiteren Beschleunigung der Rechnungen und einer breiteren Anwendbarkeit. Letzteres soll neben Verbesserungen in der Benutzeroberfläche und der Modellerstellung durch die Einführung eines Speicherterms geschehen, der eine genauere Modellierung kurzfristiger Prozesse ermöglicht. Folgende Arbeitspakete werden bearbeitet: AP 1 Anwendungs- und Vergleichsrechnungen: AP 1.1 Äspö Task 9, AP 1.2 'Äspö site descriptive model', AP 1.3 Modell der WIPP Site, AP 2 Erweiterung des Anwendungsbereichs von d3f++: AP 2.1 Erweiterung der Strömungsgleichung in d3f++ um einen Speicherterm, AP 2.2 Weiterentwicklung des Präprozessors ProMesh, AP 3 Weiterentwicklung der Lösungsverfahren in d3f++: AP 3.1 Übertragung und Implementierung des LIMEX-Verfahrens, AP 3.2 Robuste Glättungsverfahren für den geometrischen Mehrgitterlöser, AP 3.3 Verbesserung der Grobgitterkorrektur, AP 3.4 Anpassung der FAMG-Verfahren an die thermohaline Grundwasserströmung und parallele Skalierbarkeit, AP 3.5 Parallele adaptive Verfahren und angepasste Gitterstrukturen: AP 3.5.1 Adaptive anisotrope Verfeinerung, AP 3.5.2 Problemangepasste Lastverteilung für Konvektionsdominanz und ILU-T, AP 3.5.3 Allgemeine parallel-adaptive Strategie, AP 3.6 Stabile Modellierung freier Grundwasseroberflächen: AP 3.6.1 Virtuelle Teilelemente für freie Oberflächen bei thermohaliner Strömung, AP 3.6.2 Verbesserte PLIC-Rekonstruktionsverfahren für freie Oberflächen.
Das Projekt "Sub project: Pattern recognition in electrical images - digital image analysis with special focus on Gas Hydrate Leg 204" wird vom Umweltbundesamt gefördert und von RWTH Aachen University, E.ON Energy Research Center (E.ON ERC) Institute for Applied Geophysics and Geothermal Energy (GGE) durchgeführt. Electrical images are widely used in oil industry for borehole inspection and reservoir characterisation. They consist of artifically colour-coded micro-resistivity measurements on the borehole wall. In ODP these are commonly used to study the internal structure of the oceanic crust. At present, the reconstruction of lithology from electrical images is purely based on visual inspection and subjective interpretation. Our objectives are to (1) develop methods for an object- and texture-based pattern recognition of electrical images; (2) develop methods for an automatic classification of rocks; (3) apply this methodology to study the occurrence and characteristics of gas hydrates at ODP Leg 204. Avaible methods from seismic data interpretation and biomedical imaging will be adapted for use with resistive images. In particular, we will implement an algorithm for automatic object identification for a study of the internal rock morphology with respect to sediments drilled at ODP Leg 204. This way, resistivity anomalies caused by gas hydrates will localised them in electrical images. Their proportion, size, and shape will be quantified in order to analyse anisotropy and spatial heterogeneity of identified gas hydrates. Finally, we will correlate the 1D information from all available boreholes and interpolate them into a 2D map of the gas hydrates distribution at Leg 204.
Das Projekt "Sub project: On the pressure dependence of elastic parameters in porous and fractured rocks of the upper continental crust" wird vom Umweltbundesamt gefördert und von Freie Universität Berlin, Institut für Geologische Wissenschaften, Fachrichtung Geophysik durchgeführt. Within the ICDP-Program 'Energy and Fluid Transport in Continental Fracture Systems' this project is dedicated to the stress and fluid pressure dependency of anisotropic elastic parameters in the continental upper crust. Our project follows two aspects: a) the extension of the piezosensitivity approach towards fractured anisotropic media including effects of nonlinear elasticity and (b) its application to laboratory data from KTB core samples. This approach establishes a set of equations which allow to interpret velocity vs. pressure data in terms of compressibility and porosity of porous and fractured fluid saturated rocks. It is one of the very few theoretical approaches allowing a direct interpretation of the stress dependency of seismic velocities in terms of rock physical parameters. Furthermore, it introduces additional and to some extend new rock characteristics, like the piezosensitivity and stiff and compliant porosity. Measurements of anisotropic elastic velocities and bulk deformation over a differential pressure range up to 350 MPa and higher are available for a set of 136 core samples from the KTB deep laboratory. These data will be analyzed and reinterpreted in terms of the anisotropic piezosensitivity approach. This will give a closer insight into the stress dependent elastic anisotropy of the KTB rocks under the in situ tensorial state of stress. It might help to explain observed and to predict possible anisotropy changes due to changes of pore fluid pressure in the rocks of the upper continental crust.
Das Projekt "Determination of physical properties on the core material of the borehole soultz sous foret (Soultz Project)" wird vom Umweltbundesamt gefördert und von Universität Bochum, Fakultät für Geowissenschaften, Institut für Geophysik durchgeführt. Objective: Aim: to determine the physical properties of the granitic basement in the soultz hdr borehole. General information: description: the core samples obtained from the granite section of the soultz gpk-1 borehole will be analysed to determine the properties of the granite such as strength and fracture toughness, thermal parameters, heat production (radiogenic content), and acoustic, electrical and magnetic properties. Achievements: The results of studies carried out on cores and cutting materials of three boreholes to a depth of 3.6 km are summarised. The physical property programme included measurements of density, ultrasonic velocities, seismic anisotropy, elasticity, fracture behaviour, electric and magnetic parameters, thermal properties including radioactive heat production, and radioactive age dating. Heat production in the Soultz granite is 2 to 3 times greater than that in other granites at the surface, although all surface granites in the vicinity show the same intrusion age. The physical property measurement programme has demonstrated that continuous measurements on cores and cuttings are essential for both operational drilling procedures and down hole condition assessment in crystalline rock formations. The European Geothermal Project involved teams from France and Germany who collaborated to test a site in the Upper Rhine Valley for its suitability for terrestrial heat mining (hot dry rock (HDR) energy production). Some British scientists participated in specific tasks. The site was chosen near Soulz-sous-Forets in Alsace at the location of the old oil field of Pechelbronn which was the first oil field exploited in Europe since the 18th century. It is situated on 1 of the summits of a very large thermic anomaly (200 km long and 20 km wide) where the mean geothermal gradient between the surface and 1500 m is known to be higher than 6.5 C/100 m. The programme began in July 1987 with a 2000 m deep borehole. Below at 1375 m thick sediment cover, the granitic basement was penetrated to a depth of 2000 m. The temperature at the bottom of the hole was 140 C. The geothermal gradient within the sediments was unusually high (10 C per 100 m) and diminished to a normal after a series of fractures inside the Buntsandstein producing some water at 116 C with a total salinity 98 g/l. At the depth of 1820 m, hydraulically active natural fissure was reached. The artesian outflow from this zone was 0.15 l/s, with well head pressure of 1.6 bars. The thermal water produced from the well had a high chloride contents and clearly had an identical origin with the fluid collected from the Buntsandstein just above the granite. During the water injection tests, a second active natural fissure was detected normally closed out but which seemed to aquire a noticeable permeability at a well head pressure of about 40 bars.
Das Projekt "Sub project: Rock magnetic properties and their anisotropy from host rock and impact lithologies of drillings at the Chesapeake Bay impact structure, USA" wird vom Umweltbundesamt gefördert und von Karlsruher Institut für Technologie (KIT), Institut für Angewandte Geowissenschaften, Abteilung Strukturgeologie & Tektonik durchgeführt. The ICDP-USGS Eyreville drilling at Chesapeake Bay produced one of the most complete geologic sections of an impact structure. Core samples from the 1766 m deep drilling into the central zone of the 35 Ma old impact structure allows the study of different target and impact lithologies and their rock magnetic properties. The dominant magnetic minerals creating crustal magnetic anomalies are pyrrhotite and magnetite. The main target of this study is to find new clues about the different hypotheses on remagnetization mechanisms during impact-related processes. Our initial investigations have shown that the target rocks contain magnetite and pyrrhotite, which are responsible for the regional magnetic anomaly pattern. This pattern is disrupted by the impact, which is in accordance with an interpretation of displaced basement-derived megablocks embedded in the lithic and suevitic breccia unit. The only modification of magnetic minerals has been observed in this latter unit, while the basement-derived blocks do not show any shock deformation. We found shock-induced remanent magnetization and chemical remanent magnetization to be the only remagnetization mechanisms, and no indication for a TRM can be confirmed, in contrast to most hypothesis in literature. Shocked pyrrhotite (4C modification with abundant mechanical twins and defect structures, a significant metal deficieny and a TC at 360 centigrade) and secondary magnetite in the suevite matrix (interpreted to be formed from Febearing fluids, which derived mainly from melt alteration) are the magnetic carriers of a stable remanent magnetization (Jr greater than Ji) in the suevite unit. Because only one NRM direction has been observed in the suevite, probably both minerals have acquired their magnetization close to the timing of the impact event. We plan to conduct low-temperature magnetization experiments with the suevite samples as well as with experimentally shocked pyrrhotite. These data might enhance our understanding of shock-induced acquisition processes in impact rocks and help to understand the relation between microstructures in pyrrhotite and shock pressure, which is not well constrained up to now. Furthermore, the magnetite only bearing samples will also be studied in order to learn if these samples do show any indications of superparamagnetic behaviour as we would suspect from the observed nanocrystals, and to find clues on the large range of Curie temperatures from 500 to 640 centigrade.
Das Projekt "Teilprojekt A" wird vom Umweltbundesamt gefördert und von Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) gGmbH - Bereich Endlagerung durchgeführt. Das Projekt hat eine Anwendung des Grundwasserströmungs- und Transportcodes d3f++ auf endlagerrelevante Aufgabenstellungen, Vergleichsrechnungen mit anderen Codes und damit einen Nachweis seiner Leistungsfähigkeit, seine Qualifizierung für ein breiteres Anwendungsspektrum sowie die Erhöhung des Vertrauens in die Modellierungsergebnisse zum Ziel. Dabei werden Modelle im regionalen Maßstab sowohl im Kristallin als auch im Sedimentgestein bearbeitet. Dazu gehört eine Weiterentwicklung von d3f++ hinsichtlich einer verbesserten Robustheit der Lösungsverfahren insbesondere für regionale Modelle mit dünnen Schichten und freier Grundwasseroberfläche, einer weiteren Beschleunigung der Rechnungen und einer breiteren Anwendbarkeit. Letzteres soll neben Verbesserungen in der Benutzeroberfläche und der Modellerstellung durch die Einführung eines Speicherterms geschehen, der eine genauere Modellierung kurzfristiger Prozesse ermöglicht. Folgende Anwendungsfälle im Feldmaßstab werden mit d3f++ bearbeitet: Task 9 der Task Force on Groundwater Flow and Transport of Solutes von SKB (Kristallin), das 'Äspö site descriptive model' für das gesamte HRL Äspö (ebenfalls Kristallin) und ein Modell des Deckgebirges der Waste Isolation Pilote Plant (WIPP) in New Mexico (Sedimentgestein über flach gelagertem Salz.) Als Weiterentwicklungen von d3f++ sind geplant: Die Erweiterung der Strömungsgleichung um einen Speicherterm und damit die Ertüchtigung des Codes zur Berücksichtigung der Kompressibilität z.B. bei der Auswertung von Feldexperimenten, die Weiterentwicklung des Präprozessors ProMesh und des darin enthaltenen Gittergenerators sowie Weiterentwicklungen der Lösungsverfahren hinsichtlich Robustheit und Effizienz. Besondere Bedeutung kommt dabei der Verbesserung der Stabilität bei der Modellierung freier Grundwasseroberflächen, der Beschleunigung des nichtlinearen Lösers und der verbesserten Behandlung von Anisotropien zu.
Das Projekt "Sub project: Interpretation of the multiple-source VSP measurements in the deepest section of the KTB main borehole" wird vom Umweltbundesamt gefördert und von Helmholtz-Zentrum Potsdam Deutsches GeoForschungsZentrum durchgeführt. In der ersten und zweiten Projektphase wurden die Feldarbeiten erfolgreich abgeschlossen, d.h. es wurden zwei vertikale seismische Profile (VSPs) bis Endteufe und sechs Moving-SourceProfile (MSPs) akquiriert sowie ein Kanalwellenexperiment und das Experiment 'Erbendorfkörper-Endoskopie' durchgeführt. Der vorliegende Antrag bezieht sich auf die Auswertung VSPs und MSPs mit Schwerpunkt auf den folgenden Aspekten: - Seismische Geschwindigkeiten in P und S in-situ und Vergleich mit petrologischen und petrophysikalischen Bohrbefunden (Logs und Laborarbeiten), - seismische Signatur von Klüften und Fluiden in P und S, - Frequenzabhängigkeit der Reflektivität ('Skaligkeit'), - Vergleich der Reflektivität der Krustensegmente entlang und unterhalb der Bohrung bis zum Erbendorfkörper, - seismisches Geschwindigkeitsfeld und Anisotropie im Umfeld der KTB. Die geplanten Arbeiten umfassen digitale Datenbearbeitung, -analyse und Modellierung.
Das Projekt "Sub project: Seismological images of the Hellenic subduction zone" wird vom Umweltbundesamt gefördert und von Universität Bochum, Fakultät für Geowissenschaften, Institut für Geophysik durchgeführt. Die Struktur der Kruste und des oberen Mantels soll im Bereich der Hellenischen Subduktionszone mit Methoden der passiven Seismologie untersucht werden. Die Receiver Function (RF) Methode eignet sich zur Kartierung von seismischen Diskontinuitäten in größeren Tiefen. Hiermit wollen wir die Krustendicke und den Verlauf der unter die Ägäis abtauchenden afrikanischen Platte in einem Profil von der Insel Gavdos über Westkreta nach Naxos in der Ägäis verfolgen. Insbesondere gibt es noch eine Diskrepanz zu Fragen der Mohotiefen unter Kreta zwischen den Methoden der aktiven und passiven Seismik. Ein weiteres Forschungsziel ist die Untersuchung der horizontalen Anisotropie in der Lithosphäre und Asthenosphäre aus der Aufspaltung von Scherwellen. Damit lassen sich möglicherweise rezente Fließrichtungen in der Asthenosphäre kartieren, die die Bewegungen der Lithosphärenplatten im Bereich der Hellenischen Subduktionszone steuern.