API src

Found 5308 results.

Related terms

GcBÜK400 - Zink im Oberboden

Zink ist ein für Pflanze, Tier und Mensch essentielles Spurenelement, welches jedoch bei extrem hohen Gehalten auf Pflanzen und Mikroorganismen toxisch wirken kann. Die Zn-Konzentration in der oberen kontinentalen Erdkruste (Clarkewert) beträgt 52 mg/kg, sie kann aber in Abhängigkeit vom Gesteinstyp stark schwanken. Die mittleren Zn-Gehalte (Median) der sächsischen Hauptgesteinstypen liegen zwischen 11 bis 140 mg/kg, der regionale Clarke des Erzgebirges beträgt ca. 79 mg/kg. Sphalerit (Zinkblende) führende polymetallische La-gerstätten können lokal zu zusätzlichen geogenen Zn-Anreicherungen in den Böden führen. Anthropogene Zn-Einträge erfolgen vor allem durch die Eisen- und Buntmetallurgie bzw. durch die Zn-verarbeitenden Industrien (Farben, Legierungen, Galvanik) und durch Großfeuerungsanlagen. Im Bereich von Ballungsgebieten sind Zn-Anreicherungen relativ häufig zu beobachten. Anthropogene Zn-Einträge sind in der Landwirtschaft durch die Verwendung von organischen und mineralischen Düngemitteln möglich. Für unbelastete Böden gelten Zn-Gehalte von 10 bis 80 mg/kg als normal. Die regionale Verbreitung der Zn-Gehalte in den sächsischen Böden wird vor allem durch die geogene Prägung der Substrate bestimmt; niedrige bis mittlere Gehalte sind über den periglaziären Sanden und Lehmen im Norden und den Lössböden in Mittelsachsen (10 bis 50 mg/kg) sowie den Verwitterungsböden über den Festgesteinen des Erzgebirges/Vogtlandes (50 bis 150 mg/kg) zu erwarten. Innerhalb der Grundgebirgseinheiten treten über den polymetallischen Lagerstätten des Erzgebirges, in Abhängigkeit von der Intensität der Vererzung, deutliche positive Zn-Anomalien auf (Freiberg, Annaberg-Buchholz - Marienberg, Aue - Schwarzenberg). Böden über Substraten mit extrem niedrigen Zn-Gehalten (Granit von Eibenstock, Orthogneise der Erzgebirgs-Zentralzone, Osterzgebirgischer Eruptivkomplex, kretazische Sandsteine) treten als negative Zn-Anomalien im Kartenbild in Erscheinung. Verstärkte Zn-Akkumulationen sind in den Auenböden des Muldensystems festzustellen. Auf Grund der höheren geogenen Grundgehalte im Wassereinzugsgebiet, dem Auftreten Zn-führender polymetallischer Vererzungen und insbesondere der Bergbau- und Hüttentätigkeit im Freiberger Raum, kommt es vor allem in den Auenböden der Freiberger und Vereinigten Mulde zu hohen Zn-Konzentrationen (Mediangehalte 370 bzw. 240 mg/kg). Für die Wirkungspfade Boden-Mensch sowie Boden-Pflanze wurden keine Prüf- und Maßnahmenwerte für Gesamtgehalte in der Bundes-Bodenschutz- und Altlastenverordnung (BBodSchV) festgeschrieben, da Zn bei der Gefahrenbeurteilung nur von geringer Bedeutung ist.

Karte der Geogefahren in Niedersachsen - Massenbewegungen

Das Landesamt für Bergbau Energie und Geologie (LBEG) veröffentlicht im Maßstab 1: 50 000 und 1: 25 000 das Kartenwerk Geogefahren in Niedersachsen. In diesen Gefahrenhinweiskarten werden derzeit die Naturgefahren Subrosion und Massenbewegung durch Einzelobjekte (Erdfall, Massenbewegung) oder die Abgrenzung gefährdeter Flächen (Erdfallgefährdungsgebiet, Salzstockhochlage) dargestellt. Massenbewegungen sind geomorphologische Prozesse, bei denen sich Fels oder Lockerstein unter dem Einfluss der Gravitation in Zeiträumen von Sekunden bis Jahren hangabwärts bewegen. Natürliche Ursachen wie bspw. eine ungünstige Neigung geologischer Schichten oder Verwitterung von Felspartien begünstigen die Entstehung von Massenbewegungen. Letztlich Auslöser einer Massenbewegung können sowohl natürliche (Niederschlag etc.) als auch anthropogene (Baumaßnahmen, Verkehr etc.) Einwirkungen sein. Massenbewegungen verursachen durch das Verschütten mit Fels oder Lockergestein und tiefreichende Geländebrüche z.T. gravierende Schäden an Gebäuden, Straßen, Schienenwegen oder Wasserstraßen. Als übergeordnete Bewegungsprozesse von Massenbewegungen werden Rutschungs-, Sturz- und Fließprozesse unterschieden. Die Bewegungsmechanismen Kippen und Driften werden nicht weiter differenziert und sind einem der übergeordneten Prozesse zugeordnet. • Rutschungsprozesse sind hangabwärts gerichtete, gleitende Bewegungen von Fest- und/oder Lockergestein an diskreten Gleitflächen. Während der Bewegung behält die Rutschmasse auf der Gleitfläche den Kontakt zum festen Untergrund weitgehend bei. Klassifiziert werden Rutschungen durch die Form der Gleitfläche, so dass zwischen Translations- und Rotationsrutschung oder einer kombinierten Gleitflächenform zu unterscheiden ist. • Bei einem Sturzprozess wie beispielsweise einem Steinschlag oder einem Felssturz, verlieren die stürzenden Massen zeitweilig den Kontakt zum festen Untergrund. Felsbrocken oder Felsmassen fallen, springen oder rollen der Schwerkraft folgend bergab. Sturzprozesse werden entsprechend des Volumens des herabgestürzten Gesteinsmaterials klassifiziert. • Fließprozesse wie beispielsweise Erd-/Schutt-/Blockströme, Muren sowie Kriechbewegungen aller Art haben keine definierten Gleitflächen. Im Gegensatz zum Rutschprozess ist der Wassergehalt der fließenden Massen meist deutlich erhöht. Die Bewegung ist vergleichbar einer hochviskosen Flüssigkeit. Fließprozesse werden nach ihrer Bewegungsgeschwindigkeit klassifiziert. Grundlage der Karte der Geogefahren in Niedersachsen – Massenbewegungen – mit einer Darstellung der Einzelobjekte – ist ein Ereigniskataster auf der Basis von Informationen aus topographischen, geologischen und ingenieurgeologischen Karten, Gutachten und Literatur. In einem Fall konnte ein hochauflösendes, digitales Geländemodell aus Laserscan-Aufnahmen (LIDAR) ausgewertet werden. Die Gefahrenhinweiskarte Massenbewegungen ist auf die Belange der Raumplanung ausgerichtet, nicht parzellenscharf und ersetzt keine objektbezogene geotechnische Untersuchung. Die Kartendarstellung dokumentiert den aktuellen Kenntnisstand im LBEG, kann aber die Vollständigkeit der Phänomene nicht garantieren. Sie dient Ministerien, Fachbehörden, Kreis- und Kommunalverwaltungen sowie Wirtschaftsunternehmen und Bürgern als erste Grundlage zur Gefahreneinschätzung mit dem Ziel, Schäden durch vorausschauende Planung zu verhindern bzw. zu minimieren. Bereiche, die unmittelbar an die ausgewiesenen Flächen angrenzen, können ebenfalls betroffen sein. Intensität und Wahrscheinlichkeit eines möglichen Ereignisses können aus der Karte nicht abgeleitet werden. Lokale Gegebenheiten (z.B. Schutzmaßnahmen, Sanierungen, topografische Besonderheiten) sind in weitergehenden Untersuchungen zu berücksichtigen.

Potenzielle Nitratkonzentration im Sickerwasser (2019)

Die potenzielle Nitratkonzentration im Sickerwasser in [mg NO3/l] ist eine wichtige Kenngröße zur Abschätzung und Bewertung der Sickerwassergüte an der Untergrenze des Wurzelraumes. Im Rahmen des landesweiten Basis-Emissionsmonitorings erfolgt die Abschätzung der potenziellen Nitratkonzentration auf Grundlage des Stickstoff-Flächenbilanzsaldos aus der Landwirtschaft auf Gemeindeebene, der atmosphärischen N-Deposition, der Landnutzung nach ATKIS-DLM, der zusätzlichen N-Mobilisierung bzw. Immobilisierung im Boden, dem Nitratabbau im Boden (Denitrifikation) sowie der Sickerwassermenge. Die berechnete potenzielle Nitratkonzentration im Sickerwasser wird neben den gemessenen Nitratkonzentrationen in den Grundwassermessstellen zur Gefährdungsabschätzung und Bewertung des chemischen Zustands der Grundwasserkörper gemäß EG-WRRL herangezogen. Bei der landesweit ermittelten potenziellen Nitratkonzentration im Sickerwasser ist zu beachten, dass die Werte aufgrund der räumlichen Auflösung der verfügbaren Eingangsdaten nicht für eine schlaggenaue Bewertung geeignet sind. Detaillierte Methodenbeschreibung siehe: Methodik_Basis_Emissionsmonitoring_LBEG.pdf

Küstengebiete HWRM-RL Übersicht 2. Zyklus

Küstengebiete (Coastal Areas) der Hochwasserrisikomanagement-Richtlinie (HWRM-RL) 2. Zyklus 2016 - 2021, Übersicht zu Art. 5 HWRM-RL.Diese Daten sind auch im INSPIRE Datenmodell „Annex 3: Gebiete mit naturbedingten Risiken“ erhältlich. Die Bereitstellung erfolgt über die Bundesanstalt für Gewässerkunde (BfG) per Darstellungs- und Downloaddienst, deren URLs in den Transferoptionen angegeben sind.

Wassertiefen zum Lastfall HQmittel / HQ100 2. Zyklus

Im Zuge der Hochwasserrisikomanagement-Richtlinie (HWRM-RL) 2. Zyklus 2016 - 2021 wurden für 3 Szenarien HQhaeufig (häufig/high), HQ100 (mittel/medium), HQextrem (selten/low) Modellierungen der Wasserstände vorgenommen.Die dargestellten Wassertiefen können in vier Bereiche unterschieden werden.1) Hydraulisch berechnete Wassertiefen in Risikogebieten.2) Hydraulisch berechnete Wassertiefen außerhalb von Risikogebieten (Informelle Darstellung).3) Geschützte Bereiche hinter Hochwasserschutzanlagen mit einem Bemessungswasserstand höher als der dargestellte Lastfall.4) Geschützte Bereiche hinter Hochwasserschutzanlagen mit einem Bemessungswasserstand niedriger als der dargestellte Lastfall. Die geschützten Bereiche sind nicht hydraulisch berechnet, sondern grob zu Orientierungszwecken ermittelt worden.Diese Daten sind auch im INSPIRE Datenmodell „Annex 3: Gebiete mit naturbedingten Risiken“ erhältlich. Die Bereitstellung erfolgt über die Bundesanstalt für Gewässerkunde (BfG) per Darstellungs- und Downloaddienst, deren URLs in den Transferoptionen angegeben sind.

FFH-Gebiete HWRM-RL 2. Zyklus

Die nach Hochwasserrisikomanagement-Richtlinie (HWRM-RL) 2. Zyklus 2016 - 2021 ermittelten potentiell betroffenen Fauna-Flora-Habitat-Gebiete (FFH) für die Hochwasser-Lastfälle HQhäufig, HQ100, HQextrem.Bearbeitungsgrundlage ist der Datenbestand zum Stichtag des 2. Zyklus der HWRM-RL.Nach der EG-Richtlinie 92/43/EWG über die Erhaltung der natürlichen Lebensräume sowie der wildlebenden Tiere und Pflanzen (Fauna-Flora-Habitat-Richtlinie, FFH) muss jeder Mitgliedstaat Gebiete für ein zusammenhängendes ökologisches Netz von Schutzgebieten benennen.

EU-Vogelschutzgebiete HWRM-RL 2. Zyklus

Die nach Hochwasserrisikomanagement-Richtlinie (HWRM-RL) 2. Zyklus 2016 – 2021 ermittelten potentiell betroffenen EU-Vogelschutzgebiete für die Hochwasser-Lastfälle HQhäufig, HQ100, HQextrem.Bearbeitungsgrundlage ist der Datenbestand zum Stichtag des 2. Zyklus der HWRM-RL.Gemäß Artikel 4 der EG-Vogelschutzrichtlinie (79/409/EWG) sind die Mitgliedsstaaten (in der Bundesrepublik Deutschland die Bundesländer) verpflichtet, die flächen- und zahlenmäßig geeignetsten Gebiete für Arten des Anhangs I der Richtlinie (Art. 4 Abs. 1) und für Zugvogelarten (Art. 4 Abs. 2) zu besonderen Schutzgebieten (BSG, Europäische Vogelschutzgebiete) zu erklären und der Europäischen Kommission als Teil des ökologisch vernetzten Schutzgebietssystems Natura 2000 zu melden.

Wassertiefen zum Lastfall HQselten/HQextrem Küstengewässer 2. Zyklus

Im Zuge der Hochwasserrisikomanagement-Richtlinie (HWRM-RL) 2. Zyklus 2016 - 2021 wurden für 3 Szenarien HQhaeufig (häufig/high), HQ100 (mittel/medium), HQextrem (selten/low) Modellierungen der Wasserstände vorgenommen.Die dargestellten Wassertiefen können in vier Bereiche unterschieden werden.1) Hydraulisch berechnete Wassertiefen in Risikogebieten.2) Hydraulisch berechnete Wassertiefen außerhalb von Risikogebieten (Informelle Darstellung).3) Geschützte Bereiche hinter Hochwasserschutzanlagen mit einem Bemessungswasserstand höher als der dargestellte Lastfall.4) Geschützte Bereiche hinter Hochwasserschutzanlagen mit einem Bemessungswasserstand niedriger als der dargestellte Lastfall. Die geschützten Bereiche sind nicht hydraulisch berechnet, sondern grob zu Orientierungszwecken ermittelt worden.Diese Daten sind auch im INSPIRE Datenmodell „Annex 3: Gebiete mit naturbedingten Risiken“ erhältlich. Die Bereitstellung erfolgt über die Bundesanstalt für Gewässerkunde (BfG) per Darstellungs- und Downloaddienst, deren URLs in den Transferoptionen angegeben sind.

Grenzen der Hochwasser-Gefahrengebiete HQextrem/HWextrem 2. Zyklus

Überflutungsgebiete gemäß Hochwasserrisikomanagement-Richtlinie (HWRM-RL) 2. Zyklus 2016 - 2021 ohne zu erwartende signifikante Schäden für ein Hochwasser mit niedriger Wahrscheinlichkeit (HQextrem).Diese Daten sind auch im INSPIRE Datenmodell „Annex 3: Gebiete mit naturbedingten Risiken“ erhältlich. Die Bereitstellung erfolgt über die Bundesanstalt für Gewässerkunde (BfG) per Darstellungs- und Downloaddienst, deren URLs in den Transferoptionen angegeben sind.

Risikogewässer 2. Zyklus

Gewässer, an denen Risikogebiete gemäß Hochwasserrisikomanagement-Richtlinie (HWRM-RL) 2. Zyklus 2016 - 2021 ermittelt wurden.

1 2 3 4 5529 530 531