API src

Found 307 results.

Related terms

Coronaschutz in Schulen: Alle 20 Minuten fünf Minuten lüften

Gemeinsame Pressemitteilung von Umweltbundesamt und Kultusministerkonferenz Umweltbundesamt: Fensterlüftung wirksamster Weg zu virenarmer Luft Das Umweltbundesamt (UBA) hat für die Kultusministerkonferenz (KMK) eine Handreichung zum richtigen Lüften in Schulen erarbeitet. Darin geben die Expertinnen und Experten für Innenraumlufthygiene des UBA Empfehlungen, wie sich mit richtigem Lüften in Schulen das Risiko reduzieren lässt, sich mit dem neuartigen Coronavirus zu infizieren. „Kern unserer Empfehlung ist, Klassenräume regelmäßig alle 20 Minuten für etwa fünf Minuten bei weit geöffneten Fenstern zu lüften“, so UBA-Präsident Dirk Messner. Auch zu Luftreinigern und anderen technischen Geräten gibt das UBA Empfehlungen. Die KMK hatte das UBA im Rahmen eines Fachgesprächs am 23.09.2020 zum Thema „Lüften in Schulräumen“ gebeten, die Handreichung zu erstellen. Sie wird nun über die Länder an alle Schulen in Deutschland verteilt. Dirk Messner: „Wo viele Menschen auf engem Raum zusammen sind, kann sich das Virus in der Luft anreichern. Lüften ist die einfachste und wirksamste Maßnahme, um Viren aus der Luft in Klassenzimmern zu entfernen. Unsere Handreichung soll den Schulen helfen, richtig und möglichst effektiv zu lüften. Einen hundertprozentigen Schutz bietet Lüften natürlich nicht. Auch die weiteren Hygienemaßnahmen gemäß den Vorgaben der Länder sind und bleiben wichtig und sollten im Schulalltag beachtet werden.“ Stefanie Hubig, KMK-Präsidentin und rheinland-pfälzische Bildungsministerin: „Die Handreichung bietet Handlungssicherheit für alle an Schule Beteiligten und ich freue mich, dass wir sie nun allen Ländern, Schulträgern und Schulen zur Verfügung stellen können. Die Empfehlungen des Umweltbundesamtes zu Luftaustausch und effizientem Lüften beinhalten kurze und präzise Hinweise, warum, wann und auf welche Weise gelüftet werden soll – und nimmt dabei auch Bezug auf häufig gestellte Fragen. Mit fachgerechtem Lüften leisten wir einen entscheidenden und wirksamen Beitrag zur Reduzierung des Infektionsrisikos durch virushaltige ⁠ Aerosole ⁠ in Schulen.“ Neben dem 20-minütlichen Lüften sollte auch in jeder Unterrichtspause gelüftet werden. Zum Lüften sollten alle Fenster weit geöffnet werden (Stoßlüften). Nur ein Fenster teilweise zu öffnen oder die Fenster zu kippen reicht nicht aus. Ideal ist das Querlüften, wenn Fenster auf gegenüberliegenden Seiten geöffnet werden können. Sowohl beim Stoßlüften wie beim Querlüften sinkt die Temperatur im Raum nur um wenige Grad ab; wer schnell friert, kann für die Zeit kurz einen Pullover überstreifen. Nach dem Schließen der Fenster steigt die Raumtemperatur rasch wieder an. Mit einfachem Lüften werden neben den potentiell virenhaltigen Aerosolen auch ⁠ CO2 ⁠, Feuchte und chemische Stoffe effektiv aus der Luft entfernt. CO2 kann bei zu hoher Konzentration im Innenraum müde machen und zu Konzentrationsschwächen führen. Zuviel Feuchte begünstigt Schimmel. Mobile Luftreiniger können weder CO2 noch Luftfeuchte abführen. Zudem sind sie in der Regel nicht in der Lage, die Innenraumluft schnell und zuverlässig von Viren zu befreien, insbesondere in dicht belegten Klassenräumen. Deswegen sind mobile Luftreinigungsgeräte nicht als Ersatz, sondern allenfalls als Ergänzung zum aktiven Lüften geeignet. Können Räume nicht gelüftet werden, sind die Räume aus innenraumhygienischer Sicht nicht für den Unterricht geeignet. Unter diesem Link finden Sie Videomaterial von Heinz-Jörn Moriske, Experte für Innenraumlufthygiene: https://www.youtube.com/watch?v=zrOtL8-HbGE . Bei Bedarf stellen wir Ihnen die Originalvideodaten gerne zur Verfügung. Bitte melden Sie sich dazu unter presse [at] uba [dot] de . Hier finden Sie eine Infografik in unterschiedlichen Grafikformaten zur freien Verwendung und Anpassung an Ihr eigenes Design: https://www.umweltbundesamt.de/dokument/infografik-lueften-in-schulen Unten finden Sie auch eine Audiodatei des heutigen Pressegesprächs zum Download. Bitte wenden Sie sich an die Pressestelle, wenn Sie das Video zur Berichterstattung verwenden möchten. Wir stellen Ihnen auch gerne das Rohmaterial ohne Grafiken zur Verfügung. Für Blinde und sehbehinderte Menschen stellen wir hier auch eine Audiodeskription zur Verfügung:

Corona in Schulen: Luftreiniger allein reichen nicht - Lüften weiter zentral

Kommission Innenraumlufthygiene nimmt Stellung zu Luftreinigern an Schulen Der Einsatz von mobilen Luftreinigern allein ist kein Ersatz für ausreichendes Lüften an Schulen. Mobile Luftreiniger wälzen die Raumluft lediglich um und ersetzen nicht die notwendige Zufuhr von Außenluft. Es gibt aber Fälle, wo Luftreiniger das Lüften sinnvoll ergänzen können. Zu diesem Ergebnis kommt eine aktuelle Stellungnahme der Kommission für Innenraumlufthygiene (IRK) am Umweltbundesamt (UBA). Die Kommission empfiehlt Luftreiniger in Schulen dort einzusetzen, wo die Fenster nicht ausreichend geöffnet werden können und auch keine unterstützenden, einfachen Zu- und Abluftsysteme in Frage kommen. Die Geräte sollten aber vor dem Einsatz fachgerecht bewertet werden, damit sie zum entsprechenden Raum passen. So muss der Luftdurchsatz groß genug sein, das Gerät darf nicht zu laut sein und es darf keine unerwünschten Schadstoffe freisetzen. Um das Infektionsrisiko mit dem SARS-CoV-2-Virus so gering wie möglich zu halten, empfiehlt die IRK weiterhin als erste und wichtigste Säule das Lüften über weit geöffnete Fenster gemäß der Handreichung des Umweltbundesamtes vom 15. Oktober 2020. Demnach sollte alle 20 Minuten für etwa 3-5 Minuten gelüftet werden sowie in den Unterrichtspausen durchgehend. Sollten sich die Fenster nicht weit genug öffnen lassen, ist die zweite Option, einfache Zu- und Abluftanlagen in die Fenster einzubauen. Solche Anlagen können auch über die Pandemiesituation hinaus vor Ort verbleiben und bei eingeschränkter Lüftungsmöglichkeit dauerhaft die Raumluftqualität verbessern. Erst wenn diese beiden Optionen nicht realisierbar sind, hält die IRK Luftreiniger als flankierende Maßnahme zur Minderung eines Infektionsrisikos für geeignet. Deren Fähigkeit zur zuverlässigen Entfernung virushaltiger Partikel in Realräumen sollte vor dem Einsatz experimentell nachgewiesen sein. Die IRK betont dabei erneut, dass durch den Einsatz dieser Geräte nicht alle Verunreinigungen aus der Raumluft entfernt werden. Mobile Luftreiniger wälzen die Raumluft lediglich um und ersetzen nicht die notwendige Zufuhr von Außenluft. Deshalb sollte jede Lüftungsmöglichkeit auch beim Einsatz von Luftreinigern weiter genutzt werden. Räume, in denen überhaupt keine Lüftungsmöglichkeit über Fenster vorhanden ist und auch keine Lüftungsanlage mit Zufuhr von Außenluft zum Einsatz kommt, sind laut IRK für den Unterricht nicht geeignet. Alle hier genannten Maßnahmen, Lüftungskonzepte und -techniken sowie ggf. der Einsatz von mobilen Luftreinigern, so die IRK, ersetzen nicht die weiteren Schutzmaßnahmen gegen SARS-CoV-2. Sie bieten insbesondere keinen wirksamen Schutz gegenüber einer ⁠ Exposition ⁠ durch direkten Kontakt bzw. Tröpfcheninfektion auf kurzer Distanz. Die Einhaltung der AHA-Regeln (Abstand, Hygiene/Händewaschen, Alltagsmasken) ist daher unabhängig von den obigen Maßnahmen weiterhin zu beachten (AHA+L). Bitte wenden Sie sich an die Pressestelle, wenn Sie das Video zur Berichterstattung verwenden möchten. Wir stellen Ihnen auch gerne das Rohmaterial ohne Grafiken zur Verfügung. Für Blinde und sehbehinderte Menschen stellen wir hier auch eine Audiodeskription zur Verfügung:

Steine-Erden\Glas-flach-DE-2020

Herstellung von Flachglas; Flachglas gehört neben Behälterglas zu den Massengläsern. Alle in großen Mengen hergestellten Gläser gehören zur Gruppe der Alkali-Erdalkali-Silikatgläser (AES-Gläser). Die Zusammensetzung der AES-Gläser ist vom Verfahren und dem Produkt der Herstellung abhängig. Zur Flachglasherstellung befinden sich vier Verfahren im Einsatz (Float-, Fourcault-, Libbey-Owens- und Pittsburgh-Verfahren). Als leistungsfähiges Verfahren zur Herstellung hochwertiger Gläser hat sich das Float-Verfahren durchgesetzt. Die Herstellung des Flachglases nach dem Float-Verfahren läßt sich grundsätzlich in drei Verfahrensabschnitte unterteilen: die Gemengeherstellung, die Glasschmelze und die Formgebung. Bei der Gemengeherstellung werden die Rohstoffe dosiert, getrocknet und gemischt. Die Rohstoffzusammensetzung beim Flachglas muß sehr genau und konstant sein, da das Verfahren gegen Abweichungen sehr empfindlich ist. Dadurch kann auch kein Recycling-Glas eingesetzt werden. Lediglich ein geringer Anteil des im Werk anfallenden Glasbruches und der Reststoffe kann wieder in den Prozeß eingebracht werden. Der anschließende Glasschmelzprozeß kann in die Abschnitte der Silikatbildung, der Glasbildung, der Läuterung und der Konditionierung unterteilt werden. Die Schmelztemperaturen der Glasherstellung liegen bei ca. 1450-1550°C. Aufgrund der hohen Anforderungen an Flachgläser wird bei Temperaturen um 1600°C geschmolzen. Der Schmelzprozeß wird in kontinuierlich betriebenen Wannenöfen durchgeführt. Bei den Glasschmelzwannen der Floatanlagen handelt es sich in der Regel um Querflammöfen mit regenerativer Wärmerückgewinnung und Verbrennungsluftvorwärmung. Die Schmelzaggregate werden mit fossilen Brennstoffen (vorwiegend Erdgas) und häufig mit elektrischer Zusatzheizung betrieben. Der Einsatz elektrischer Zusatzheizungen in großen Schmelzwannen kann zur Steigerung der Durchsatzmengen und zur Verbesserung der Glasqualität eingesetzt werden (Hantsche 1992). Vom Wannenofen fließt das Glas in ein nachgeschaltetes Zinnbad (Floatbad). Die Glasmasse breitet sich auf dem im Floatbad unter Schutzatmosphäre stehenden flüssigen Zinn aus. Als endloses Band wird das Glas durch Spezialwalzen geführt und in einem nachgeschalteten Kühlkanal auf 200°C abgekühlt (#3). Nach dem Abkühlen wird das Glas mechanisch und chemisch weiterverarbeitet und veredelt. Diese Prozesse können in dieser Bilanzierung nicht berücksichtigt werden. Für die vorliegende Bilanzierung wurden die Quellen #1 sowie (ETH 1995) und (UBA 1996) untersucht. Der daraus resultierende Datensatz ist hinsichtlich der Massenbilanzierung als vollständig und zufriedenstellend anzusehen. Ein besserer Datensatz ist derzeit nicht verfügbar. Der zusammengestellte Datensatz repräsentiert auf einem hohen Aggregationsniveau die Glasproduktion in Deutschland Ende der 80er, Anfang der 90er Jahre. Es ist wünschenswert, die Datenlage bezüglich der prozeßbedingten Luftemissionen und der Wasserinanspruchnahme zu verbessern. Genese der Kennziffern Massenbilanz: Zur Herstellung einer Tonne Flachglas (Floatglas) müssen insgesamt 1210 kg Roh- und Hilfsstoffe eingesetzt werden. Im Einzelnen sind dies: Tab. Roh- und Hilfsstoffbedarf zur Herstellung einer Tonne Flachglas (nach #1) Roh- und Hilfsstoffe Masse in kg/t Flachglas Quarzsand 600 Soda 190 Kalk 187 Glasbruch 90 Feldspat 77 Dolomit 56 Natriumsulfat 10 Summe 1210 Zusätzlich ist nach #1 ein Schutzgasbedarf von 15 m³ pro Tonne Flachglas zu bilanzieren. Weiterhin gibt #1 an, daß für die Erneuerung der Ausmauerungen durchschnittlich 13 kg Feuerfestmaterial pro Tonne Flachglas eingesetzt werden muß. Der Glasbruch taucht in der Bilanz nicht auf, da er innerhalb der Systemgrenzen recycliert wird. Natriumsulfat wird in GEMIS aufgrund der als gering eingschätzten Relevanz und der fehlenden Vorkette nicht mitgeführt. Energiebedarf: Das Schmelzen von Glas ist ein ausgesprochen energieaufwendiger Prozeß. Dabei geht der wesentlichste Teil der zugeführten Energie in Form von heißen Abgasen verloren. Die Nutzung der Abwärme ist nur unter bestimmten Voraussetzungen und nur bedingt möglich. Eine Aufteilung des Energiebedarfs nach Prozessen ist in der folgenden Tabelle vorgenommen worden. Tab.: Energieaufwand zur Herstellung einer Tonne Flachglas (nach #1) Prozeßstufe Energieaufwand in GJ/t Flachglas Schmelze (thermisch)Formgebung (elektr.)Kühlung (elektr.)) 6,750,040,04 Antrieb Glaswanne und Kühlofen (elektr.) 0,11 Gemengeherstellung und Transport (elektr., geschätzt) 0,04 Summe 6,98 Es wird ein Energiebedarf von 6,98 GJ/t Flachglas bilanziert. ETH nimmt einen um 20 % höher liegenden Energiebedarf für Flachglas an, wobei er davon ausgeht, daß kein Glasbruch verwendet wird (ETH 1995) . Diese Annahme wird in dieser Studie nicht übernommen. Nach Herstellerangaben (#2) wird der thermische Energiebedarf zu 90 % von Erdgas und zu 10 % von Heizöl S gedeckt. ETH nimmt in seiner Bilanzierung an, daß der gesamte thermische Energiebedarf über Erdgas gedeckt wird (ETH 1995). Hantsche gibt ein gängiges Verhältnis von zwei Dritteln Erdgas und einem Drittel Heizöl S an (#1). Nach Auskunft deutscher Hersteller wird zur Herstellung von Flachglas nach dem Float-Verfahren nur noch Gas als Brennstoff eingesetzt. Diese Annahme wird in GEMIS übernommen. Eine elektrische Zusatzheizung wird in dieser Bilanz nicht berücksichtigt. Hantsche gibt an, daß der Energiebedarf dadurch von 6,98 auf 5,23 GJ/t Flachglas gesenkt werden könnte. Prozeßbedingte Luftemissionen: Die prozeßbedingten Luftemissionen lassen sich nicht über eine Verbrennungsrechnung zur Bereitstellung von Prozeßwärme berechnen, da der Brennstoff direkt im Prozeß eingesetzt wird bzw. spezifische Verbrennungsbedingungen vorherrschen. Diese sind bei der Berchnung der Emissionen zu berücksichtigen. Dabei können formal die Emissionen, die durch die Rohmaterialien verursacht werden und die aus dem Brennstoff resultieren, getrennt werden. Das Umweltbundesamt (UBA) gibt für die Emissionen aus dem Rohmaterial Kennziffern für Schwefeldioxid, Stickoxide, Staub und Kohlendioxid an. Diese sind in der folgenden Tabelle dargestellt (UBA 1996). Tab.: Materialbedingte Luftemissionsfaktoren bei der Glasherstellung (UBA 1996). Schadstoff Masse in kg/t Flachglas CO2 200 NOx 0,8 SO2 2 Staub 0,4 Nicht berücksichtigt sind dabei die Chlorid- und Fluorid-Emissionen. Diese werden von ETH und Hantsche übernommen. Hantsche nimmt Chlorid-Emissionen in Höhe von 0,02 kg/t an (Hantsche 1993). Da für die Fluorid-Emissionen keine weiteren Informationen vorliegen werden in dieser Studie wie bei ETH 50 % des Grenzwertes angesetzt. Damit ergibt sich ein Emissionsfaktor in Höhe von 0,025 kg/t Produkt (ETH 1995). Zusätzlich zu den materialbedingten Emissionen, sind die Emissionen zu berücksichtigen, die durch die Verbrennung des Brennstoffs unter den prozeßspezifischen Bedingungen zustande kommen. Auch hierfür hat das UBA Kennziffern generiert. Die Emissionsfaktoren unterscheiden sich natürlich für verschiedene Brennstoffe. Für das Floatglasverfahren wird, wie oben erwähnt, angenommen, daß die gesamte Energie über Erdgas bereitgestellt wird. Somit ergeben sich folgende Emissionsfaktoren: Tab.: Brennstoffbedingte Luftemissionsfaktoren bei der Gasherstellung (UBA 1996). Schadstoff Erdgas in kg/TJ Emissionen in kg/tfür 6,75 GJ/t CO2 56000 378 CO 10 0,068 CH4 2,5 0,017 NMVOC 2,5 0,017 SO2 0,5 0,003 NOx 410 2,768 N2O 1,5 0,010 Staub 0 0 Die gesamten Luftemissionen ergeben sich durch Addition der materialbedingten und brennstoffbedingten Emissionsfaktoren. Wasserinanspruchnahme Wasser wird bei der Flachglas-Herstellung zu Kühlzwecken eingesetzt. ETH bilanziert für unbeschichtetes Flachglas 0,7 m³/t Flachglas (ETH 1995). Die Angabe von Hantzsche mit 7,5 m³/t ist nicht eindeutig identifizierbar und wird in der vorliegenden Untersuchung nicht berücksichtigt (Hantsche 1992). Abwasserinhaltsstoffe Von einer Belastung des Kühlwassers mit den in GEMIS berücksichtigten Abwasserinhaltsstoffen ist nicht auszugehen. Reststoffe In dem betrachteten System fallen keine festen Reststoffe an, die nicht wieder in den Prozeß eingebracht werden könnten. Auslastung: 5000h/a Brenn-/Einsatzstoff: Baustoffe gesicherte Leistung: 100% Jahr: 2020 Lebensdauer: 20a Leistung: 1t/h Nutzungsgrad: 167% Produkt: Baustoffe

Steine-Erden\Glas-flach-DE-2010

Herstellung von Flachglas; Flachglas gehört neben Behälterglas zu den Massengläsern. Alle in großen Mengen hergestellten Gläser gehören zur Gruppe der Alkali-Erdalkali-Silikatgläser (AES-Gläser). Die Zusammensetzung der AES-Gläser ist vom Verfahren und dem Produkt der Herstellung abhängig. Zur Flachglasherstellung befinden sich vier Verfahren im Einsatz (Float-, Fourcault-, Libbey-Owens- und Pittsburgh-Verfahren). Als leistungsfähiges Verfahren zur Herstellung hochwertiger Gläser hat sich das Float-Verfahren durchgesetzt. Die Herstellung des Flachglases nach dem Float-Verfahren läßt sich grundsätzlich in drei Verfahrensabschnitte unterteilen: die Gemengeherstellung, die Glasschmelze und die Formgebung. Bei der Gemengeherstellung werden die Rohstoffe dosiert, getrocknet und gemischt. Die Rohstoffzusammensetzung beim Flachglas muß sehr genau und konstant sein, da das Verfahren gegen Abweichungen sehr empfindlich ist. Dadurch kann auch kein Recycling-Glas eingesetzt werden. Lediglich ein geringer Anteil des im Werk anfallenden Glasbruches und der Reststoffe kann wieder in den Prozeß eingebracht werden. Der anschließende Glasschmelzprozeß kann in die Abschnitte der Silikatbildung, der Glasbildung, der Läuterung und der Konditionierung unterteilt werden. Die Schmelztemperaturen der Glasherstellung liegen bei ca. 1450-1550°C. Aufgrund der hohen Anforderungen an Flachgläser wird bei Temperaturen um 1600°C geschmolzen. Der Schmelzprozeß wird in kontinuierlich betriebenen Wannenöfen durchgeführt. Bei den Glasschmelzwannen der Floatanlagen handelt es sich in der Regel um Querflammöfen mit regenerativer Wärmerückgewinnung und Verbrennungsluftvorwärmung. Die Schmelzaggregate werden mit fossilen Brennstoffen (vorwiegend Erdgas) und häufig mit elektrischer Zusatzheizung betrieben. Der Einsatz elektrischer Zusatzheizungen in großen Schmelzwannen kann zur Steigerung der Durchsatzmengen und zur Verbesserung der Glasqualität eingesetzt werden (Hantsche 1992). Vom Wannenofen fließt das Glas in ein nachgeschaltetes Zinnbad (Floatbad). Die Glasmasse breitet sich auf dem im Floatbad unter Schutzatmosphäre stehenden flüssigen Zinn aus. Als endloses Band wird das Glas durch Spezialwalzen geführt und in einem nachgeschalteten Kühlkanal auf 200°C abgekühlt (#3). Nach dem Abkühlen wird das Glas mechanisch und chemisch weiterverarbeitet und veredelt. Diese Prozesse können in dieser Bilanzierung nicht berücksichtigt werden. Für die vorliegende Bilanzierung wurden die Quellen #1 sowie (ETH 1995) und (UBA 1996) untersucht. Der daraus resultierende Datensatz ist hinsichtlich der Massenbilanzierung als vollständig und zufriedenstellend anzusehen. Ein besserer Datensatz ist derzeit nicht verfügbar. Der zusammengestellte Datensatz repräsentiert auf einem hohen Aggregationsniveau die Glasproduktion in Deutschland Ende der 80er, Anfang der 90er Jahre. Es ist wünschenswert, die Datenlage bezüglich der prozeßbedingten Luftemissionen und der Wasserinanspruchnahme zu verbessern. Genese der Kennziffern Massenbilanz: Zur Herstellung einer Tonne Flachglas (Floatglas) müssen insgesamt 1210 kg Roh- und Hilfsstoffe eingesetzt werden. Im Einzelnen sind dies: Tab. Roh- und Hilfsstoffbedarf zur Herstellung einer Tonne Flachglas (nach #1) Roh- und Hilfsstoffe Masse in kg/t Flachglas Quarzsand 600 Soda 190 Kalk 187 Glasbruch 90 Feldspat 77 Dolomit 56 Natriumsulfat 10 Summe 1210 Zusätzlich ist nach #1 ein Schutzgasbedarf von 15 m³ pro Tonne Flachglas zu bilanzieren. Weiterhin gibt #1 an, daß für die Erneuerung der Ausmauerungen durchschnittlich 13 kg Feuerfestmaterial pro Tonne Flachglas eingesetzt werden muß. Der Glasbruch taucht in der Bilanz nicht auf, da er innerhalb der Systemgrenzen recycliert wird. Natriumsulfat wird in GEMIS aufgrund der als gering eingschätzten Relevanz und der fehlenden Vorkette nicht mitgeführt. Energiebedarf: Das Schmelzen von Glas ist ein ausgesprochen energieaufwendiger Prozeß. Dabei geht der wesentlichste Teil der zugeführten Energie in Form von heißen Abgasen verloren. Die Nutzung der Abwärme ist nur unter bestimmten Voraussetzungen und nur bedingt möglich. Eine Aufteilung des Energiebedarfs nach Prozessen ist in der folgenden Tabelle vorgenommen worden. Tab.: Energieaufwand zur Herstellung einer Tonne Flachglas (nach #1) Prozeßstufe Energieaufwand in GJ/t Flachglas Schmelze (thermisch)Formgebung (elektr.)Kühlung (elektr.)) 6,750,040,04 Antrieb Glaswanne und Kühlofen (elektr.) 0,11 Gemengeherstellung und Transport (elektr., geschätzt) 0,04 Summe 6,98 Es wird ein Energiebedarf von 6,98 GJ/t Flachglas bilanziert. ETH nimmt einen um 20 % höher liegenden Energiebedarf für Flachglas an, wobei er davon ausgeht, daß kein Glasbruch verwendet wird (ETH 1995) . Diese Annahme wird in dieser Studie nicht übernommen. Nach Herstellerangaben (#2) wird der thermische Energiebedarf zu 90 % von Erdgas und zu 10 % von Heizöl S gedeckt. ETH nimmt in seiner Bilanzierung an, daß der gesamte thermische Energiebedarf über Erdgas gedeckt wird (ETH 1995). Hantsche gibt ein gängiges Verhältnis von zwei Dritteln Erdgas und einem Drittel Heizöl S an (#1). Nach Auskunft deutscher Hersteller wird zur Herstellung von Flachglas nach dem Float-Verfahren nur noch Gas als Brennstoff eingesetzt. Diese Annahme wird in GEMIS übernommen. Eine elektrische Zusatzheizung wird in dieser Bilanz nicht berücksichtigt. Hantsche gibt an, daß der Energiebedarf dadurch von 6,98 auf 5,23 GJ/t Flachglas gesenkt werden könnte. Prozeßbedingte Luftemissionen: Die prozeßbedingten Luftemissionen lassen sich nicht über eine Verbrennungsrechnung zur Bereitstellung von Prozeßwärme berechnen, da der Brennstoff direkt im Prozeß eingesetzt wird bzw. spezifische Verbrennungsbedingungen vorherrschen. Diese sind bei der Berchnung der Emissionen zu berücksichtigen. Dabei können formal die Emissionen, die durch die Rohmaterialien verursacht werden und die aus dem Brennstoff resultieren, getrennt werden. Das Umweltbundesamt (UBA) gibt für die Emissionen aus dem Rohmaterial Kennziffern für Schwefeldioxid, Stickoxide, Staub und Kohlendioxid an. Diese sind in der folgenden Tabelle dargestellt (UBA 1996). Tab.: Materialbedingte Luftemissionsfaktoren bei der Glasherstellung (UBA 1996). Schadstoff Masse in kg/t Flachglas CO2 200 NOx 0,8 SO2 2 Staub 0,4 Nicht berücksichtigt sind dabei die Chlorid- und Fluorid-Emissionen. Diese werden von ETH und Hantsche übernommen. Hantsche nimmt Chlorid-Emissionen in Höhe von 0,02 kg/t an (Hantsche 1993). Da für die Fluorid-Emissionen keine weiteren Informationen vorliegen werden in dieser Studie wie bei ETH 50 % des Grenzwertes angesetzt. Damit ergibt sich ein Emissionsfaktor in Höhe von 0,025 kg/t Produkt (ETH 1995). Zusätzlich zu den materialbedingten Emissionen, sind die Emissionen zu berücksichtigen, die durch die Verbrennung des Brennstoffs unter den prozeßspezifischen Bedingungen zustande kommen. Auch hierfür hat das UBA Kennziffern generiert. Die Emissionsfaktoren unterscheiden sich natürlich für verschiedene Brennstoffe. Für das Floatglasverfahren wird, wie oben erwähnt, angenommen, daß die gesamte Energie über Erdgas bereitgestellt wird. Somit ergeben sich folgende Emissionsfaktoren: Tab.: Brennstoffbedingte Luftemissionsfaktoren bei der Gasherstellung (UBA 1996). Schadstoff Erdgas in kg/TJ Emissionen in kg/tfür 6,75 GJ/t CO2 56000 378 CO 10 0,068 CH4 2,5 0,017 NMVOC 2,5 0,017 SO2 0,5 0,003 NOx 410 2,768 N2O 1,5 0,010 Staub 0 0 Die gesamten Luftemissionen ergeben sich durch Addition der materialbedingten und brennstoffbedingten Emissionsfaktoren. Wasserinanspruchnahme Wasser wird bei der Flachglas-Herstellung zu Kühlzwecken eingesetzt. ETH bilanziert für unbeschichtetes Flachglas 0,7 m³/t Flachglas (ETH 1995). Die Angabe von Hantzsche mit 7,5 m³/t ist nicht eindeutig identifizierbar und wird in der vorliegenden Untersuchung nicht berücksichtigt (Hantsche 1992). Abwasserinhaltsstoffe Von einer Belastung des Kühlwassers mit den in GEMIS berücksichtigten Abwasserinhaltsstoffen ist nicht auszugehen. Reststoffe In dem betrachteten System fallen keine festen Reststoffe an, die nicht wieder in den Prozeß eingebracht werden könnten. Auslastung: 5000h/a Brenn-/Einsatzstoff: Baustoffe gesicherte Leistung: 100% Jahr: 2010 Lebensdauer: 20a Leistung: 1t/h Nutzungsgrad: 167% Produkt: Baustoffe

Steine-Erden\Glas-flach-DE-2005

Herstellung von Flachglas; Flachglas gehört neben Behälterglas zu den Massengläsern. Alle in großen Mengen hergestellten Gläser gehören zur Gruppe der Alkali-Erdalkali-Silikatgläser (AES-Gläser). Die Zusammensetzung der AES-Gläser ist vom Verfahren und dem Produkt der Herstellung abhängig. Zur Flachglasherstellung befinden sich vier Verfahren im Einsatz (Float-, Fourcault-, Libbey-Owens- und Pittsburgh-Verfahren). Als leistungsfähiges Verfahren zur Herstellung hochwertiger Gläser hat sich das Float-Verfahren durchgesetzt. Die Herstellung des Flachglases nach dem Float-Verfahren läßt sich grundsätzlich in drei Verfahrensabschnitte unterteilen: die Gemengeherstellung, die Glasschmelze und die Formgebung. Bei der Gemengeherstellung werden die Rohstoffe dosiert, getrocknet und gemischt. Die Rohstoffzusammensetzung beim Flachglas muß sehr genau und konstant sein, da das Verfahren gegen Abweichungen sehr empfindlich ist. Dadurch kann auch kein Recycling-Glas eingesetzt werden. Lediglich ein geringer Anteil des im Werk anfallenden Glasbruches und der Reststoffe kann wieder in den Prozeß eingebracht werden. Der anschließende Glasschmelzprozeß kann in die Abschnitte der Silikatbildung, der Glasbildung, der Läuterung und der Konditionierung unterteilt werden. Die Schmelztemperaturen der Glasherstellung liegen bei ca. 1450-1550°C. Aufgrund der hohen Anforderungen an Flachgläser wird bei Temperaturen um 1600°C geschmolzen. Der Schmelzprozeß wird in kontinuierlich betriebenen Wannenöfen durchgeführt. Bei den Glasschmelzwannen der Floatanlagen handelt es sich in der Regel um Querflammöfen mit regenerativer Wärmerückgewinnung und Verbrennungsluftvorwärmung. Die Schmelzaggregate werden mit fossilen Brennstoffen (vorwiegend Erdgas) und häufig mit elektrischer Zusatzheizung betrieben. Der Einsatz elektrischer Zusatzheizungen in großen Schmelzwannen kann zur Steigerung der Durchsatzmengen und zur Verbesserung der Glasqualität eingesetzt werden (Hantsche 1992). Vom Wannenofen fließt das Glas in ein nachgeschaltetes Zinnbad (Floatbad). Die Glasmasse breitet sich auf dem im Floatbad unter Schutzatmosphäre stehenden flüssigen Zinn aus. Als endloses Band wird das Glas durch Spezialwalzen geführt und in einem nachgeschalteten Kühlkanal auf 200°C abgekühlt (#3). Nach dem Abkühlen wird das Glas mechanisch und chemisch weiterverarbeitet und veredelt. Diese Prozesse können in dieser Bilanzierung nicht berücksichtigt werden. Für die vorliegende Bilanzierung wurden die Quellen #1 sowie (ETH 1995) und (UBA 1996) untersucht. Der daraus resultierende Datensatz ist hinsichtlich der Massenbilanzierung als vollständig und zufriedenstellend anzusehen. Ein besserer Datensatz ist derzeit nicht verfügbar. Der zusammengestellte Datensatz repräsentiert auf einem hohen Aggregationsniveau die Glasproduktion in Deutschland Ende der 80er, Anfang der 90er Jahre. Es ist wünschenswert, die Datenlage bezüglich der prozeßbedingten Luftemissionen und der Wasserinanspruchnahme zu verbessern. Genese der Kennziffern Massenbilanz: Zur Herstellung einer Tonne Flachglas (Floatglas) müssen insgesamt 1210 kg Roh- und Hilfsstoffe eingesetzt werden. Im Einzelnen sind dies: Tab. Roh- und Hilfsstoffbedarf zur Herstellung einer Tonne Flachglas (nach #1) Roh- und Hilfsstoffe Masse in kg/t Flachglas Quarzsand 600 Soda 190 Kalk 187 Glasbruch 90 Feldspat 77 Dolomit 56 Natriumsulfat 10 Summe 1210 Zusätzlich ist nach #1 ein Schutzgasbedarf von 15 m³ pro Tonne Flachglas zu bilanzieren. Weiterhin gibt #1 an, daß für die Erneuerung der Ausmauerungen durchschnittlich 13 kg Feuerfestmaterial pro Tonne Flachglas eingesetzt werden muß. Der Glasbruch taucht in der Bilanz nicht auf, da er innerhalb der Systemgrenzen recycliert wird. Natriumsulfat wird in GEMIS aufgrund der als gering eingschätzten Relevanz und der fehlenden Vorkette nicht mitgeführt. Energiebedarf: Das Schmelzen von Glas ist ein ausgesprochen energieaufwendiger Prozeß. Dabei geht der wesentlichste Teil der zugeführten Energie in Form von heißen Abgasen verloren. Die Nutzung der Abwärme ist nur unter bestimmten Voraussetzungen und nur bedingt möglich. Eine Aufteilung des Energiebedarfs nach Prozessen ist in der folgenden Tabelle vorgenommen worden. Tab.: Energieaufwand zur Herstellung einer Tonne Flachglas (nach #1) Prozeßstufe Energieaufwand in GJ/t Flachglas Schmelze (thermisch)Formgebung (elektr.)Kühlung (elektr.)) 6,750,040,04 Antrieb Glaswanne und Kühlofen (elektr.) 0,11 Gemengeherstellung und Transport (elektr., geschätzt) 0,04 Summe 6,98 Es wird ein Energiebedarf von 6,98 GJ/t Flachglas bilanziert. ETH nimmt einen um 20 % höher liegenden Energiebedarf für Flachglas an, wobei er davon ausgeht, daß kein Glasbruch verwendet wird (ETH 1995) . Diese Annahme wird in dieser Studie nicht übernommen. Nach Herstellerangaben (#2) wird der thermische Energiebedarf zu 90 % von Erdgas und zu 10 % von Heizöl S gedeckt. ETH nimmt in seiner Bilanzierung an, daß der gesamte thermische Energiebedarf über Erdgas gedeckt wird (ETH 1995). Hantsche gibt ein gängiges Verhältnis von zwei Dritteln Erdgas und einem Drittel Heizöl S an (#1). Nach Auskunft deutscher Hersteller wird zur Herstellung von Flachglas nach dem Float-Verfahren nur noch Gas als Brennstoff eingesetzt. Diese Annahme wird in GEMIS übernommen. Eine elektrische Zusatzheizung wird in dieser Bilanz nicht berücksichtigt. Hantsche gibt an, daß der Energiebedarf dadurch von 6,98 auf 5,23 GJ/t Flachglas gesenkt werden könnte. Prozeßbedingte Luftemissionen: Die prozeßbedingten Luftemissionen lassen sich nicht über eine Verbrennungsrechnung zur Bereitstellung von Prozeßwärme berechnen, da der Brennstoff direkt im Prozeß eingesetzt wird bzw. spezifische Verbrennungsbedingungen vorherrschen. Diese sind bei der Berchnung der Emissionen zu berücksichtigen. Dabei können formal die Emissionen, die durch die Rohmaterialien verursacht werden und die aus dem Brennstoff resultieren, getrennt werden. Das Umweltbundesamt (UBA) gibt für die Emissionen aus dem Rohmaterial Kennziffern für Schwefeldioxid, Stickoxide, Staub und Kohlendioxid an. Diese sind in der folgenden Tabelle dargestellt (UBA 1996). Tab.: Materialbedingte Luftemissionsfaktoren bei der Glasherstellung (UBA 1996). Schadstoff Masse in kg/t Flachglas CO2 200 NOx 0,8 SO2 2 Staub 0,4 Nicht berücksichtigt sind dabei die Chlorid- und Fluorid-Emissionen. Diese werden von ETH und Hantsche übernommen. Hantsche nimmt Chlorid-Emissionen in Höhe von 0,02 kg/t an (Hantsche 1993). Da für die Fluorid-Emissionen keine weiteren Informationen vorliegen werden in dieser Studie wie bei ETH 50 % des Grenzwertes angesetzt. Damit ergibt sich ein Emissionsfaktor in Höhe von 0,025 kg/t Produkt (ETH 1995). Zusätzlich zu den materialbedingten Emissionen, sind die Emissionen zu berücksichtigen, die durch die Verbrennung des Brennstoffs unter den prozeßspezifischen Bedingungen zustande kommen. Auch hierfür hat das UBA Kennziffern generiert. Die Emissionsfaktoren unterscheiden sich natürlich für verschiedene Brennstoffe. Für das Floatglasverfahren wird, wie oben erwähnt, angenommen, daß die gesamte Energie über Erdgas bereitgestellt wird. Somit ergeben sich folgende Emissionsfaktoren: Tab.: Brennstoffbedingte Luftemissionsfaktoren bei der Gasherstellung (UBA 1996). Schadstoff Erdgas in kg/TJ Emissionen in kg/tfür 6,75 GJ/t CO2 56000 378 CO 10 0,068 CH4 2,5 0,017 NMVOC 2,5 0,017 SO2 0,5 0,003 NOx 410 2,768 N2O 1,5 0,010 Staub 0 0 Die gesamten Luftemissionen ergeben sich durch Addition der materialbedingten und brennstoffbedingten Emissionsfaktoren. Wasserinanspruchnahme Wasser wird bei der Flachglas-Herstellung zu Kühlzwecken eingesetzt. ETH bilanziert für unbeschichtetes Flachglas 0,7 m³/t Flachglas (ETH 1995). Die Angabe von Hantzsche mit 7,5 m³/t ist nicht eindeutig identifizierbar und wird in der vorliegenden Untersuchung nicht berücksichtigt (Hantsche 1992). Abwasserinhaltsstoffe Von einer Belastung des Kühlwassers mit den in GEMIS berücksichtigten Abwasserinhaltsstoffen ist nicht auszugehen. Reststoffe In dem betrachteten System fallen keine festen Reststoffe an, die nicht wieder in den Prozeß eingebracht werden könnten. Auslastung: 5000h/a Brenn-/Einsatzstoff: Baustoffe gesicherte Leistung: 100% Jahr: 2005 Lebensdauer: 20a Leistung: 1t/h Nutzungsgrad: 167% Produkt: Baustoffe

Steine-Erden\Glas-flach-DE-2030

Herstellung von Flachglas; Flachglas gehört neben Behälterglas zu den Massengläsern. Alle in großen Mengen hergestellten Gläser gehören zur Gruppe der Alkali-Erdalkali-Silikatgläser (AES-Gläser). Die Zusammensetzung der AES-Gläser ist vom Verfahren und dem Produkt der Herstellung abhängig. Zur Flachglasherstellung befinden sich vier Verfahren im Einsatz (Float-, Fourcault-, Libbey-Owens- und Pittsburgh-Verfahren). Als leistungsfähiges Verfahren zur Herstellung hochwertiger Gläser hat sich das Float-Verfahren durchgesetzt. Die Herstellung des Flachglases nach dem Float-Verfahren läßt sich grundsätzlich in drei Verfahrensabschnitte unterteilen: die Gemengeherstellung, die Glasschmelze und die Formgebung. Bei der Gemengeherstellung werden die Rohstoffe dosiert, getrocknet und gemischt. Die Rohstoffzusammensetzung beim Flachglas muß sehr genau und konstant sein, da das Verfahren gegen Abweichungen sehr empfindlich ist. Dadurch kann auch kein Recycling-Glas eingesetzt werden. Lediglich ein geringer Anteil des im Werk anfallenden Glasbruches und der Reststoffe kann wieder in den Prozeß eingebracht werden. Der anschließende Glasschmelzprozeß kann in die Abschnitte der Silikatbildung, der Glasbildung, der Läuterung und der Konditionierung unterteilt werden. Die Schmelztemperaturen der Glasherstellung liegen bei ca. 1450-1550°C. Aufgrund der hohen Anforderungen an Flachgläser wird bei Temperaturen um 1600°C geschmolzen. Der Schmelzprozeß wird in kontinuierlich betriebenen Wannenöfen durchgeführt. Bei den Glasschmelzwannen der Floatanlagen handelt es sich in der Regel um Querflammöfen mit regenerativer Wärmerückgewinnung und Verbrennungsluftvorwärmung. Die Schmelzaggregate werden mit fossilen Brennstoffen (vorwiegend Erdgas) und häufig mit elektrischer Zusatzheizung betrieben. Der Einsatz elektrischer Zusatzheizungen in großen Schmelzwannen kann zur Steigerung der Durchsatzmengen und zur Verbesserung der Glasqualität eingesetzt werden (Hantsche 1992). Vom Wannenofen fließt das Glas in ein nachgeschaltetes Zinnbad (Floatbad). Die Glasmasse breitet sich auf dem im Floatbad unter Schutzatmosphäre stehenden flüssigen Zinn aus. Als endloses Band wird das Glas durch Spezialwalzen geführt und in einem nachgeschalteten Kühlkanal auf 200°C abgekühlt (#3). Nach dem Abkühlen wird das Glas mechanisch und chemisch weiterverarbeitet und veredelt. Diese Prozesse können in dieser Bilanzierung nicht berücksichtigt werden. Für die vorliegende Bilanzierung wurden die Quellen #1 sowie (ETH 1995) und (UBA 1996) untersucht. Der daraus resultierende Datensatz ist hinsichtlich der Massenbilanzierung als vollständig und zufriedenstellend anzusehen. Ein besserer Datensatz ist derzeit nicht verfügbar. Der zusammengestellte Datensatz repräsentiert auf einem hohen Aggregationsniveau die Glasproduktion in Deutschland Ende der 80er, Anfang der 90er Jahre. Es ist wünschenswert, die Datenlage bezüglich der prozeßbedingten Luftemissionen und der Wasserinanspruchnahme zu verbessern. Genese der Kennziffern Massenbilanz: Zur Herstellung einer Tonne Flachglas (Floatglas) müssen insgesamt 1210 kg Roh- und Hilfsstoffe eingesetzt werden. Im Einzelnen sind dies: Tab. Roh- und Hilfsstoffbedarf zur Herstellung einer Tonne Flachglas (nach #1) Roh- und Hilfsstoffe Masse in kg/t Flachglas Quarzsand 600 Soda 190 Kalk 187 Glasbruch 90 Feldspat 77 Dolomit 56 Natriumsulfat 10 Summe 1210 Zusätzlich ist nach #1 ein Schutzgasbedarf von 15 m³ pro Tonne Flachglas zu bilanzieren. Weiterhin gibt #1 an, daß für die Erneuerung der Ausmauerungen durchschnittlich 13 kg Feuerfestmaterial pro Tonne Flachglas eingesetzt werden muß. Der Glasbruch taucht in der Bilanz nicht auf, da er innerhalb der Systemgrenzen recycliert wird. Natriumsulfat wird in GEMIS aufgrund der als gering eingschätzten Relevanz und der fehlenden Vorkette nicht mitgeführt. Energiebedarf: Das Schmelzen von Glas ist ein ausgesprochen energieaufwendiger Prozeß. Dabei geht der wesentlichste Teil der zugeführten Energie in Form von heißen Abgasen verloren. Die Nutzung der Abwärme ist nur unter bestimmten Voraussetzungen und nur bedingt möglich. Eine Aufteilung des Energiebedarfs nach Prozessen ist in der folgenden Tabelle vorgenommen worden. Tab.: Energieaufwand zur Herstellung einer Tonne Flachglas (nach #1) Prozeßstufe Energieaufwand in GJ/t Flachglas Schmelze (thermisch)Formgebung (elektr.)Kühlung (elektr.)) 6,750,040,04 Antrieb Glaswanne und Kühlofen (elektr.) 0,11 Gemengeherstellung und Transport (elektr., geschätzt) 0,04 Summe 6,98 Es wird ein Energiebedarf von 6,98 GJ/t Flachglas bilanziert. ETH nimmt einen um 20 % höher liegenden Energiebedarf für Flachglas an, wobei er davon ausgeht, daß kein Glasbruch verwendet wird (ETH 1995) . Diese Annahme wird in dieser Studie nicht übernommen. Nach Herstellerangaben (#2) wird der thermische Energiebedarf zu 90 % von Erdgas und zu 10 % von Heizöl S gedeckt. ETH nimmt in seiner Bilanzierung an, daß der gesamte thermische Energiebedarf über Erdgas gedeckt wird (ETH 1995). Hantsche gibt ein gängiges Verhältnis von zwei Dritteln Erdgas und einem Drittel Heizöl S an (#1). Nach Auskunft deutscher Hersteller wird zur Herstellung von Flachglas nach dem Float-Verfahren nur noch Gas als Brennstoff eingesetzt. Diese Annahme wird in GEMIS übernommen. Eine elektrische Zusatzheizung wird in dieser Bilanz nicht berücksichtigt. Hantsche gibt an, daß der Energiebedarf dadurch von 6,98 auf 5,23 GJ/t Flachglas gesenkt werden könnte. Prozeßbedingte Luftemissionen: Die prozeßbedingten Luftemissionen lassen sich nicht über eine Verbrennungsrechnung zur Bereitstellung von Prozeßwärme berechnen, da der Brennstoff direkt im Prozeß eingesetzt wird bzw. spezifische Verbrennungsbedingungen vorherrschen. Diese sind bei der Berchnung der Emissionen zu berücksichtigen. Dabei können formal die Emissionen, die durch die Rohmaterialien verursacht werden und die aus dem Brennstoff resultieren, getrennt werden. Das Umweltbundesamt (UBA) gibt für die Emissionen aus dem Rohmaterial Kennziffern für Schwefeldioxid, Stickoxide, Staub und Kohlendioxid an. Diese sind in der folgenden Tabelle dargestellt (UBA 1996). Tab.: Materialbedingte Luftemissionsfaktoren bei der Glasherstellung (UBA 1996). Schadstoff Masse in kg/t Flachglas CO2 200 NOx 0,8 SO2 2 Staub 0,4 Nicht berücksichtigt sind dabei die Chlorid- und Fluorid-Emissionen. Diese werden von ETH und Hantsche übernommen. Hantsche nimmt Chlorid-Emissionen in Höhe von 0,02 kg/t an (Hantsche 1993). Da für die Fluorid-Emissionen keine weiteren Informationen vorliegen werden in dieser Studie wie bei ETH 50 % des Grenzwertes angesetzt. Damit ergibt sich ein Emissionsfaktor in Höhe von 0,025 kg/t Produkt (ETH 1995). Zusätzlich zu den materialbedingten Emissionen, sind die Emissionen zu berücksichtigen, die durch die Verbrennung des Brennstoffs unter den prozeßspezifischen Bedingungen zustande kommen. Auch hierfür hat das UBA Kennziffern generiert. Die Emissionsfaktoren unterscheiden sich natürlich für verschiedene Brennstoffe. Für das Floatglasverfahren wird, wie oben erwähnt, angenommen, daß die gesamte Energie über Erdgas bereitgestellt wird. Somit ergeben sich folgende Emissionsfaktoren: Tab.: Brennstoffbedingte Luftemissionsfaktoren bei der Gasherstellung (UBA 1996). Schadstoff Erdgas in kg/TJ Emissionen in kg/tfür 6,75 GJ/t CO2 56000 378 CO 10 0,068 CH4 2,5 0,017 NMVOC 2,5 0,017 SO2 0,5 0,003 NOx 410 2,768 N2O 1,5 0,010 Staub 0 0 Die gesamten Luftemissionen ergeben sich durch Addition der materialbedingten und brennstoffbedingten Emissionsfaktoren. Wasserinanspruchnahme Wasser wird bei der Flachglas-Herstellung zu Kühlzwecken eingesetzt. ETH bilanziert für unbeschichtetes Flachglas 0,7 m³/t Flachglas (ETH 1995). Die Angabe von Hantzsche mit 7,5 m³/t ist nicht eindeutig identifizierbar und wird in der vorliegenden Untersuchung nicht berücksichtigt (Hantsche 1992). Abwasserinhaltsstoffe Von einer Belastung des Kühlwassers mit den in GEMIS berücksichtigten Abwasserinhaltsstoffen ist nicht auszugehen. Reststoffe In dem betrachteten System fallen keine festen Reststoffe an, die nicht wieder in den Prozeß eingebracht werden könnten. Auslastung: 5000h/a Brenn-/Einsatzstoff: Baustoffe gesicherte Leistung: 100% Jahr: 2030 Lebensdauer: 20a Leistung: 1t/h Nutzungsgrad: 167% Produkt: Baustoffe

Steine-Erden\Glas-flach-DE-2000

Herstellung von Flachglas; Flachglas gehört neben Behälterglas zu den Massengläsern. Alle in großen Mengen hergestellten Gläser gehören zur Gruppe der Alkali-Erdalkali-Silikatgläser (AES-Gläser). Die Zusammensetzung der AES-Gläser ist vom Verfahren und dem Produkt der Herstellung abhängig. Zur Flachglasherstellung befinden sich vier Verfahren im Einsatz (Float-, Fourcault-, Libbey-Owens- und Pittsburgh-Verfahren). Als leistungsfähiges Verfahren zur Herstellung hochwertiger Gläser hat sich das Float-Verfahren durchgesetzt. Die Herstellung des Flachglases nach dem Float-Verfahren läßt sich grundsätzlich in drei Verfahrensabschnitte unterteilen: die Gemengeherstellung, die Glasschmelze und die Formgebung. Bei der Gemengeherstellung werden die Rohstoffe dosiert, getrocknet und gemischt. Die Rohstoffzusammensetzung beim Flachglas muß sehr genau und konstant sein, da das Verfahren gegen Abweichungen sehr empfindlich ist. Dadurch kann auch kein Recycling-Glas eingesetzt werden. Lediglich ein geringer Anteil des im Werk anfallenden Glasbruches und der Reststoffe kann wieder in den Prozeß eingebracht werden. Der anschließende Glasschmelzprozeß kann in die Abschnitte der Silikatbildung, der Glasbildung, der Läuterung und der Konditionierung unterteilt werden. Die Schmelztemperaturen der Glasherstellung liegen bei ca. 1450-1550°C. Aufgrund der hohen Anforderungen an Flachgläser wird bei Temperaturen um 1600°C geschmolzen. Der Schmelzprozeß wird in kontinuierlich betriebenen Wannenöfen durchgeführt. Bei den Glasschmelzwannen der Floatanlagen handelt es sich in der Regel um Querflammöfen mit regenerativer Wärmerückgewinnung und Verbrennungsluftvorwärmung. Die Schmelzaggregate werden mit fossilen Brennstoffen (vorwiegend Erdgas) und häufig mit elektrischer Zusatzheizung betrieben. Der Einsatz elektrischer Zusatzheizungen in großen Schmelzwannen kann zur Steigerung der Durchsatzmengen und zur Verbesserung der Glasqualität eingesetzt werden (Hantsche 1992). Vom Wannenofen fließt das Glas in ein nachgeschaltetes Zinnbad (Floatbad). Die Glasmasse breitet sich auf dem im Floatbad unter Schutzatmosphäre stehenden flüssigen Zinn aus. Als endloses Band wird das Glas durch Spezialwalzen geführt und in einem nachgeschalteten Kühlkanal auf 200°C abgekühlt (#3). Nach dem Abkühlen wird das Glas mechanisch und chemisch weiterverarbeitet und veredelt. Diese Prozesse können in dieser Bilanzierung nicht berücksichtigt werden. Für die vorliegende Bilanzierung wurden die Quellen #1 sowie (ETH 1995) und (UBA 1996) untersucht. Der daraus resultierende Datensatz ist hinsichtlich der Massenbilanzierung als vollständig und zufriedenstellend anzusehen. Ein besserer Datensatz ist derzeit nicht verfügbar. Der zusammengestellte Datensatz repräsentiert auf einem hohen Aggregationsniveau die Glasproduktion in Deutschland Ende der 80er, Anfang der 90er Jahre. Es ist wünschenswert, die Datenlage bezüglich der prozeßbedingten Luftemissionen und der Wasserinanspruchnahme zu verbessern. Genese der Kennziffern Massenbilanz: Zur Herstellung einer Tonne Flachglas (Floatglas) müssen insgesamt 1210 kg Roh- und Hilfsstoffe eingesetzt werden. Im Einzelnen sind dies: Tab. Roh- und Hilfsstoffbedarf zur Herstellung einer Tonne Flachglas (nach #1) Roh- und Hilfsstoffe Masse in kg/t Flachglas Quarzsand 600 Soda 190 Kalk 187 Glasbruch 90 Feldspat 77 Dolomit 56 Natriumsulfat 10 Summe 1210 Zusätzlich ist nach #1 ein Schutzgasbedarf von 15 m³ pro Tonne Flachglas zu bilanzieren. Weiterhin gibt #1 an, daß für die Erneuerung der Ausmauerungen durchschnittlich 13 kg Feuerfestmaterial pro Tonne Flachglas eingesetzt werden muß. Der Glasbruch taucht in der Bilanz nicht auf, da er innerhalb der Systemgrenzen recycliert wird. Natriumsulfat wird in GEMIS aufgrund der als gering eingschätzten Relevanz und der fehlenden Vorkette nicht mitgeführt. Energiebedarf: Das Schmelzen von Glas ist ein ausgesprochen energieaufwendiger Prozeß. Dabei geht der wesentlichste Teil der zugeführten Energie in Form von heißen Abgasen verloren. Die Nutzung der Abwärme ist nur unter bestimmten Voraussetzungen und nur bedingt möglich. Eine Aufteilung des Energiebedarfs nach Prozessen ist in der folgenden Tabelle vorgenommen worden. Tab.: Energieaufwand zur Herstellung einer Tonne Flachglas (nach #1) Prozeßstufe Energieaufwand in GJ/t Flachglas Schmelze (thermisch)Formgebung (elektr.)Kühlung (elektr.)) 6,750,040,04 Antrieb Glaswanne und Kühlofen (elektr.) 0,11 Gemengeherstellung und Transport (elektr., geschätzt) 0,04 Summe 6,98 Es wird ein Energiebedarf von 6,98 GJ/t Flachglas bilanziert. ETH nimmt einen um 20 % höher liegenden Energiebedarf für Flachglas an, wobei er davon ausgeht, daß kein Glasbruch verwendet wird (ETH 1995) . Diese Annahme wird in dieser Studie nicht übernommen. Nach Herstellerangaben (#2) wird der thermische Energiebedarf zu 90 % von Erdgas und zu 10 % von Heizöl S gedeckt. ETH nimmt in seiner Bilanzierung an, daß der gesamte thermische Energiebedarf über Erdgas gedeckt wird (ETH 1995). Hantsche gibt ein gängiges Verhältnis von zwei Dritteln Erdgas und einem Drittel Heizöl S an (#1). Nach Auskunft deutscher Hersteller wird zur Herstellung von Flachglas nach dem Float-Verfahren nur noch Gas als Brennstoff eingesetzt. Diese Annahme wird in GEMIS übernommen. Eine elektrische Zusatzheizung wird in dieser Bilanz nicht berücksichtigt. Hantsche gibt an, daß der Energiebedarf dadurch von 6,98 auf 5,23 GJ/t Flachglas gesenkt werden könnte. Prozeßbedingte Luftemissionen: Die prozeßbedingten Luftemissionen lassen sich nicht über eine Verbrennungsrechnung zur Bereitstellung von Prozeßwärme berechnen, da der Brennstoff direkt im Prozeß eingesetzt wird bzw. spezifische Verbrennungsbedingungen vorherrschen. Diese sind bei der Berchnung der Emissionen zu berücksichtigen. Dabei können formal die Emissionen, die durch die Rohmaterialien verursacht werden und die aus dem Brennstoff resultieren, getrennt werden. Das Umweltbundesamt (UBA) gibt für die Emissionen aus dem Rohmaterial Kennziffern für Schwefeldioxid, Stickoxide, Staub und Kohlendioxid an. Diese sind in der folgenden Tabelle dargestellt (UBA 1996). Tab.: Materialbedingte Luftemissionsfaktoren bei der Glasherstellung (UBA 1996). Schadstoff Masse in kg/t Flachglas CO2 200 NOx 0,8 SO2 2 Staub 0,4 Nicht berücksichtigt sind dabei die Chlorid- und Fluorid-Emissionen. Diese werden von ETH und Hantsche übernommen. Hantsche nimmt Chlorid-Emissionen in Höhe von 0,02 kg/t an (Hantsche 1993). Da für die Fluorid-Emissionen keine weiteren Informationen vorliegen werden in dieser Studie wie bei ETH 50 % des Grenzwertes angesetzt. Damit ergibt sich ein Emissionsfaktor in Höhe von 0,025 kg/t Produkt (ETH 1995). Zusätzlich zu den materialbedingten Emissionen, sind die Emissionen zu berücksichtigen, die durch die Verbrennung des Brennstoffs unter den prozeßspezifischen Bedingungen zustande kommen. Auch hierfür hat das UBA Kennziffern generiert. Die Emissionsfaktoren unterscheiden sich natürlich für verschiedene Brennstoffe. Für das Floatglasverfahren wird, wie oben erwähnt, angenommen, daß die gesamte Energie über Erdgas bereitgestellt wird. Somit ergeben sich folgende Emissionsfaktoren: Tab.: Brennstoffbedingte Luftemissionsfaktoren bei der Gasherstellung (UBA 1996). Schadstoff Erdgas in kg/TJ Emissionen in kg/tfür 6,75 GJ/t CO2 56000 378 CO 10 0,068 CH4 2,5 0,017 NMVOC 2,5 0,017 SO2 0,5 0,003 NOx 410 2,768 N2O 1,5 0,010 Staub 0 0 Die gesamten Luftemissionen ergeben sich durch Addition der materialbedingten und brennstoffbedingten Emissionsfaktoren. Wasserinanspruchnahme Wasser wird bei der Flachglas-Herstellung zu Kühlzwecken eingesetzt. ETH bilanziert für unbeschichtetes Flachglas 0,7 m³/t Flachglas (ETH 1995). Die Angabe von Hantzsche mit 7,5 m³/t ist nicht eindeutig identifizierbar und wird in der vorliegenden Untersuchung nicht berücksichtigt (Hantsche 1992). Abwasserinhaltsstoffe Von einer Belastung des Kühlwassers mit den in GEMIS berücksichtigten Abwasserinhaltsstoffen ist nicht auszugehen. Reststoffe In dem betrachteten System fallen keine festen Reststoffe an, die nicht wieder in den Prozeß eingebracht werden könnten. Auslastung: 5000h/a Brenn-/Einsatzstoff: Baustoffe gesicherte Leistung: 100% Jahr: 2000 Lebensdauer: 20a Leistung: 1t/h Nutzungsgrad: 167% Produkt: Baustoffe

Steine-Erden\Glas-flach-DE-2050

Herstellung von Flachglas; Flachglas gehört neben Behälterglas zu den Massengläsern. Alle in großen Mengen hergestellten Gläser gehören zur Gruppe der Alkali-Erdalkali-Silikatgläser (AES-Gläser). Die Zusammensetzung der AES-Gläser ist vom Verfahren und dem Produkt der Herstellung abhängig. Zur Flachglasherstellung befinden sich vier Verfahren im Einsatz (Float-, Fourcault-, Libbey-Owens- und Pittsburgh-Verfahren). Als leistungsfähiges Verfahren zur Herstellung hochwertiger Gläser hat sich das Float-Verfahren durchgesetzt. Die Herstellung des Flachglases nach dem Float-Verfahren läßt sich grundsätzlich in drei Verfahrensabschnitte unterteilen: die Gemengeherstellung, die Glasschmelze und die Formgebung. Bei der Gemengeherstellung werden die Rohstoffe dosiert, getrocknet und gemischt. Die Rohstoffzusammensetzung beim Flachglas muß sehr genau und konstant sein, da das Verfahren gegen Abweichungen sehr empfindlich ist. Dadurch kann auch kein Recycling-Glas eingesetzt werden. Lediglich ein geringer Anteil des im Werk anfallenden Glasbruches und der Reststoffe kann wieder in den Prozeß eingebracht werden. Der anschließende Glasschmelzprozeß kann in die Abschnitte der Silikatbildung, der Glasbildung, der Läuterung und der Konditionierung unterteilt werden. Die Schmelztemperaturen der Glasherstellung liegen bei ca. 1450-1550°C. Aufgrund der hohen Anforderungen an Flachgläser wird bei Temperaturen um 1600°C geschmolzen. Der Schmelzprozeß wird in kontinuierlich betriebenen Wannenöfen durchgeführt. Bei den Glasschmelzwannen der Floatanlagen handelt es sich in der Regel um Querflammöfen mit regenerativer Wärmerückgewinnung und Verbrennungsluftvorwärmung. Die Schmelzaggregate werden mit fossilen Brennstoffen (vorwiegend Erdgas) und häufig mit elektrischer Zusatzheizung betrieben. Der Einsatz elektrischer Zusatzheizungen in großen Schmelzwannen kann zur Steigerung der Durchsatzmengen und zur Verbesserung der Glasqualität eingesetzt werden (Hantsche 1992). Vom Wannenofen fließt das Glas in ein nachgeschaltetes Zinnbad (Floatbad). Die Glasmasse breitet sich auf dem im Floatbad unter Schutzatmosphäre stehenden flüssigen Zinn aus. Als endloses Band wird das Glas durch Spezialwalzen geführt und in einem nachgeschalteten Kühlkanal auf 200°C abgekühlt (#3). Nach dem Abkühlen wird das Glas mechanisch und chemisch weiterverarbeitet und veredelt. Diese Prozesse können in dieser Bilanzierung nicht berücksichtigt werden. Für die vorliegende Bilanzierung wurden die Quellen #1 sowie (ETH 1995) und (UBA 1996) untersucht. Der daraus resultierende Datensatz ist hinsichtlich der Massenbilanzierung als vollständig und zufriedenstellend anzusehen. Ein besserer Datensatz ist derzeit nicht verfügbar. Der zusammengestellte Datensatz repräsentiert auf einem hohen Aggregationsniveau die Glasproduktion in Deutschland Ende der 80er, Anfang der 90er Jahre. Es ist wünschenswert, die Datenlage bezüglich der prozeßbedingten Luftemissionen und der Wasserinanspruchnahme zu verbessern. Genese der Kennziffern Massenbilanz: Zur Herstellung einer Tonne Flachglas (Floatglas) müssen insgesamt 1210 kg Roh- und Hilfsstoffe eingesetzt werden. Im Einzelnen sind dies: Tab. Roh- und Hilfsstoffbedarf zur Herstellung einer Tonne Flachglas (nach #1) Roh- und Hilfsstoffe Masse in kg/t Flachglas Quarzsand 600 Soda 190 Kalk 187 Glasbruch 90 Feldspat 77 Dolomit 56 Natriumsulfat 10 Summe 1210 Zusätzlich ist nach #1 ein Schutzgasbedarf von 15 m³ pro Tonne Flachglas zu bilanzieren. Weiterhin gibt #1 an, daß für die Erneuerung der Ausmauerungen durchschnittlich 13 kg Feuerfestmaterial pro Tonne Flachglas eingesetzt werden muß. Der Glasbruch taucht in der Bilanz nicht auf, da er innerhalb der Systemgrenzen recycliert wird. Natriumsulfat wird in GEMIS aufgrund der als gering eingschätzten Relevanz und der fehlenden Vorkette nicht mitgeführt. Energiebedarf: Das Schmelzen von Glas ist ein ausgesprochen energieaufwendiger Prozeß. Dabei geht der wesentlichste Teil der zugeführten Energie in Form von heißen Abgasen verloren. Die Nutzung der Abwärme ist nur unter bestimmten Voraussetzungen und nur bedingt möglich. Eine Aufteilung des Energiebedarfs nach Prozessen ist in der folgenden Tabelle vorgenommen worden. Tab.: Energieaufwand zur Herstellung einer Tonne Flachglas (nach #1) Prozeßstufe Energieaufwand in GJ/t Flachglas Schmelze (thermisch)Formgebung (elektr.)Kühlung (elektr.)) 6,750,040,04 Antrieb Glaswanne und Kühlofen (elektr.) 0,11 Gemengeherstellung und Transport (elektr., geschätzt) 0,04 Summe 6,98 Es wird ein Energiebedarf von 6,98 GJ/t Flachglas bilanziert. ETH nimmt einen um 20 % höher liegenden Energiebedarf für Flachglas an, wobei er davon ausgeht, daß kein Glasbruch verwendet wird (ETH 1995) . Diese Annahme wird in dieser Studie nicht übernommen. Nach Herstellerangaben (#2) wird der thermische Energiebedarf zu 90 % von Erdgas und zu 10 % von Heizöl S gedeckt. ETH nimmt in seiner Bilanzierung an, daß der gesamte thermische Energiebedarf über Erdgas gedeckt wird (ETH 1995). Hantsche gibt ein gängiges Verhältnis von zwei Dritteln Erdgas und einem Drittel Heizöl S an (#1). Nach Auskunft deutscher Hersteller wird zur Herstellung von Flachglas nach dem Float-Verfahren nur noch Gas als Brennstoff eingesetzt. Diese Annahme wird in GEMIS übernommen. Eine elektrische Zusatzheizung wird in dieser Bilanz nicht berücksichtigt. Hantsche gibt an, daß der Energiebedarf dadurch von 6,98 auf 5,23 GJ/t Flachglas gesenkt werden könnte. Prozeßbedingte Luftemissionen: Die prozeßbedingten Luftemissionen lassen sich nicht über eine Verbrennungsrechnung zur Bereitstellung von Prozeßwärme berechnen, da der Brennstoff direkt im Prozeß eingesetzt wird bzw. spezifische Verbrennungsbedingungen vorherrschen. Diese sind bei der Berchnung der Emissionen zu berücksichtigen. Dabei können formal die Emissionen, die durch die Rohmaterialien verursacht werden und die aus dem Brennstoff resultieren, getrennt werden. Das Umweltbundesamt (UBA) gibt für die Emissionen aus dem Rohmaterial Kennziffern für Schwefeldioxid, Stickoxide, Staub und Kohlendioxid an. Diese sind in der folgenden Tabelle dargestellt (UBA 1996). Tab.: Materialbedingte Luftemissionsfaktoren bei der Glasherstellung (UBA 1996). Schadstoff Masse in kg/t Flachglas CO2 200 NOx 0,8 SO2 2 Staub 0,4 Nicht berücksichtigt sind dabei die Chlorid- und Fluorid-Emissionen. Diese werden von ETH und Hantsche übernommen. Hantsche nimmt Chlorid-Emissionen in Höhe von 0,02 kg/t an (Hantsche 1993). Da für die Fluorid-Emissionen keine weiteren Informationen vorliegen werden in dieser Studie wie bei ETH 50 % des Grenzwertes angesetzt. Damit ergibt sich ein Emissionsfaktor in Höhe von 0,025 kg/t Produkt (ETH 1995). Zusätzlich zu den materialbedingten Emissionen, sind die Emissionen zu berücksichtigen, die durch die Verbrennung des Brennstoffs unter den prozeßspezifischen Bedingungen zustande kommen. Auch hierfür hat das UBA Kennziffern generiert. Die Emissionsfaktoren unterscheiden sich natürlich für verschiedene Brennstoffe. Für das Floatglasverfahren wird, wie oben erwähnt, angenommen, daß die gesamte Energie über Erdgas bereitgestellt wird. Somit ergeben sich folgende Emissionsfaktoren: Tab.: Brennstoffbedingte Luftemissionsfaktoren bei der Gasherstellung (UBA 1996). Schadstoff Erdgas in kg/TJ Emissionen in kg/tfür 6,75 GJ/t CO2 56000 378 CO 10 0,068 CH4 2,5 0,017 NMVOC 2,5 0,017 SO2 0,5 0,003 NOx 410 2,768 N2O 1,5 0,010 Staub 0 0 Die gesamten Luftemissionen ergeben sich durch Addition der materialbedingten und brennstoffbedingten Emissionsfaktoren. Wasserinanspruchnahme Wasser wird bei der Flachglas-Herstellung zu Kühlzwecken eingesetzt. ETH bilanziert für unbeschichtetes Flachglas 0,7 m³/t Flachglas (ETH 1995). Die Angabe von Hantzsche mit 7,5 m³/t ist nicht eindeutig identifizierbar und wird in der vorliegenden Untersuchung nicht berücksichtigt (Hantsche 1992). Abwasserinhaltsstoffe Von einer Belastung des Kühlwassers mit den in GEMIS berücksichtigten Abwasserinhaltsstoffen ist nicht auszugehen. Reststoffe In dem betrachteten System fallen keine festen Reststoffe an, die nicht wieder in den Prozeß eingebracht werden könnten. Auslastung: 5000h/a Brenn-/Einsatzstoff: Baustoffe gesicherte Leistung: 100% Jahr: 2050 Lebensdauer: 20a Leistung: 1t/h Nutzungsgrad: 167% Produkt: Baustoffe

Steine-Erden\Glas-flach-DE-2015

Herstellung von Flachglas; Flachglas gehört neben Behälterglas zu den Massengläsern. Alle in großen Mengen hergestellten Gläser gehören zur Gruppe der Alkali-Erdalkali-Silikatgläser (AES-Gläser). Die Zusammensetzung der AES-Gläser ist vom Verfahren und dem Produkt der Herstellung abhängig. Zur Flachglasherstellung befinden sich vier Verfahren im Einsatz (Float-, Fourcault-, Libbey-Owens- und Pittsburgh-Verfahren). Als leistungsfähiges Verfahren zur Herstellung hochwertiger Gläser hat sich das Float-Verfahren durchgesetzt. Die Herstellung des Flachglases nach dem Float-Verfahren läßt sich grundsätzlich in drei Verfahrensabschnitte unterteilen: die Gemengeherstellung, die Glasschmelze und die Formgebung. Bei der Gemengeherstellung werden die Rohstoffe dosiert, getrocknet und gemischt. Die Rohstoffzusammensetzung beim Flachglas muß sehr genau und konstant sein, da das Verfahren gegen Abweichungen sehr empfindlich ist. Dadurch kann auch kein Recycling-Glas eingesetzt werden. Lediglich ein geringer Anteil des im Werk anfallenden Glasbruches und der Reststoffe kann wieder in den Prozeß eingebracht werden. Der anschließende Glasschmelzprozeß kann in die Abschnitte der Silikatbildung, der Glasbildung, der Läuterung und der Konditionierung unterteilt werden. Die Schmelztemperaturen der Glasherstellung liegen bei ca. 1450-1550°C. Aufgrund der hohen Anforderungen an Flachgläser wird bei Temperaturen um 1600°C geschmolzen. Der Schmelzprozeß wird in kontinuierlich betriebenen Wannenöfen durchgeführt. Bei den Glasschmelzwannen der Floatanlagen handelt es sich in der Regel um Querflammöfen mit regenerativer Wärmerückgewinnung und Verbrennungsluftvorwärmung. Die Schmelzaggregate werden mit fossilen Brennstoffen (vorwiegend Erdgas) und häufig mit elektrischer Zusatzheizung betrieben. Der Einsatz elektrischer Zusatzheizungen in großen Schmelzwannen kann zur Steigerung der Durchsatzmengen und zur Verbesserung der Glasqualität eingesetzt werden (Hantsche 1992). Vom Wannenofen fließt das Glas in ein nachgeschaltetes Zinnbad (Floatbad). Die Glasmasse breitet sich auf dem im Floatbad unter Schutzatmosphäre stehenden flüssigen Zinn aus. Als endloses Band wird das Glas durch Spezialwalzen geführt und in einem nachgeschalteten Kühlkanal auf 200°C abgekühlt (#3). Nach dem Abkühlen wird das Glas mechanisch und chemisch weiterverarbeitet und veredelt. Diese Prozesse können in dieser Bilanzierung nicht berücksichtigt werden. Für die vorliegende Bilanzierung wurden die Quellen #1 sowie (ETH 1995) und (UBA 1996) untersucht. Der daraus resultierende Datensatz ist hinsichtlich der Massenbilanzierung als vollständig und zufriedenstellend anzusehen. Ein besserer Datensatz ist derzeit nicht verfügbar. Der zusammengestellte Datensatz repräsentiert auf einem hohen Aggregationsniveau die Glasproduktion in Deutschland Ende der 80er, Anfang der 90er Jahre. Es ist wünschenswert, die Datenlage bezüglich der prozeßbedingten Luftemissionen und der Wasserinanspruchnahme zu verbessern. Genese der Kennziffern Massenbilanz: Zur Herstellung einer Tonne Flachglas (Floatglas) müssen insgesamt 1210 kg Roh- und Hilfsstoffe eingesetzt werden. Im Einzelnen sind dies: Tab. Roh- und Hilfsstoffbedarf zur Herstellung einer Tonne Flachglas (nach #1) Roh- und Hilfsstoffe Masse in kg/t Flachglas Quarzsand 600 Soda 190 Kalk 187 Glasbruch 90 Feldspat 77 Dolomit 56 Natriumsulfat 10 Summe 1210 Zusätzlich ist nach #1 ein Schutzgasbedarf von 15 m³ pro Tonne Flachglas zu bilanzieren. Weiterhin gibt #1 an, daß für die Erneuerung der Ausmauerungen durchschnittlich 13 kg Feuerfestmaterial pro Tonne Flachglas eingesetzt werden muß. Der Glasbruch taucht in der Bilanz nicht auf, da er innerhalb der Systemgrenzen recycliert wird. Natriumsulfat wird in GEMIS aufgrund der als gering eingschätzten Relevanz und der fehlenden Vorkette nicht mitgeführt. Energiebedarf: Das Schmelzen von Glas ist ein ausgesprochen energieaufwendiger Prozeß. Dabei geht der wesentlichste Teil der zugeführten Energie in Form von heißen Abgasen verloren. Die Nutzung der Abwärme ist nur unter bestimmten Voraussetzungen und nur bedingt möglich. Eine Aufteilung des Energiebedarfs nach Prozessen ist in der folgenden Tabelle vorgenommen worden. Tab.: Energieaufwand zur Herstellung einer Tonne Flachglas (nach #1) Prozeßstufe Energieaufwand in GJ/t Flachglas Schmelze (thermisch)Formgebung (elektr.)Kühlung (elektr.)) 6,750,040,04 Antrieb Glaswanne und Kühlofen (elektr.) 0,11 Gemengeherstellung und Transport (elektr., geschätzt) 0,04 Summe 6,98 Es wird ein Energiebedarf von 6,98 GJ/t Flachglas bilanziert. ETH nimmt einen um 20 % höher liegenden Energiebedarf für Flachglas an, wobei er davon ausgeht, daß kein Glasbruch verwendet wird (ETH 1995) . Diese Annahme wird in dieser Studie nicht übernommen. Nach Herstellerangaben (#2) wird der thermische Energiebedarf zu 90 % von Erdgas und zu 10 % von Heizöl S gedeckt. ETH nimmt in seiner Bilanzierung an, daß der gesamte thermische Energiebedarf über Erdgas gedeckt wird (ETH 1995). Hantsche gibt ein gängiges Verhältnis von zwei Dritteln Erdgas und einem Drittel Heizöl S an (#1). Nach Auskunft deutscher Hersteller wird zur Herstellung von Flachglas nach dem Float-Verfahren nur noch Gas als Brennstoff eingesetzt. Diese Annahme wird in GEMIS übernommen. Eine elektrische Zusatzheizung wird in dieser Bilanz nicht berücksichtigt. Hantsche gibt an, daß der Energiebedarf dadurch von 6,98 auf 5,23 GJ/t Flachglas gesenkt werden könnte. Prozeßbedingte Luftemissionen: Die prozeßbedingten Luftemissionen lassen sich nicht über eine Verbrennungsrechnung zur Bereitstellung von Prozeßwärme berechnen, da der Brennstoff direkt im Prozeß eingesetzt wird bzw. spezifische Verbrennungsbedingungen vorherrschen. Diese sind bei der Berchnung der Emissionen zu berücksichtigen. Dabei können formal die Emissionen, die durch die Rohmaterialien verursacht werden und die aus dem Brennstoff resultieren, getrennt werden. Das Umweltbundesamt (UBA) gibt für die Emissionen aus dem Rohmaterial Kennziffern für Schwefeldioxid, Stickoxide, Staub und Kohlendioxid an. Diese sind in der folgenden Tabelle dargestellt (UBA 1996). Tab.: Materialbedingte Luftemissionsfaktoren bei der Glasherstellung (UBA 1996). Schadstoff Masse in kg/t Flachglas CO2 200 NOx 0,8 SO2 2 Staub 0,4 Nicht berücksichtigt sind dabei die Chlorid- und Fluorid-Emissionen. Diese werden von ETH und Hantsche übernommen. Hantsche nimmt Chlorid-Emissionen in Höhe von 0,02 kg/t an (Hantsche 1993). Da für die Fluorid-Emissionen keine weiteren Informationen vorliegen werden in dieser Studie wie bei ETH 50 % des Grenzwertes angesetzt. Damit ergibt sich ein Emissionsfaktor in Höhe von 0,025 kg/t Produkt (ETH 1995). Zusätzlich zu den materialbedingten Emissionen, sind die Emissionen zu berücksichtigen, die durch die Verbrennung des Brennstoffs unter den prozeßspezifischen Bedingungen zustande kommen. Auch hierfür hat das UBA Kennziffern generiert. Die Emissionsfaktoren unterscheiden sich natürlich für verschiedene Brennstoffe. Für das Floatglasverfahren wird, wie oben erwähnt, angenommen, daß die gesamte Energie über Erdgas bereitgestellt wird. Somit ergeben sich folgende Emissionsfaktoren: Tab.: Brennstoffbedingte Luftemissionsfaktoren bei der Gasherstellung (UBA 1996). Schadstoff Erdgas in kg/TJ Emissionen in kg/tfür 6,75 GJ/t CO2 56000 378 CO 10 0,068 CH4 2,5 0,017 NMVOC 2,5 0,017 SO2 0,5 0,003 NOx 410 2,768 N2O 1,5 0,010 Staub 0 0 Die gesamten Luftemissionen ergeben sich durch Addition der materialbedingten und brennstoffbedingten Emissionsfaktoren. Wasserinanspruchnahme Wasser wird bei der Flachglas-Herstellung zu Kühlzwecken eingesetzt. ETH bilanziert für unbeschichtetes Flachglas 0,7 m³/t Flachglas (ETH 1995). Die Angabe von Hantzsche mit 7,5 m³/t ist nicht eindeutig identifizierbar und wird in der vorliegenden Untersuchung nicht berücksichtigt (Hantsche 1992). Abwasserinhaltsstoffe Von einer Belastung des Kühlwassers mit den in GEMIS berücksichtigten Abwasserinhaltsstoffen ist nicht auszugehen. Reststoffe In dem betrachteten System fallen keine festen Reststoffe an, die nicht wieder in den Prozeß eingebracht werden könnten. Auslastung: 5000h/a Brenn-/Einsatzstoff: Baustoffe gesicherte Leistung: 100% Jahr: 2014 Lebensdauer: 20a Leistung: 1t/h Nutzungsgrad: 167% Produkt: Baustoffe

Erster umfassender Bericht zum globalen Zustand der Pflanzenwelt vorgestellt

Am 9. Mai 2016 veröffentlichten Wissenschaftler des Kew Royal Botanic Garden in London erstmals ihren jährlichen Bericht zum globalen Zustand der Pflanzenwelt. Im "State of the World's Plant report", an dem mehr als 80 Wissenschaftler beteiligt waren, sind alle bislang bekannten 391.000 Arten von Gefäßpflanzen aktuell beschrieben, davon 369.000 Blütenpflanzen. Etwa 2.000 Gefäßpflanzenarten werden jährlich neu entdeckt. Nur etwa 31.000 Pflanzen werden vom Menschen genutzt, zum Beispiel als Nahrungsmittel oder Rohmaterial für Textilien. Die weitaus größte Gruppe der Nutzpflanzen dient zur Gewinnung von Medikamenten. Ein Fünftel aller Pflanzenarten ist dem Bericht zufolge vom Aussterben bedroht. Die größte Bedrohung für die Vielfalt von Pflanzen geht von der Landwirtschaft, Holzgewinnung und Ausdehnung menschlicher Siedlungen aus. Weitere Gründe für den Artenschwund seien Krankheiten und invasive Spezies, die sich in fremder Umgebung ausbreiten und einheimische Pflanzen verdrängen können. Dazu zählen die Forscher rund 5.000 Pflanzenarten.

1 2 3 4 529 30 31