Der vorliegende Entwurf eines Landesgesetzes zur Änderung abfallrechtlicher Vorschriften enthält erforderliche Anpassungen des Landesrechts an geändertes Bundesrecht. Der Gesetzentwurf dient darüber hinaus der Fortentwicklung der Instrumente für eine ökologische Kreislaufwirtschaft. Eine umfassende, nachhaltige Kreislaufwirtschaft („Circular Economy“) reduziert u. a. den Ressourcenverbrauch und dient dem Klimaschutz. So können beispielsweise mit einer verbesserten Erfassung des Bioabfalls die Biogaserzeugung und die Restmüllentsorgung effizienter gestaltet werden. Mit einer optimierten Erfassung und Wiederverwertung von Kunststoffabfällen können der Energie- und Rohstoffeinsatz reduziert werden.
Das Forschungsprojekt „DigitalRessourcen“ hat die Ressourcenintensität und die Treibhausgasemissionen der digitalen Transformation in Deutschland sowohl auf Mikro- als auch auf Makroebene analysiert. In zehn Fallstudien (Mikroebene) wurde die Ressourcenintensität digitaler Anwendungen nach LCA-Methodik berechnet. Auf Makroebene wurden für die IKT-Branche der Rohstoffkonsum RMC ( raw material consumption ), der Rohstoffeinsatz RMI ( raw material input ) und der CO 2 -Fußabdruck der Digitalisierung in Deutschland für die Jahre 2000-2020 berechnet sowie sieben Szenarien für die Jahre 2020-2050 modelliert. Darauf aufbauend wurden Gestaltungsfelder für eine nachhaltigere Digitalisierung und weiterer Forschungsbedarf benannt. Veröffentlicht in Texte | 114/2024.
Das Forschungsprojekt „DigitalRessourcen“ hat die Ressourcenintensität und die Treibhausgasemissionen der digitalen Transformation in Deutschland sowohl auf Mikro- als auch auf Makroebene analysiert. In zehn Fallstudien (Mikroebene) wurde die Ressourcenintensität digitaler Anwendungen nach LCA-Methodik berechnet. Auf Makroebene wurden für die IKT-Branche der Rohstoffkonsum RMC ( raw material consumption ), der Rohstoffeinsatz RMI ( raw material input ) und der CO 2 -Fußabdruck der Digitalisierung in Deutschland für die Jahre 2000-2020 berechnet sowie sieben Szenarien für die Jahre 2020-2050 modelliert. Darauf aufbauend wurden Gestaltungsfelder für eine nachhaltigere Digitalisierung und weiterer Forschungsbedarf benannt. Veröffentlicht in Broschüren.
Das Forschungsprojekt „DigitalRessourcen“ hat die Ressourcenintensität und die Treibhausgasemissionen der digitalen Transformation in Deutschland sowohl auf Mikro- als auch auf Makroebene analysiert. In zehn Fallstudien (Mikroebene) wurde die Ressourcenintensität digitaler Anwendungen nach der Life Cycle Assessment (LCA) Methodik berechnet. Auf Makroebene wurden für die IKT-Branche der Rohstoffkonsum RMC (raw material consumption), der Rohstoffeinsatz RMI (raw material input) und der CO 2 -Fußabdruck der Digitalisierung in Deutschland für die Jahre 2000-2020 berechnet sowie sieben Szenarien für die Jahre 2020-2050 modelliert. Veröffentlicht in Fact Sheet.
Die Dokumentation des Forschungsprojektes "Ressourcenkompetenz für Rohstoffnutzung in globalen Wertschöpfungsketten" beschreibt die Bandbreite der Möglichkeiten einer besseren Einbindung der Thematik der Ressourceneffizienz und Ressourcenschonung in die Lehrpraxis von Hochschulen. Im Projektrahmen werden anhand der Studiengänge Wirtschaftsingenieurwissenschaften und Design der aktuelle Stand der Ressourcenbildung ermittelt, Anknüpfungspunkte und Handlungsbedarfe aufgezeigt sowie Handlungsoptionen für Hochschulakteure und politische Entscheidungsträger*innen entwickelt. Die Veröffentlichung richtet sich an Lehrende und Studierende an Hochschulen, an Amtsinhaber*innen in der Hochschulbildung sowie an außerschulische Akteure. Veröffentlicht in Dokumentationen | 01/2024.
Die Erfahrungen und Ergebnisse aus dem Projekt KPI4DCE 2.0 zeigen, dass es sinnvoll ist, genaue Kenntnisse über alle Teilbereiche eines Rechenzentrums zu haben. Es macht nur bedingt Sinn lediglich die Gebäudeinfrastrukturtechnik zu optimieren. Ist die Informationstechnik völlig überdimensioniert, verschwendet sie nicht nur Energie und Ressourcen ohne Leistung zu erbringen, sondern stellt unnötige Bedarfe an Klimatisierung, Stromversorgungsanlagen und Fläche. Um diese Bedarfe nachzukommen müssen Gebäudetechnik und Fläche entsprechend groß ausgelegt werden. Das Beispiel verdeutlicht, wie wichtig es ist, Transparenz über alle Teilbereiche herzustellen und insbesondere die Informationstechnik am tatsächlichen Bedarf auszurichten. Nur so können die Effizienzpotenziale erkannt und sinnvolle und gewinn-bringende Maßnahmen umgesetzt bzw. in Ausbauplanungen berücksichtigt werden. Für die optimale Umsetzung von Effizienzmaßnahmen im Rechenzentrum hat sich ein abgestimmtes Vorgehen in der Praxis als hilfreich erwiesen, denn künstliche Intelligenz, Big Data, Industrie 4.0 oder Internet of things sind längst nicht mehr nur Schlagworte, sondern benennen vielmehr reale Megatrends, die zum Teil enorme Energie- und Rohstoffbedarfe haben. Alle diese und weitere Anwendungen und Produkte der Digitalisierung haben gemein, dass sie auf Rechenzentren angewiesen sind, die die Daten zentral speichern, verarbeiten, weiterleiten oder anderweitig zur Verfügung stellen. Die Rechenzentren haben aufgrund der steigenden Nachfrage in den letzten Jahren erheblich an Anzahl und Größe zugenommen. Die Wachstumsprognosen zeigen auch weiterhin einen deutlichen Trend nach oben. Aus diesem Grund ist es notwendig sie genauer unter die Lupe zu nehmen, um die Energie- und Rohstoffbedarfe zu kennen und die Effizienzpotenziale im Rechenzentrum zu heben. Für die Umweltbilanzierung von Rechenzentren steht die vom UBA entwickelte Methode Key Performance Indicator for Datacenter (KPI4DCE) zur Verfügung. Mit dieser Methode ist eine ganzheitliche Beurteilung der Umweltwirkungen von Rechenzentren möglich. Die KPI4DCE-Kennzahlen werden jeweils berechnet als Quotient aus Nutzen und Aufwand. Dabei wird die Herstellung von Informationstechnik und den Betrieb des Rechenzentrums in die Berechnung der vier Wirkungskategorien Rohstoffaufwand (ADP), Treibhausgasemissionen (GWP), Kumulierter Energieaufwand ( KEA ) und Wasserverbrauch mit einbezogen. Veröffentlicht in Texte | 43/2024.
Rohstoffe als Ressource Rohstoffe zählen neben biologischer Vielfalt, Wasser, Boden oder auch sauberer Luft zu den natürlichen Ressourcen. Man unterscheidet erneuerbare Rohstoffe als Produkte der Land- oder Forstwirtschaft und nicht erneuerbare Rohstoffe wie Erdöl, Kohle, Erze und andere Mineralien. Unsere industrialisierte Wirtschaft ist in hohem Maße auf Rohstoffe angewiesen. Im Zuge der wachsenden Weltwirtschaft sind die Nachfrage nach Rohstoffen und damit die Rohstoffkosten in den vergangenen Jahrzehnten weltweit stark angestiegen. Neue Lagerstätten werden immer schwerer zugänglich. Der Aufwand sie zu erschließen steigt und damit auch der Preis für die geförderten Rohstoffe. Zudem geht die Gewinnung nicht erneuerbarer Rohstoffe durch Bergbau häufig mit erheblichen ökologischen Auswirkungen einher, da der Bergbau meist massive Eingriffe in den Naturhaushalterfordert. Aber auch die Bereitstellung erneuerbarer Rohstoffe durch Land- und Forstwirtschaft ist oft problematisch: Anbauflächen stehen nur begrenzt zur Verfügung. Eine Ausweitung der Produktion land- und forstwirtschaftlicher Güter geht deshalb tendenziell zu Lasten der Flächen natürlicher und naturnaher Ökosysteme. Eine weitere Folge ist eine intensivere Bewirtschaftung bestehender Flächen, die wiederum häufig Böden übernutzt, Gewässer belastet und zu Verlusten der biologischen Vielfalt führt. Auf diese Auswirkungen gehen verschiedene Beiträge näher ein. Die Umweltwirkungen der Rohstoffgewinnung bleiben nicht auf Deutschland begrenzt. Die deutsche Wirtschaft ist weltweit stark verflochten. Sie importiert und exportiert in großem Umfang teilweise verarbeitete oder fertige Produkte, zu deren Herstellung im In- und Ausland gewonnene Rohstoffe eingesetzt wurden. Sowohl die EU als auch die Bundesregierung wollen deshalb die Effizienz der Rohstoffnutzung in der Wirtschaft erhöhen, um den Rohstoffbedarf der Wirtschaft zu senken. Die verschiedenen Ansätze, die Rohstoffeffizienz der Wirtschaft zu messen, werden in diesem Kapitel dargestellt.
Rohstoffproduktivität Die Rohstoffproduktivität stieg in Deutschland zwischen 1994 und 2020 um rund 74 Prozent. Ziel des „Deutschen Ressourceneffizienzprogramms“ (ProgRess) war es, die Rohstoffproduktivität bis 2020 gegenüber 1994 zu verdoppeln. Dieses Ziel wurde deutlich verfehlt. Seit der Veröffentlichung von ProgRess III im Jahr 2020 wird der weitentwickelte Indikator „Gesamtrohstoffproduktivität“ abgebildet. Entwicklung der Rohstoffproduktivität Die Rohstoffproduktivität in Deutschland stieg laut Daten des Statistischen Bundesamtes von 1994 bis 2020 um 73,6 %. Der abiotische Direkte Materialeinsatz sank in diesem Zeitraum um 21,6 %. Das Bruttoinlandsprodukt (BIP) stieg im selben Zeitraum um 36,0 % (siehe Abb. „Rohstoffproduktivität“). Das Jahr 2020 war allerdings durch die Lockdowns der Corona-Pandemie und damit verbundener geringerer wirtschaftlicher Aktivität und Nachfrage nach Rohstoffen geprägt. Die Rohstoffproduktivität stieg in diesem Zeitraum nicht stetig. Drei Beispiele: Die Rohstoffproduktivität nahm zwischen den Jahren 2008 und 2009 um ca. 4 % zu. In dieser Zeit der Wirtschafts- und Finanzkrise verringerten sich sowohl das BIP als auch der abiotische Direkte Materialeinsatz. Da der Materialeinsatz stärker sank als das BIP, stieg die Rohstoffproduktivität. Der Hauptgrund dafür waren die gesunkenen Einfuhren. Vom Jahr 2010 auf das Jahr 2011 sank die Rohstoffproduktivität um rund 3,6 %. Der Grund dafür war, dass in diesem Zeitraum der Anstieg des Materialeinsatzes das wirtschaftliche Wachstum überkompensierte. Von 2011 bis 2019 (vor-Corona-Jahr) ist die Rohstoffproduktivität wieder um knapp 28 % angestiegen: Das BIP stieg um etwa 15 %, der Materialeinsatz sank um ca. 5 %. Insgesamt entwickelte sich die Rohstoffproduktivität in die angestrebte Richtung. Allerdings wurde seit dem Jahr 1994 das ursprünglich gesetzte Ziel des Deutschen Ressourceneffizienzprogramms ( ProgRess ) nicht realisiert: eine Verdopplung der Rohstoffproduktivität bis 2020. Indikator "Rohstoffproduktivität" Der Indikator „Rohstoffproduktivität“ drückt aus, wie effizient abiotische Primärmaterialien in Deutschland eingesetzt wurden, um das Bruttoinlandsprodukt (BIP) zu erwirtschaften. Die Bundesregierung hat mit dem Deutschen Ressourceneffizienzprogramm ursprünglich das Ziel vorgegeben, die Rohstoffproduktivität bis zum Jahr 2020 im Vergleich zum Jahr 1994 zu verdoppeln. Mit der Verabschiedung des dritten Deutschen Ressourceneffizienzprogramms im Jahre 2020 wurde der Indikator durch die „Gesamtrohstoffproduktivität“ als zentraler Indikator weiterentwickelt (s. unten). Um die Rohstoffproduktivität zu ermitteln, wird ein Quotient gebildet (siehe Schaubild „Stoffstromindikatoren“): Das Bruttoinlandsprodukt (BIP) wird mit den in Deutschland eingesetzten abiotischen Materialien in Beziehung gesetzt. Die abiotischen Materialien umfassen inländische Rohstoffentnahmen und importierte Materialien (abiotischer Direkter Materialeinsatz, siehe auch DMI im Schaubild „Stoffstromindikatoren“). Die Rohstoffproduktivität erlaubt eine erste Trendaussage zur Effizienz der Rohstoffnutzung in unserer Wirtschaft über einen langen Zeitraum. Die Basis des Indikators „Rohstoffproduktivität“: der abiotische Direkte Materialeinsatz Zur Berechnung der Rohstoffproduktivität wird der Indikator „abiotischer Direkter Materialeinsatz“ verwendet. Der zugrundeliegende Indikator „Direkter Materialeinsatz“ wird im Englischen als „Direct Material Input“ ( DMI ) bezeichnet. Der abiotische Direkte Materialeinsatz ermöglicht es, Umfang und Charakteristik der nicht-erneuerbaren Materialnutzung in einer Volkswirtschaft aus der Perspektive der Produktion darzustellen. Er berücksichtigt inländische Entnahmen von nicht-erneuerbaren Primärrohstoffen aus der Natur. Weiterhin sind alle eingeführten abiotischen Rohstoffe, Halbwaren und Fertigwaren mit ihrem Eigengewicht Bestandteil des Indikators. Der Direkte Materialeinsatz ist zentraler Bestandteil volkswirtschaftlicher Materialflussrechnungen. Entwicklung des abiotischen Direkten Materialeinsatzes Für die Deutung der Rohstoffproduktivität und deren Verlauf ist die Entwicklung des abiotischen Direkten Materialeinsatzes wichtig. Im Jahr der Wirtschaftskrise 2009 nutzte die deutsche Wirtschaft 1.203 Millionen Tonnen (Mio. t) nicht-erneuerbarer Materialien. Das waren knapp 21 % weniger als im Jahr 1994. Im Jahr 2011 stieg der abiotische Direkte Materialeinsatz vorübergehend recht stark auf 1.322 Mio. t an. Dies war vor allem auf eine konjunkturbedingte Steigerung der inländischen Entnahme von mineralischen Baurohstoffen und weiter steigende Importe von Energieträgern und Metallerzeugnissen zurückzuführen. 2020 sank der Materialeinsatz wieder auf 1.187 Mio. t. Damit beträgt das Minus im Jahr 2020 gegenüber 1994 knapp 22 %. Im Jahr 2021 stieg der Direkte Materialeinsatz aufgrund der zunehmenden wirtschaftlichen Aktivitäten mit 1.217 Mio. t. wieder an (siehe Abb. „Entwicklung des abiotischen Direkten Materialeinsatzes“). Komponenten des abiotischen Direkten Materialeinsatzes Das Statistische Bundesamt schlüsselt die Komponenten auf, aus denen sich der abiotische Direkte Materialeinsatz zusammensetzt. In den Jahren von 1994 bis 2021 gab es Veränderungen bei der Entnahme inländischer abiotischer Rohstoffe und der Einfuhr abiotischer Güter: Während die Entnahme von abiotischen Rohstoffen im Inland zwischen 1994 und 2021 um 395 Millionen Tonnen (– 35 %) zurückgegangen ist, stieg die Einfuhr von nicht-erneuerbaren Rohstoffen sowie Halb- und Fertigwaren um 97 Mio. t an (+ 25%). Der Anteil der importierten Güter am gesamten nicht-erneuerbaren Primärmaterialeinsatz erhöhte sich damit von 26 % im Jahre 1994 auf 40 % im Jahre 2021. Betrachtet man die Entwicklung der verschiedenen Rohstoffarten zwischen 1994 und 2021 genauer, fallen folgende Entwicklungen auf (siehe Abb. „Entnahme abiotischer Rohstoffe und Einfuhr abiotischer Güter“): Die inländische Gewinnung von sonstigen Mineralien wie z.B. mineralischen Baurohstoffen sank um 30 % oder 250 Millionen Tonnen (Mio. t). Die Gewinnung von Energieträgern im Inland nahm um 52 % (145 Mio. t) ab. Darin spiegelt sich der Rückgang der Braunkohle- und Steinkohleförderung wider. Im Gegenzug wurden rund 77 Mio. t (33 %) mehr an Energieträgern und deren Erzeugnissen eingeführt. Auch die Importe von Erzen und ihren Erzeugnissen stiegen deutlich um 42 % (37 Mio. t) an. Dabei handelt es sich überwiegend um Metallwaren. Erfassung der indirekten Importe Der abiotische Direkte Materialeinsatz berücksichtigt zwar die direkten, aber nicht die sogenannten „indirekten Materialströme“ der Einfuhren. Dazu gehören Rohstoffe, die im Ausland zur Erzeugung der importierten Güter genutzt wurden. Diese sind in den von der Handelsstatistik erfassten Mengen nicht enthalten. Der Indikator Rohstoffproduktivität kann daher einen vermeintlichen Produktivitätsfortschritt vorspiegeln, wenn im Inland entnommene oder importierte Rohstoffe durch die Einfuhr bereits weiter verarbeiteter Produkte ersetzt werden. Das ist durchaus realistisch: So nahmen zwischen den Jahren 1994 und 2021 die Einfuhren an überwiegend abiotischen Fertigwaren um 116 % deutlich stärker zu, als die von Halbwaren . Deren Importe gingen sogar leicht zurück. Die von Rohstoffen erhöhten sich um 17 % (siehe Abb. „Abiotische Importe nach Deutschland nach Verarbeitungsgrad“). Bei Halbwaren handelt es sich um bereits be- oder verarbeitete Rohstoffe, die im Regelfall weiterer Be- oder Verarbeitung bedürfen, bevor sie als Fertigwaren benutzbar sind. Hierzu zählen beispielsweise Rohmetalle, mineralische Baustoffe wie Zement oder Schnittholz. Die starken Anstiege der Fertigwaren gelten gleichermaßen für metallische Güter wie auch für Produkte aus fossilen Energieträgern, etwa Kunststoffe. Mit dem zunehmenden Import von Fertigwaren werden rohstoffintensive Herstellungsprozesse mitsamt den meist erheblichen Umwelteinwirkungen der Rohstoffgewinnung und -aufbereitung verstärkt ins Ausland verlagert. Ergänzung des Indikators „Rohstoffproduktivität“ um indirekte Importe Der Verlagerungseffekt der Rohstoffnutzung ins Ausland lässt sich durch die Umrechnung der Importe in Rohstoffäquivalente abbilden – wie etwa beim Indikator „Rohstoffverbrauch“ (engl. „Raw Material Input“, RMI ). Der Indikator berücksichtigt ergänzend zum direkten Materialeinsatz auch Importgüter mit den Massen an Rohstoffen, die im Ausland zu deren Herstellung erforderlich waren (siehe „Schaubild Stoffstromindikatoren“). Diese werden in der Fachsprache als „indirekte Importe“ bezeichnet. Der RMI stellt also eine Vergleichbarkeit zwischen den Einfuhren und inländischen Entnahmen her, indem der Primärrohstoffverbrauch im In- und Ausland gleichermaßen abgebildet wird. Für eine Einschätzung, wie viele Rohstoffe eine Volkswirtschaft verwendet, macht es einen Unterschied, ob indirekte Stoffströme berücksichtigt werden oder nicht. Zwischen den Jahren 2010 und 2021 stieg die Summe aus abiotischer Rohstoffentnahme sowie direkten und indirekten Importen (RMI abiot ) um mehr als 6 %. Der DMI abiot , der die indirekten Importe nicht berücksichtigt, sank im selben Zeitraum jedoch um knapp 2 % (siehe Abb. „Rohstoffproduktivität“). Schaubild: Stoffstromindikatoren Quelle: Umweltbundesamt Rohstoffproduktivität Quelle: Statistisches Bundesamt Diagramm als PDF Diagramm als Excel mit Daten Bedeutung der Biomasse nimmt zu Der abiotische Direkte Materialeinsatz bei der Berechnung der Rohstoffproduktivität für das Deutsche Ressourceneffizienzprogramm erfasst nur nicht-erneuerbare Rohstoffe. Das bedeutet, dass Biomasse bei der Berechnung ausgeklammert wird. Doch die Bedeutung von Biomasse für die Rohstoffnutzung steigt, denn durch Biomasse können knapper werdende fossile und mineralische Rohstoffe ersetzt werden. Sowohl der Anbau biotischer Rohstoffe als auch ihre Verarbeitung und Nutzung sind mit erheblichen Umwelteinwirkungen verbunden. Weiterhin sind die nachhaltig zu bewirtschaftenden Anbauflächen begrenzt. Deshalb ist es von wachsender Bedeutung, biotische Rohstoffe in die Berechnungen der Materialindikatoren zur Rohstoffproduktivität einfließen zu lassen. Ein erweiterter Produktivitätsindikator: die Gesamtrohstoffproduktivität Mit Verabschiedung des 2. Deutschen Ressourceneffizienzprogramms (ProgRess II) und der Neuauflage der Deutschen Nachhaltigkeitsstrategie wurde dem Indikator „Rohstoffproduktivität“ eine weitere Produktivitätsgröße an die Seite gestellt: die „Gesamtrohstoffproduktivität“ (siehe Abb. „Gesamtrohstoffproduktivität“). Diese Größe beinhaltet – anders als der bisherige Indikator – neben den abiotischen auch die biotischen Rohstoffe und berücksichtigt nicht nur die Tonnage der importierten Güter, sondern den gesamten damit verbundenen Primärrohstoffeinsatz ( Rohstoffäquivalente ). Die Gesamtrohstoffproduktivität wird seit Veröffentlichung des Deutschen Ressourceneffizienzprogramms III ausschließlich berichtet. Zwischen den Jahren 2010 und 2030 soll der Wert jährlich im Durchschnitt um 1,6 % wachsen. Von 2010 bis 2021 nahm die Gesamtrohstoffproduktivität um 15 % zu. Das durchschnittliche Wachstum lag demnach bei etwa 1,3 % pro Jahr und damit unterhalb des Ziels der Deutschen Nachhaltigkeitsstrategie. Der Indikator wird hier ausführlich vorgestellt.
Die Erfahrungen und Ergebnisse aus dem Projekt KPI4DCE 2.0 zeigen, dass es sinnvoll ist, genaue Kenntnisse über alle Teilbereiche eines Rechenzentrums zu haben. Es macht nur bedingt Sinn lediglich die Gebäudeinfrastrukturtechnik zu optimieren. Ist die Informationstechnik völlig überdimensioniert, verschwendet sie nicht nur Energie und Ressourcen ohne Leistung zu erbringen, sondern stellt unnötige Bedarfe an Klimatisierung, Stromversorgungsanlagen und Fläche. Um diese Bedarfe nachzukommen müssen Gebäudetechnik und Fläche entsprechend groß ausgelegt werden. Das Beispiel verdeutlicht, wie wichtig es ist, Transparenz über alle Teilbereiche herzustellen und insbesondere die Informationstechnik am tatsächlichen Bedarf auszurichten. Nur so können die Effizienzpotenziale erkannt und sinnvolle und gewinn-bringende Maßnahmen umgesetzt bzw. in Ausbauplanungen berücksichtigt werden.Für die optimale Umsetzung von Effizienzmaßnahmen im Rechenzentrum hat sich ein abgestimmtes Vorgehen in der Praxis als hilfreich erwiesen, denn künstliche Intelligenz, Big Data, Industrie 4.0 oder Internet of things sind längst nicht mehr nur Schlagworte, sondern benennen vielmehr reale Megatrends, die zum Teil enorme Energie- und Rohstoffbedarfe haben. Alle diese und weitere Anwendungen und Produkte der Digitalisierung haben gemein, dass sie auf Rechenzentren angewiesen sind, die die Daten zentral speichern, verarbeiten, weiterleiten oder anderweitig zur Verfügung stellen. Die Rechenzentren haben aufgrund der steigenden Nachfrage in den letzten Jahren erheblich an Anzahl und Größe zugenommen. Die Wachstumsprognosen zeigen auch weiterhin einen deutlichen Trend nach oben. Aus diesem Grund ist es notwendig sie genauer unter die Lupe zu nehmen, um die Energie- und Rohstoffbedarfe zu kennen und die Effizienzpotenziale im Rechenzentrum zu heben.Für die Umweltbilanzierung von Rechenzentren steht die vom UBA entwickelte Methode Key Performance Indicator for Datacenter (KPI4DCE) zur Verfügung. Mit dieser Methode ist eine ganzheitliche Beurteilung der Umweltwirkungen von Rechenzentren möglich. Die KPI4DCE-Kennzahlen werden jeweils berechnet als Quotient aus Nutzen und Aufwand. Dabei wird die Herstellung von Informationstechnik und den Betrieb des Rechenzentrums in die Berechnung der vier Wirkungskategorien Rohstoffaufwand (ADP), Treibhausgasemissionen (GWP), Kumulierter Energieaufwand (KEA) und Wasserverbrauch mit einbezogen.
Das Forschungsprojekt „DigitalRessourcen“ hat die Ressourcenintensität und die Treibhausgasemissionen der digitalen Transformation in Deutschland sowohl auf Mikro- als auch auf Makroebene analysiert. In zehn Fallstudien (Mikroebene) wurde die Ressourcenintensität digitaler Anwendungen nach LCA-Methodik berechnet. Auf Makroebene wurden für die IKT-Branche der Rohstoffkonsum RMC (raw material consumption), der Rohstoffeinsatz RMI (raw material input) und der CO2-Fußabdruck der Digitalisierung in Deutschland für die Jahre 2000-2020 berechnet sowie sieben Szenarien für die Jahre 2020-2050 modelliert. Darauf aufbauend wurden Gestaltungsfelder für eine nachhaltigere Digitalisierung und weiterer Forschungsbedarf benannt.
Origin | Count |
---|---|
Bund | 219 |
Land | 6 |
Zivilgesellschaft | 2 |
Type | Count |
---|---|
Förderprogramm | 126 |
Text | 65 |
unbekannt | 34 |
License | Count |
---|---|
geschlossen | 103 |
offen | 121 |
unbekannt | 1 |
Language | Count |
---|---|
Deutsch | 202 |
Englisch | 39 |
Resource type | Count |
---|---|
Bild | 2 |
Datei | 6 |
Dokument | 48 |
Keine | 113 |
Webseite | 79 |
Topic | Count |
---|---|
Boden | 225 |
Lebewesen & Lebensräume | 152 |
Luft | 120 |
Mensch & Umwelt | 225 |
Wasser | 108 |
Weitere | 204 |