Steigende Biomasseentzüge aus Wäldern, erhöhtes Waldwachstum durch anhaltend hohe atmosphärische Stickstoffeinträge und direkte und indirekte Auswirkungen des Klimawandels rücken den Kreislauf und die Verfügbarkeit von Phosphor (P) in Waldökosystemen vermehrt in den Fokus wissenschaftlicher Untersuchungen. Den P-Verlusten mit dem Sickerwasser kommt dabei außerdem besondere Bedeutung für die Eutrophierung von Oberflächengewässern zu. Bisher liegen jedoch kaum Erkenntnisse über die Höhe und Prozessdynamik des P-Austrags und die Transportwege von P in Waldböden vor. Eigene Studien zeigten kürzlich, dass signifikante P-Verluste aus Waldböden während starker Niederschlagsereignisse auftreten können. Da der Oberflächenabfluss in Wälder in der Regel vernachlässigbar ist, spielt insbesondere der Transport über preferentielle Fließwege (z.B. Makroporen) eine wichtige Rolle. Welche Prozesse jedoch den P-Transport entlang dieser Fließwege steuern und welche P-Formen überwiegend transportiert werden, ist weitestgehend unbekannt. Ebenso wurde bisher nicht untersucht, ob unterschiedliche Ernährungsstrategien von Waldökosystemen einen Effekt auf die P-Transportmechanismen haben. Eine Grundannahme des SPP 1685 ist, dass recycelnde Systeme, in denen die P- Verfügbarkeit aus der mineralischen Phase gering ist, sich an diese P-Limitierung angepasst haben. Sie können Phosphor hoch effizient recyceln und P-Verluste aus dem System minimieren. Dagegen bestand für akquirierende Systeme, welche überwiegend verfügbares P der mineralischen Phase nutzen, vermutlich nicht die Notwendigkeit angepasste Strategien zu einem effizienten P-Recycling zu entwickeln. Um die Relevanz dieser beiden hypothetischen Ernährungsstrategien auf P-Transportprozesse in Waldböden experimentell zu überprüfen, werden wir daher Böden in Waldökosystemen mit unterschiedlicher P-Verfügbarkeit aus der mineralischen Phase betrachten (SPP-Kernstandorte). Die Ziele unserer Studie sind dabei: 1) die Identifizierung der P-Transportpfade durch den Boden und der am Transport beteiligten P-Formen; 2) die modell-basierte Abschätzung der P-Verluste aus den betrachteten Systemen. Die preferentiellen Fließwege von infiltrierendem Wasser sollen mit Hilfe von Farbtracer-Experimenten visualisiert werden. Durch die anschließende chemische Analyse der P-Fraktionen in den preferentiellen Fließwegen sollen Rückschlüsse auf P-Transportmechanismen in Waldböden gezogen werden. Zur Abschätzung der P-Verluste aus dem System werden basierend auf den identifizierten Transportmechanismen und beobachteten Fließwegen numerische Modelle parametrisiert, welche die Komponenten des Wasserhaushaltes simulieren. Durch diesen kombinierten Ansatz können erstmals die Transportmechanismen und Austragsraten von Phosphor aus Waldökosystemen in Abhängigkeit ihrer Ernährungsstrategie (P-Verfügbarkeit aus der mineralischen Phase) vergleichend betrachtet werden.
Ziel des Teilvorhabens ist die Entwicklung von Betonrezepturen für Betonwaren und Betonfertigteilen mit erhöhtem Anteil an rezyklierten Gesteinskörnungen und dem Einsatz von RC-Zementen aus dem Gesamtprojekt. Dadurch soll der CO2-Footprint um bis zu 40% reduziert und zusätzlich sollen natürliche Ressourcen geschont werden. Die Innovationen liegen zum einen im Einsatz des RC-Zementes auf Basis von Belit-Klinker, die bisher nicht im Produktbereich eingesetzt werden. Außerdem neu ist die Anhebung des Anteils an rezyklierter Gesteinskörnung im Betonwarenbereich von 50% und im Betonfertigteilbereich von 25%. Durch eine intensive Zusammenarbeit mit allen Projektpartnern sollen diese Themen bearbeitet werden, um die bisher vorhandenen Probleme vor allem beim Einsatz von rezyklierten Gesteinskörnungen zu lösen. Durch die Arbeiten des Projektpartners EHL können die Ergebnisse aller Projektpartner zusammengeführt und in realen Produkten in Werksversuchen getestet werden. Hier kommen die RC-Zemente vom KIT und Holcim zum Einsatz und die Zusatzmittel der Sika werden hinzugefügt. Durch die Laborarbeiten des LUH werden die Rezepturen entworfen und bei EHL weiter zuerst im Labor und anschließend im Werksversuch untersucht. Die Ergebnisverwertung soll im Erfolgsfall in den Werken von EHL erfolgen, indem schrittweise die Erkenntnisse zu neuen Rezepturen mit RC-Zementen und rezyklierten Gesteinskörnungen in unterschiedlichen Produkten eingesetzt werden. Dadurch würden natürliche Rohstoffreserven geschont und CO2-Emissionen reduziert.
Excessive nutrient input largely impacts community structure and functioning of stream ecosystems in Central Europe (eutrophication). Within this project, we aim to evaluate the eutrophication potential of stream ecosystems. As a first step to achieve this aim, main control mechanisms influencing stream eutrophication have to be identified. We will analyze the impact of soil nutritional status (especially phosphorus), soil storage capacity, and soil nutrient release as well as land use on periphyton-grazer interaction. Therefore, we will study the periphyton-grazer interaction in the running water of 4 small catchments that differ with respect to their nutritional status, speciation and release at a forest site and an pasture site. In the field survey we will study (1) The input of macro nutrients (P and N), (2) community structure and biomass of periphyton and grazers, (3) emergence and (4) complexity of the food web and compare the results among the catchments. The periphyton-grazer interaction along nutrient gradients will be studied in more detail using laboratory flumes. By the use of geostatistical and remote sensing techniques we will interpolate macro nutrient input, -speciation and seasonality for the different catchments and link this information to periphyton quantity and quality as well as to periphyton-grazer interaction.
Phosphorus (P) is an essential nutrient for living organisms. Whereas agriculture avoids P-limitation of primary production through continuous application of P fertilizers, forest ecosystems have developed highly efficient strategies to adapt to low P supply. A main hypothesis of the SPP 1685 is that P depletion of soils drives forest ecosystems from P acquiring system (efficient mobilization of P from the mineral phase) to P recycling systems (highly efficient cycling of P). Regarding P fluxes in soils and from soil to streamwater, this leads to the assumption that recycling systems may have developed strategies to minimize P losses. Further, not only the quantity but also the chemistry (P forms) of transported or accumulated P will differ between the ecosystems. In our project, we will therefore experimentally test the relevance of the two contrasting hypothetical nutritional strategies for P transport processes through the soil and into streamwater. As transport processes will occur especially during heavy rainfall events, when preferential flow pathways (PFPs) are connected, we will focus on identifying those subsurface transport paths. The chemical P fractionation in PFPs will be analyzed to draw conclusions on P accumulation and transport mechanism in soils differing in their availability of mineral bound P (SPP core sites). The second approach is an intensive streamwater monitoring to detect P losses from soil to water. The understanding of P transport processes and P fluxes at small catchment scale is fundamental for estimating the P exports of forest soils into streams. With a hydrological model we will simulate soil water fluxes and estimate P export fluxes for the different ecosystems based on these simulations.
Beton ist ein unverzichtbarer Baustoff, ohne den es nicht gelingt, systemrelevante Bauwerke in tragfähiger und dauerhafter Art und Weise zu errichten. Bei der Herstellung von Zement als Bindemittel werden jedoch große Mengen thermischer Energie benötigt und prozessbedingt erhebliche Mengen Kohlenstoffdioxid freigesetzt. Der bisher maßgebliche verfolgte Ansatz, Zement anteilig durch Betonzusatzstoffe (z.B.Flugasche) auszutauschen, stößt jedoch aufgrund ihrer in Zukunft eher sinkenden Verfügbarkeit an seine Grenzen. Das Ziel dieses Forschungsantrags umfasst daher die Entwicklung eines neuartigen reaktiven Betonzusatzstoffs, der durch eine thermomechanische Aufbereitung aus rezykliertem Betonbruch gewonnen werden soll. Hierfür wird die gesamte Prozesskette von der Rohstoffverfügbarkeit über die prozesstechnischen Randbedingungen der Betonzusatzstoffherstellung im Labor sowie kurz- und langzeitige Bindemittel- und Betoneigenschaften, die Produkt- und Bauteilherstellung im Technikumsmaßstab bis hin zur Ökobilanzierung untersucht. Für die Betonherstellung streben wir einen reaktiven Betonzusatzstoff an, der Flugasche und andere Betonzusatzstoffe vollständig substituieren und ggf. übertreffen kann. Ziel ist ein k-Wert größer als 0,4. Bei Zement ist eine Hauptbestandteilreduktion des Klinkers von 35-50% Ziel des Forschungsprojektes. Hier soll ein CEM II/B und ein CEM II/C entwickelt werden.
Die Ziegelwerk Freital EDER GmbH, Wilsdruffer Straße 25, 01705 Freital (Bergbauunter-nehmer) stellte beim Sächsischen Oberbergamt mit Unterlage vom 7. Mai 2025 den Antrag auf Allgemeine Vorprüfung des Einzelfalls gemäß § 9 Gesetz über die Umweltverträglich-keitsprüfung (UVPG) für die Verlängerung / Änderung des Rahmenbetriebsplanes Tontage-bau Freital. Das bisherige Vorhaben ist durch Planfeststellungsbeschluss vom 31. Mai 2000 (mit eingeschlossener Umweltverträglichkeitsprüfung) planfestgestellt. Der Planfeststellungsbeschluss ist für die Dauer von 27 Jahren befristet. Die Planänderungen betreffen: • die Verlängerung der Gesamtlaufzeit des Vorhabens um 38 Jahre, • die Vertiefung der Tagebausohle, • die Änderung der zeitlich-räumlichen Abfolge der Rohstoffgewinnung, • die Änderung der geplanten Rückverfüllung der Gewinnungsflächen und damit verbunden • die Änderungen der Wiedernutzbarmachung. Der Bergbauunternehmer betreibt innerhalb des Bergwerksfeldes Freital einen Tagebau zur Gewinnung von tonigen Gesteinen für die Herstellung von Hintermauerziegeln. Der gewonnene Rohstoff wird in dem in unmittelbar Nähe zum Tagebau gelegenen Ziegelwerk verarbeiten. Da absehbar ist, dass die Rohstoffgewinnung und die anschließende Wiedernutzbarmachung des Tagebaus bis zum Jahr 2027 (Befristung Planfeststellungsbeschluss) nicht abgeschlossen werden kann, soll die Gesamtlaufzeit des Vorhabens (Rohstoffgewinnung einschließlich der Wiedernutzbarmachung) um 38 Jahre verlängert werden. Der Abschluss des Vorhabens ist bis spätestens zum Jahr 2065 geplant. Neue Erkenntnisse zum Umfang des Rohstoffvorrats sowie verschiedene rechtliche und technische Anforderungen führen weiterhin zu einer Änderung der Abbauplanung für die Rohstoffgewinnung und die Wiedernutzbarmachung. Die Basis des gewinnbaren Rohstoffes und damit der zukünftigen Tagebausohle soll zwischen ca. 167 m NHN im Nordosten und ca. 180 m NHN im Südwesten des Plangebietes liegen. Damit wird die bisher geplante Abbauteu-fe im Südwesten des Tagebaus um 12 m unterschritten, während sich im Nordosten keine Veränderungen ergeben. Die zeitlich-räumliche Abfolge der Rohstoffgewinnung sieht zukünftig zwei zeitlich parallel zu nutzende Abbauabschnitte südlich und westlich des aktuellen Tagebaus vor. Während die Planfeststellung eine vollständige Verfüllung und eine Wiederherstellung der ursprünglichen Geländemorphologie im zentralen und südwestlichen Hälfte der Gewinnungsfläche vorsieht, soll zukünftig auf der Gewinnungsfläche nur noch eine Teilverfüllung bis auf ein Höhenniveau von 180 m NHN erfolgen. Mit der Änderung der zeitlich-räumlichen Abfolge der Rohstoffgewinnung und der Geometrie des teilverfüllten Tagebaus sind Änderungen der Folgenutzung/der Wiedernutzbarmachung verbunden. Diese betreffen nicht die grundsätzliche Änderung der Folgenutzungsarten (Gewerbefläche, öffentliche Grünfläche und nutzungsfreie Fläche), sondern die räumliche Anordnung der einzelnen Nutzungen im rekultivierten Tagebau.
In this project, we will investigate the spatial heterogeneity of soil phosphorus (concentration of total P, P speciation) in soils with different P status with modern analytical (synchrotron-based X-ray spectroscopy and spectromicroscopy) and geostatistical methods at different scales (soil aggregates: (sub)micron to mm scale; particular regions of soil profiles (e.g. root channels, surrounding of stones): mm to dm scale; entire soil profiles: dm to m scale; selected patches of the forest stand: m to 5m scale). We expect that our results will provide new insights about spatial heterogeneity patterns of soil P concentration and P speciation in forest soils and their relevance for P availability and P nutritional status of Norway spruce and European beech.
Die Bodenstruktur, das heißt die räumliche Anordnung verschiedener Bodenbestandteile, kontrolliert Größe und Form der Verbindungslinie zwischen P Sorptionsplätzen und den biologischen Akzeptoren bzw. Donatoren im Boden. Die Bildung von Bodenaggregaten kann bodenphysikalisch (Schrumpfen und Quellen) oder biologisch (Bioturbation, biogene Klebstoffe) induziert werden. Derzeit weiß man erst wenig darüber (1) welche Einflüsse die Bildung und die Eigenschaften von Aggregaten in Waldböden steuern, (2) welche Bedeutung die Aggregatbildung für die P-Verteilung im Aggregat hat und (3) welche Konsequenzen sich daraus für P-Verfügbarkeit und Mobilität ergeben. Unsere eigenen Voruntersuchungen deuten darauf hin, dass der Einschluss von P in Bodenaggregate die P Verfügbarkeit in Böden mit geringer biologischer Aktivität herabsetzt. Unser Ziel ist es Wechselwirkungen zwischen der P Ernährungsstrategie, der Aggregatbildung und der P-Verteilung im Aggregat zu untersuchen. Unsere Hypothese ist, dass Aggregat turnover, die P-Diffusion im Aggregat und der P Eintrag auf die Aggregatoberfläche die P Verteilung steuern. Aufgrund dieser Zusammenhänge erwarten wir die stärkste Anreicherung von P auf der Aggregatoberfläche auf Standorten mit mittlerer P-Verfügbarkeit.Um diese Hypothese zu prüfen, untersuchen wir Aggregateigenschaften, Aggregat turnover und die P-Verteilung im Aggregat auf den SPP Versuchsstandorten. Wir verwenden Mikrodialyse um P-Diffusion im Freiland messen zu können. Zusätzlich werden Perkolationsexperimente mit unterschiedlich stark gestörten Bodenaggregaten durchgeführt. Unser Projekt wird dazu beitragen, Standortbedingungen zu identifizieren unter denen die Bodenstruktur besonders wichtig ist für die P-Verfügbarkeit. Die Bedeutung ökologisch kontrollierter Bodenarchitektur für die P-Verfügbarkeit wird analysiert.
Als Reaktion auf das Problem der Phosphorverknappung wurden eine Reihe von sogenannten Phosphorplattformen initiiert, welche die Aktivitäten auf dem Gebiet der Phosphorforschung bündeln und den Kenntnisstand zum Thema Phosphor (P) substantiell verbessern sollen. Ziel ist eine effiziente und nachhaltige Nutzung der verfügbaren Phosphorressourcen. In diesem Rahmen setzt das Schwerpunktprogramm (SPP) 1685 den Fokus auf diejenigen Prozesse, die den Phosphorkreislauf im Ökosystem Wald bestimmen. Das vorliegende Projekt soll die Anstrengungen innerhalb des SPPs methodisch und konzeptionell erweitern, in dem P-relevante Prozesse an Oberflächen mit Methoden der Computerchemie auf molekularer Ebene untersucht werden. Während die experimentellen Arbeiten darauf ausgerichtet sind, beispielsweise P-Verbindungen an den verschiedenen Testfeldern in ihrer Häufigkeit und Reaktivität zu charakterisieren, ergeben sich durch die Nutzung von computerchemischen Methoden Möglichkeiten, zum detaillierten Verständnis der experimentellen Daten beizutragen. Ziel dieses Projektes ist es, die grundlegenden Mechanismen bei der P-Bindung an Oberflächen im Boden zu bestimmen und beeinflussende Faktoren zu untersuchen. Dazu sollen molekulare Modelle für P-relevante Prozesse im Boden entwickelt und in numerischen Simulationsprotokollen implementiert werden. Dabei können wir auf bestehende Vorarbeiten zu agrarischen Ökosystemen aufbauen. In Kooperation mit experimentellen Partnern im SPP und an der Universität Rostock sollen folgende Fragen beantwortet werden: (i) Welche Bindungsmotive gibt es für organische und anorganische P-Verbindungen an Mineraloberflächen im Boden und was sind die Bindungsenergien? Wie werden diese Eigenschaften z.B. durch den pH-Wert beeinflusst? (ii) Wie hängt die Bindung von der Art und den Eigenschaften der Oberfläche ab, z.B. Vergleich alkalische (Ca) vs. saure (Al,Fe-Oxide) Oberflächen, wie sie für die verschiedenen Testfelder im SPP typisch sind. (iii) Welchen Einfluss hat die Bedeckung der Oberfläche mit für Waldböden typischen organischen Substanzen, die z.B. aus der Aktivität von Mikroben stammen. (iv) Welche Unterschiede/Gemeinsamkeiten gibt es zwischen der P-Bindung an Mineraloberflächen und an makromolekularen organischen Bodensubstanzen?
Origin | Count |
---|---|
Bund | 397 |
Land | 21 |
Zivilgesellschaft | 2 |
Type | Count |
---|---|
Förderprogramm | 369 |
Text | 22 |
Umweltprüfung | 15 |
unbekannt | 12 |
License | Count |
---|---|
geschlossen | 47 |
offen | 368 |
unbekannt | 3 |
Language | Count |
---|---|
Deutsch | 378 |
Englisch | 85 |
Resource type | Count |
---|---|
Archiv | 3 |
Datei | 1 |
Dokument | 29 |
Keine | 218 |
Webseite | 179 |
Topic | Count |
---|---|
Boden | 373 |
Lebewesen und Lebensräume | 344 |
Luft | 207 |
Mensch und Umwelt | 418 |
Wasser | 164 |
Weitere | 402 |