API src

Found 69 results.

Ammoniak-Reformierung mit elektrisch beheizten Katalysatorträgern beschichtet mit Biomasse-basierten Kohlenstoff-Materialien, AmmoCatCoat - Ammoniak-Reformierung mit elektrisch beheizten Katalysatorträgern beschichtet mit Biomasse-basierten Kohlenstoff-Materialien

Das Projekt "Ammoniak-Reformierung mit elektrisch beheizten Katalysatorträgern beschichtet mit Biomasse-basierten Kohlenstoff-Materialien, AmmoCatCoat - Ammoniak-Reformierung mit elektrisch beheizten Katalysatorträgern beschichtet mit Biomasse-basierten Kohlenstoff-Materialien" wird/wurde gefördert durch: Bundesministerium für Forschung, Technologie und Raumfahrt. Es wird/wurde ausgeführt durch: Leibniz-Institut für Agrartechnik und Bioökonomie e.V..

Ammoniak-Reformierung mit elektrisch beheizten Katalysatorträgern beschichtet mit Biomasse-basierten Kohlenstoff-Materialien, AmmoCatCoat - Ammoniak-Reformierung mit elektrisch beheizten Katalysatorträgern beschichtet mit Biomasse-basierten Kohlenstoff-Materialien

Das Projekt "Ammoniak-Reformierung mit elektrisch beheizten Katalysatorträgern beschichtet mit Biomasse-basierten Kohlenstoff-Materialien, AmmoCatCoat - Ammoniak-Reformierung mit elektrisch beheizten Katalysatorträgern beschichtet mit Biomasse-basierten Kohlenstoff-Materialien" wird/wurde gefördert durch: Bundesministerium für Forschung, Technologie und Raumfahrt. Es wird/wurde ausgeführt durch: Pyreg GmbH.

Ammoniak-Reformierung mit elektrisch beheizten Katalysatorträgern beschichtet mit Biomasse-basierten Kohlenstoff-Materialien, AmmoCatCoat - Ammoniak-Reformierung mit elektrisch beheizten Katalysatorträgern beschichtet mit Biomasse-basierten Kohlenstoff-Materialien

Das Projekt "Ammoniak-Reformierung mit elektrisch beheizten Katalysatorträgern beschichtet mit Biomasse-basierten Kohlenstoff-Materialien, AmmoCatCoat - Ammoniak-Reformierung mit elektrisch beheizten Katalysatorträgern beschichtet mit Biomasse-basierten Kohlenstoff-Materialien" wird/wurde gefördert durch: Bundesministerium für Forschung, Technologie und Raumfahrt. Es wird/wurde ausgeführt durch: Fraunhofer-Institut für Solare Energiesysteme.

Ammoniak-Reformierung mit elektrisch beheizten Katalysatorträgern beschichtet mit Biomasse-basierten Kohlenstoff-Materialien, AmmoCatCoat - Ammoniak-Reformierung mit elektrisch beheizten Katalysatorträgern beschichtet mit Biomasse-basierten Kohlenstoff-Materialien

Das Projekt "Ammoniak-Reformierung mit elektrisch beheizten Katalysatorträgern beschichtet mit Biomasse-basierten Kohlenstoff-Materialien, AmmoCatCoat - Ammoniak-Reformierung mit elektrisch beheizten Katalysatorträgern beschichtet mit Biomasse-basierten Kohlenstoff-Materialien" wird/wurde gefördert durch: Bundesministerium für Forschung, Technologie und Raumfahrt. Es wird/wurde ausgeführt durch: Heraeus Precious Metals GmbH & Co. KG.

Entwicklung von Kleinserien für MEAs für die SSAS - Solid State Ammoniak Synthese, Teilprojekt: CF04_2.4 Skalierung der Synthese von katalytisch aktiven Kathodenmaterialien und Elektroden

Das Projekt "Entwicklung von Kleinserien für MEAs für die SSAS - Solid State Ammoniak Synthese, Teilprojekt: CF04_2.4 Skalierung der Synthese von katalytisch aktiven Kathodenmaterialien und Elektroden" wird/wurde gefördert durch: Bundesministerium für Forschung, Technologie und Raumfahrt. Es wird/wurde ausgeführt durch: Leibniz-Institut für Katalyse e.V. an der Universität Rostock.

ECatPEMFCmaritim: Strategien zur Erhöhung der Nutzungsdauer von Reformat-Brennstoffzellen in der Schifffahrt.

Das Projekt "ECatPEMFCmaritim: Strategien zur Erhöhung der Nutzungsdauer von Reformat-Brennstoffzellen in der Schifffahrt." wird/wurde gefördert durch: Bundesministerium für Forschung, Technologie und Raumfahrt. Es wird/wurde ausgeführt durch: Technische Universität Carolo-Wilhelmina zu Braunschweig, Institut für Technische Chemie - Technische Elektrokatalyse.

Mikrobielle Vielfalt im SIRIUS Habitat: Molekulare Analyse von 'Überlebenskünstlern' auf neuen antimikrobiellen Zweikomponenten- Oberflächen

Das Projekt "Mikrobielle Vielfalt im SIRIUS Habitat: Molekulare Analyse von 'Überlebenskünstlern' auf neuen antimikrobiellen Zweikomponenten- Oberflächen" wird/wurde gefördert durch: Bundesministerium für Wirtschaft und Energie. Es wird/wurde ausgeführt durch: Berliner Hochschule für Technik, Labor Mikrobiologie.

Katalysator- und Prozessentwicklung zur Herstellung biogener Isohexid-Amine (IsohexAmin)

Das Projekt "Katalysator- und Prozessentwicklung zur Herstellung biogener Isohexid-Amine (IsohexAmin)" wird/wurde gefördert durch: Bundesministerium für Ernährung und Landwirtschaft. Es wird/wurde ausgeführt durch: RWTH Aachen University, Institut für Technische Chemie und Makromolekulare Chemie.Isohexid-Amine sind aufgrund ihrer vergleichsweise rigiden Struktur von großem Interessen für die Herstellung neuartiger biomassebasierter Polyamide. Jedoch ist für eine anwendungsbezogene Entwicklung die Verfügbarkeit der Monomere bisher der limitierende Faktor. Auf organisch-synthetischem Weg bzw. über teure homogenkatalytische Ansätze können sie im Labormaßstab aus den technisch verfügbaren Monomeren Isosorbid und Isomannid hergestellt werden. In einem vorausgegangenen Projekt wurden nun Reaktionsbedingungen identifiziert, die erstmalig die Aminierung von Isohexiden mit Ammoniak in wässrigen Lösungen ermöglichen. Im Rahmen dieses Vorhabens soll die heterogen katalysierte Aminierung von Isohexiden in wässriger Lösung in Richtung technischer Reife weiterentwickelt werden. Das Projekt ist in vier Teilaufgaben gegliedert: 1) Katalysatoroptimierung, 2) Kontinuierliche Reaktionsführung, 3) Stofftrennung und Produktentwicklung und 4) Verfahrensentwicklung. In (1) soll der identifizierte, kommerziell verfügbare Katalysator Ruthenium auf Aktivkohle (Ru/C) optimiert werden. Insbesondere ist das Ziel, unter Minimierung des Leachings, die Aktivität zu steigern, indem durch den Einsatz bimetallischer Ru-basierter Systeme bzw. von Promotoren die Affinität für die Bindung der gebildeten Amine gesenkt wird. In (2) wird die Möglichkeit der kontinuierlichen Prozessführung durch Einsatz eines kontinuierlichen Rührkessels untersucht. Im Fokus stehen dabei insbesondere Versuche zur Langzeitstabilität, der Reaktionskinetik sowie möglicher Massentransferlimitierungen an Formkörperkatalysatoren. In (3) wird die technisch relevante Trennung der Produkte über chromatographische Verfahren weiterentwickelt sowie als Konzeptstudie die Herstellung Isohexidamin-basierten Polyamide gezeigt. Auf dieser Basis soll in (4) über eine konzeptuelle Verfahrensentwicklung das Potential für eine technische Aufskalierung evaluiert sowie die Wirtschaftlichkeit abgeschätzt werden.

(Table 5) Experimental hydrodynamic parameters for different soil types obtained in the Lüchow-Dannenberg district, Lower Saxony

In three typical sandy soils of Northern Germany the mobility of radioactive fission products of technetium, iodine, ruthenium and zirconium have been investigated in dependence of the hydrodynamic and physico-chemical soil properties. The laboratory experiments, which simulated fall-out events, used soil columns (1 m length, 30 cm diameter) taken as undisturbed as possible. By measurements of the breakthrough curves in the percolate and of the depth distribution of radionuclides in the soil columns after 6 months the average transport velocity could be determined. These values could be compared with the average water velocity measured by 3H tagging. Three qualitative mobility relations were observed: Ranker: Tc > Ru > I > Zr; Podsol: Tc > Ru > I > Zr; Brown forest soil: Tc = Ru > I > Zr. Relations between some physico-chemical soil properties and the retardation of radionuclides due to adsorption could be observed (eg. retardation of iodine and technetium by organic substances). The average retardation factors of the radionuclides and the hydrodynamic soil parameters are used in a model which gives a quantitative assessment of the hazard of groundwater contamination by a fall-out event in areas covered with comparable soils.

Teilprojekt: Projektierung und Realsierung einer Versuchsanlage zur Untersuchung der Transferhydrierung mit realer Biomasse im Bereich bis zu mehreren Litern Durchsatz pro Stunde sowie Optimierung des Reaktorsystems anhand der gewonnenen Daten^FEBio@H2O: Flüssige Energieträger aus einer integrierten hydrothermalen Umwandlung von Biomasse^Teilprojekt: Reaktionstechnische Untersuchungen und Modellierung, Teilprojekt: Innovative Katalysatoren für die hydrothermale Umwandlung von Biomasse zu flüssigen Energieträgern

Das Projekt "Teilprojekt: Projektierung und Realsierung einer Versuchsanlage zur Untersuchung der Transferhydrierung mit realer Biomasse im Bereich bis zu mehreren Litern Durchsatz pro Stunde sowie Optimierung des Reaktorsystems anhand der gewonnenen Daten^FEBio@H2O: Flüssige Energieträger aus einer integrierten hydrothermalen Umwandlung von Biomasse^Teilprojekt: Reaktionstechnische Untersuchungen und Modellierung, Teilprojekt: Innovative Katalysatoren für die hydrothermale Umwandlung von Biomasse zu flüssigen Energieträgern" wird/wurde gefördert durch: Bundesministerium für Forschung, Technologie und Raumfahrt. Es wird/wurde ausgeführt durch: Universität Leipzig, Institut für Technische Chemie.Ziel ist die Entwicklung eines katalytischen Prozesses zur Umsetzung verschiedenartiger realer Biomassen zu einem Gemisch von gesättigten bzw. aromatischen Kohlenwasserstoffen. Dabei soll der Prozess nicht mit extern zugeführtem Wasserstoff arbeiten, sondern es sollen die Abbauprodukte der Biomasse zum Teil in einer Flüssigphasenreformierung zu Wasserstoff umgesetzt werden, der dann unmittelbar zur Hydrierung des anderen Teils der Abbauprodukte genutzt wird. Ein wichtiger Bestandteil des Projektes ist die Katalysatorherstellung und -untersuchung, insbesondere für die direkte Kopplung von Reformierung und (Transfer)Hydrierung. Um die notwendigen Katalysatoren zu erhalten, sind folgende Arbeitsschritte essentiell. 1.) Die Untersuchung kommerziell erhältlicher Katalysatoren, v. a. Edelmetalle z.B. Pt/Ru auf verschiedenen porösen Trägern 2.) Die Entwicklung und Synthese problemangepasster Katalysatoren. 3.) Die umfassende physikalisch-chemische Charakterisierung der Katalysatoren (chem. Analyse, N2-Sorption, Chemisorption (CO/ H2), TPR/ TPO, XRD, XPS). 4.) Die Katalysatorauswahl und -präparation für kinetische Untersuchungen und Reaktormodellierung (AP 3). 5.) Die Optimierung der Katalysatoreigenschaften hinsichtlich der Besonderheiten realer Biomasse und die Evaluierung der Ursachen möglicher Desaktivierung. 6.) Die Erarbeitung von Optionen zum Up-scaling der Synthesen sowie Tests zur Stabilität, Regenerierung und Rückgewinnung.

1 2 3 4 5 6 7