API src

Found 401 results.

Related terms

Abfallerzeuger, Abfallmengen (gefährliche Abfälle):Deutschland, Jahre, Abfallarten (EAV 2- und 6-Steller)

Weg des Kohlenstoffs und Regulation des Saeurestoffwechsels bei Sukkulenten (Crassulaceen-Saeurestoffwechsel)

Das Projekt "Weg des Kohlenstoffs und Regulation des Saeurestoffwechsels bei Sukkulenten (Crassulaceen-Saeurestoffwechsel)" wird vom Umweltbundesamt gefördert und von Technische Universität Darmstadt, Fachbereich 10 Biologie, Institut für Botanik durchgeführt. Sukkulenten, die ueber den Crassulaceen-Saeurestoffwechsel (CAM) verfuegen, vermoegen in der Nacht CO2 aus der Atmosphaere zu binden und dieses in Form von Aepfelsaeure zu speichern. Am folgenden Tag wird die Aepfelsaeure decarboxyliert und das dabei entstehende CO2 ueber den Calvin-Zyklus der Photosynthese zugefuehrt. Diese Form des Kohlenstoffgewinns ermoeglicht einen besonders sparsamen Wasserhaushalt. Es handelt sich also um eine oekologische Anpassung an wasserarme Standorte. In dem vom hier vorliegenden Bericht abgedeckten Zeitraum wurden besonders folgende Teilaspekte des CAM erforscht: 1. Charakterisierung der PEP-Carboxylase, des Schluesselenzyms des CAM und Untersuchung seiner Regulierbarkeit in vivo und in vitro. 2. Vergleich verschiedener Sukkulententypen und verschiedener Organe bzw. Gewebe einer Pflanze hinsichtlich ihrer Faehigkeit CAM durchzufuehren oder nicht. Erkenntnisziel: Erforschung der Voraussetzungen fuer das Zustandekommen des CAM bei Pflanzen. 3. Untersuchung des Weges des Kohlenstoffs im CAM. Besonders untersucht wurde das Problem, ob in den Plastoglobuli der Chloroplasten gespeicherte Lipide im CAM umgesetzt werden.

Gemengeanbau von Ackerbohnen und Ölfrüchten

Das Projekt "Gemengeanbau von Ackerbohnen und Ölfrüchten" wird vom Umweltbundesamt gefördert und von Universität Bonn, Institut für Organischen Landbau durchgeführt. Der Anbau von Ölpflanzen zur Gewinnung von Speiseöl und Energie ist bislang im Organischen Landbau wenig entwickelt. Zum einen mindern Probleme bei der Regulierung von Schaderregern und Unkraut die Wirtschaftlichkeit, zum anderen konkurriert der Anbau von Energiepflanzen um Fläche für die Erzeugung von Lebensmitteln. Der Gemengeanbau leistet einen Beitrag zur Diversifizierung im Ackerbau und lässt Synergie-Effekte zwischen den Gemengepartnern wirksam werden. Eine effizientere Ressourcennutzung, geringere Anfälligkeit gegenüber Schaderregern und reduziertes Unkrautaufkommen können zu höheren Gesamterträgen bzw. Gewinnen je Flächeneinheit führen. Im Hinblick auf diese Aspekte wird untersucht, inwieweit die Ölsaaten Öllein (Linum usitatissimum L.), Saflor (Carthamus tinctorius L.) bzw. Senf (Sinapis alba L.) für den jeweils zeitgleichen Anbau mit Ackerbohnen (Vicia faba L.) geeignet sind. In Abhängigkeit von verschiedenen Standraumzumessungen werden die Erträge und die Konkurrenzverhältnisse um Stickstoff und Wasser bei den jeweiligen Gemengepartnern untersucht,sowie die Ölsaaten hinsichtlich Ölgehalt und Fettsäurezusammensetzung analysiert. Arbeitshypothesen: - Der zeitgleiche Anbau von Ackerbohnen und Ölfrüchten führt zu höheren Gesamterträgen bei nur unwesentlich verminderten Ackerbohnen-Erträgen. - Die hauptsächlich im Bodenraum zwischen den Ackerbohnenreihen freigesetzten Stickstoffmengen werden zur Ertragsbildung der Ölfrüchte effizient genutzt. - Ein weiterer Abstand zwischen Ölfrucht- und Ackerbohnenreihe führt zu geringerer interspezifischer Konkurrenz und durch gleichmäßigere Durchwurzelung des Bodenraumes zur effizienteren Nutzung von bodenbürtig freigesetztem Stickstoff und Wasser. Die Folge sind, verglichen mit engerem Reihenabstand, höhere Ölfruchterträge und nur unwesentlich geringere Ackerbohnen-Kornerträge. - Die Ölfrüchte Saflor, Öllein und Senf nehmen aufgrund ihres Pfahlwurzelsystems Stickstoff auch aus tieferen Bodenschichten auf und senken so das Austragungspotential von bodenbürtig freigesetztem Stickstoff bzw. Stickstoff-Restmengen.

Biogenic formation of non-extractable residues from pesticides in soil

Das Projekt "Biogenic formation of non-extractable residues from pesticides in soil" wird vom Umweltbundesamt gefördert und von Helmholtz-Zentrum für Umweltforschung GmbH - UFZ, Department Umweltbiotechnologie durchgeführt. During microbial turnover of organic chemicals in soil, non-extractable residues (NER) are formed frequently. Studies on NER formation usually performed with radioisotope labelled tracer compounds are limited to localisation and quantitative analyses but their chemical composition is left unknown. Recently, we could show for 2,4-dichlorophenoxyacetic acid and ibuprofen that during microbial turnover in soil nearly all NER were derived from microbial biomass, since degrading bacteria use the pollutant carbon for their biomass synthesis. Their cell debris is subsequently stabilised within soil organic matter (SOM) forming biogenic NER (bioNER). It is still unknown whether bioNER are also formed during biodegradation of other, structurally different compound classes of organic contaminants. Therefore, agricultural soil will be incubated with labelled compounds of five classes of commonly used and emerging pesticides: organophosphate, phenylurea, triazinone, benzothiadiazine and aryloxyphenoxypropionic acid. The fate of the label will be monitored in both living and non-living SOM pools and the formation of bioNER will be quantified for each compound over extended periods of time. In addition, soil samples from long-term lysimeter studies with 14C-labelled pesticide residues (e.g. triazine, benzothiazole and phenoxypropionic acid group) will be also analysed for bioNER formation. The results will be summarised to identify the metabolic conditions of microorganisms needed for bioNER formation and to develop an extended concept of risk assessment including bioNER formation in soils.

Mesoskaliges Netzwerk zur Überwachung von Treibhausgas- und Schadstoffemissionen

Das Projekt "Mesoskaliges Netzwerk zur Überwachung von Treibhausgas- und Schadstoffemissionen" wird vom Umweltbundesamt gefördert und von Technische Universität München, Fakultät für Elektrotechnik und Informationstechnik , Lehrstuhl für Erneuerbare und Nachhaltige Energiesysteme durchgeführt. Aktuelle wissenschaftliche Studien legen nahe, dass die aktuelle Erderwärmung durch Treibhausgasemissionen hervorgerufen wird, die vom Menschen verursacht sind. Um gegen diese Entwicklung geeignete Maßnahmen ergreifen zu können bzw. um zu überprüfen, ob solche Maßnahmen von Erfolg gekrönt sind, ist es notwendig, die Schadstoffkonzentrationen inklusive der zugehörigen Emissionsquellen genau zu kennen. Diese Informationen sind bisher jedoch sehr lückenhaft und beruhen auf sogenannten 'bottom-up' Berechnungen. Da diese Kalkulationen nicht auf direkten Messungen beruhen, weisen sie große Ungenauigkeiten auf und sind außerdem nicht in der Lage, bisher unbekannte Emissionsquellen zu identifizieren. In dem hier vorgestellten Projekt soll ein mesoskaliges Netzwerk für die Überwachung von Luftschadstoffen wie CO2, CH4, CO, NO2 und O3 aufgebaut werden, das auf dem neuartigen Konzept der differentiellen Säulenmessung beruht. Bei diesem Ansatz wird die Differenz zwischen den Luftsäulen luv- und leewärts einer Stadt gebildet. Diese Differenz ist proportional zu den emittierten Schadstoffen und somit eine Maßzahl für die Emissionen, welche in der Stadt generiert werden.Mithilfe dieser Methode wird es in Zukunft möglich sein, städtische Emissionen über lange Zeiträume hinweg zu überwachen. Damit können neue Informationen über die Generierung und Umverteilung von Luftschadstoffen gewonnen werden. Wir werden u.a. folgende zentrale Fragen beantworten: Wie verhält sich der tatsächliche Trend der CO2, CH4 und NO2 Emissionen in München über mehrere Jahre? Wo sind die Emissions-Hotspots? Wie akkurat sind die bisherigen 'bottom-up' Abschätzungen? Wie effektiv sind die Maßnahmen zur Emissionsreduzierung tatsächlich? Sind vor allem für Methan weitere Maßnahmen zur Reduzierung der Emissionen notwendig? Zu diesem Zweck werden wir ein vollautomatisiertes Messnetzwerk aufbauen und passende Methoden zur Modellierung entwickeln, welche u.a. auf STILT (Stochastic Time-Inverted Lagrangian Transport) und CFD (Computational Fluid Dynamics) basieren. Mithilfe der Modellierungsresultate werden wir eine Strategie entwerfen, wie städtische Netzwerke zur Überwachung von Luftschadstoffen aufgebaut werden müssen, um repräsentative Ergebnisse zu erhalten. Außerdem können mit den so gewonnenen städtischen Emissionszahlen z.B. dem Stadtreferat, den Stadtwerken München oder der Bayerischen Staatsregierung Möglichkeiten zur Beurteilung der Effektivität der angewandten Klimaschutzmaßnahmen an die Hand gegeben werden. Das hier vorgestellte Messnetzwerk dient somit als Prototyp, um die grundlegenden Fragen zum Aufbau eines solchen Sensornetzwerks zu klären, damit objektive Aussagen zu städtischen Emissionen möglich werden. Dieses Projekt ist weltweit einmalig und wird zukunftsweisende Ergebnisse liefern.

Erprobung von Blei-Saeure-Akkumulatoren im Frequenzregelbetrieb

Das Projekt "Erprobung von Blei-Saeure-Akkumulatoren im Frequenzregelbetrieb" wird vom Umweltbundesamt gefördert und von Berliner Kraft- und Licht durchgeführt.

Contribution of ectomycorrhizal fungi to the formation and mobilization of soil organic matter (SOM)

Das Projekt "Contribution of ectomycorrhizal fungi to the formation and mobilization of soil organic matter (SOM)" wird vom Umweltbundesamt gefördert und von Helmholtz-Zentrum für Umweltforschung GmbH - UFZ, Department Umweltmikrobiologie durchgeführt. In forest ecosystems ectomycorrhizal fungi are responsible for the mobilization of mineral nutrients from soil organic matter (SOM) resulting in a marked increase in productivity of their symbiotic host plants. In return the fungi obtain a significant amount of photosynthetic products from these plants, allowing the formation of an extensive hyphal system. These hyphae constitute a major part of soil biomass and, ultimately, a major source for SOM formation. While plant-fungal nutrient exchange has been analyzed extensively, this proposal is focused on the fungal contribution to SOM formation and on the processes leading to the acquisition of nutrients by the fungi. These two processes will be studied separately and in a quantitative way using isotopic labeling in soil bioreactors. Analysis of the fate of 13C labeled fungal material (Laccaria bicolor) in soil bioreactors will tell how fast and to what extent the various fractions of hyphal biomass are transformed into non-living SOM. As potential molecular or structural markers for SOM formation from fungal hyphae we will analyze characteristic remnants of fungal hyphae in SOM using scanning electron microscopy, DNAfragments using a PCR approach for the fungal rRNA internal transcribed spacerregions and biochemical markers like fatty acids and ergosterol. The impact of ectomycorrhizal mycelia supported by Pinus sylvestris plantlets on 13C- and 15N-labeled SOM and on microbial biomass will be analyzed in separate soil bioreactor experiments.

Molecular determinants of host specificity of maize-, rice- and mango-pathogenic species of the genus Fusarium

Das Projekt "Molecular determinants of host specificity of maize-, rice- and mango-pathogenic species of the genus Fusarium" wird vom Umweltbundesamt gefördert und von Helmholtz Zentrum München, Institut für Bioinformatik und Systembiologie (IBIS) durchgeführt. Fusarium species of the Gibberella fujikuroi species complex cause serious diseases on different crops such as rice, wheat and maize. An important group of plant pathogens is the Gibberella fujikuroi species complex (GFC) of closely related Fusarium species which are associated with specific hosts; F. verticillioides and F. proliferatum are particularly associated with maize where they can cause serious ear-, root-, and stalk rot diseases. Two other closely related species of the GFC, F. mangiferae and F. fujikuroi, which share about 90Prozent sequence identity with F. verticillioides, are pathogens on mango and rice, respectively. All of these species produce a broad spectrum of secondary metabolites such as phytohormones (gibberellins, auxins, and cytokinins), and harmful mycotoxins, such as fumonisin, fusarin C, or fusaric acid in large quantities. However, the spectrum of those mycotoxins might differ between closely related species suggesting that secondary metabolites might be determinants for host specificity. In this project, we will study the potential impact of secondary metabolites (i.e. phytohormones and certain mycotoxins) and some other species-specific factors (e.g. species-specific transcription factors) on host specificity. The recently sequenced genomes of F. mangiferae and F. fujikuroi by our groups and the planned sequencing of F. proliferatum will help to identify such determinants by genetic manipulation of the appropriate metabolic pathway(s).

Umweltfreundliche Galvanisierung von Kunststoffteilen

Das Projekt "Umweltfreundliche Galvanisierung von Kunststoffteilen" wird vom Umweltbundesamt gefördert und von BIA Kunststoff- und Galvanotechnik GmbH & Co. KG durchgeführt. Die BIA Kunststoff- und Galvanotechnik GmbH & Co. KG wird in Solingen eine Demonstrationsanlage zur innovativen Beschichtung von Kunststoffteilen für die Automobilindustrie einrichten. Das Unternehmen will ein Verfahren entwickeln, dass ohne umweltschädliches Chromtrioxid und weitere gefährliche Chemikalien auskommt. Das innovative Pilotprojekt wird vom Bundesumweltministerium mit rund 5 Millionen Euro aus dem Umweltinnovationsprogramm gefördert. Automobilhersteller benötigen für ihre Produktion zahlreiche Kunststoffteile, die hohen Belastungen widerstehen müssen. Durch Galvanisierung werden diese Teile besonders resistent gegen Kratzer, sie weisen eine höhere Stabilität auf und werden wärmebeständig. Bei der Oberflächenveredelung von Kunststoffteilen ist derzeit der Einsatz von Chromschwefelsäure üblich. Allerdings enthält diese Säure das äußerst umwelt- und gesundheitsschädliche Chromtrioxid (Cr(VI)). BIA Kunststoff- und Galvanotechnik möchte künftig auf das risikobehaftete Chromtrioxid in ihrer Produktion verzichten. Daher plant das Unternehmen, eine neuartige Anlage mit integrierter und kombinierter Abluftbehandlungs- und Wärmerückgewinnungsanlage einzurichten. Im Rahmen dieses innovativen Projekts soll die Produktionslinie für galvanisierte Kunststoffteile komplett auf chromtrioxidfreie Prozesse umgestellt werden. Im Vorbehandlungs- und Verchromungsprozess setzt das Unternehmen auf umweltfreundliche Technologien, die erstmalig in Deutschland im großtechnischen Maßstab umgesetzt werden. Ziel ist es, Emissionen der gefährlichen Chemikalie in die Luft und ins Wasser sowie auch den Anfall von chromhaltigen Schlämmen zu vermeiden. Durch die Umstellung auf ein chromtrioxidfreies Verfahren will die BIA Kunststoff- und Galvanotechnik jährlich 15 Tonnen Chromtrioxid eingesparen. Außerdem kann das Unternehmn auf viele weitere gesundheits- und umweltschädlicher Stoffe verzichten, die heute noch für die Verarbeitung von Chromtrioxid nötig sind. Die innovative Anlagentechnik soll auch einen Beitrag zum Klimaschutz leisten und jährlich rund 129 Tonnen CO2 einsparen. Das Bundesumweltministerium fördert die großtechnische Anwendung einer innovativen Technologie über das Umweltinnovationsprogramm. Ausschlaggebend für die Förderung war, dass das Vorhaben über den Stand der Technik hinausgeht und Demonstrationscharakter hat. Das Umweltinnovationsprogramm unterstützt seit 1979 Unternehmen dabei, innovative, umweltentlastende technische Verfahren in die Praxisanwendung zu bringen. Das Programm fördert das Potenzial, dass aus der Synergie von technischen Verfahren und industrieller Produktion sowie ökologischen und ökonomischen Anforderungen entsteht.

Microbial P mobilization and immobilization in the rhizosphere and root-free soil (SPP: P Nutrition & recycling)

Das Projekt "Microbial P mobilization and immobilization in the rhizosphere and root-free soil (SPP: P Nutrition & recycling)" wird vom Umweltbundesamt gefördert und von Universität Bayreuth, Fachgruppe Geowissenschaften, Bayreuther Zentrum für Ökologie und Umweltforschung (BayCEER), Lehrstuhl für Bodenökologie durchgeführt. Soil microorganisms can mobilize and immobilize phosphorus (P), and therefore strongly affect the availability of P to plants. In this project we hypothesize that the ratio of labile P to microbial P increases during the transition from acquiring to recycling ecosystems. Microbial and plant P uptake will be studied with 33P that will be quantified in microbial and plant biomass as well as in lipids. To what extent microorganisms immobilize and mobilize P during decomposition of soil organic matter will be explored with a 14C/33P labeled monoester. Seasonal dynamics of actual and potential P mineralization (33P dilution and phosphatase activity), and microbial P immobilization will be studied with soils of the transition from acquiring to recycling ecosystems. The contribution of litter-derived P will be explored in a litter exclusion experiment in the field. Spatial patterns of microbial and plant P mineralization in the rhizosphere will be explored by analyses of areas of high acid and alkaline (=microbial-derived) phosphatase activity by soil zymography, and their relations with areas of high rhizodeposition (14C imaging). In conclusion, we will analyse mechanisms of actual and potential microbial P mineralization and immobilization, localization, and consequences for P uptake by plants.

1 2 3 4 539 40 41